
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Automatic liver vessel segmentation using 3D region growing and hybridAutomatic liver vessel segmentation using 3D region growing and hybrid
active contour modelactive contour model

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1016/j.compbiomed.2018.04.014

PUBLISHER

© Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Zeng, Ye-zhan, Sheng-hui Liao, Ping Tang, Yu-qian Zhao, Miao Liao, Yan Chen, and Yi-xiong Liang. 2019.
“Automatic Liver Vessel Segmentation Using 3D Region Growing and Hybrid Active Contour Model”. figshare.
https://hdl.handle.net/2134/33050.

https://lboro.figshare.com/
https://doi.org/10.1016/j.compbiomed.2018.04.014


Automatic Liver Vessel Segmentation Using 3D Region Growing 

and 

Hybrid Active Contour Model 

 

Ye-zhan Zeng a, b, Sheng-hui Liao a *, Ping Tang a, b, Yu-qian Zhao a, b *, Miao Liao c, Yan Chen d, Yi-xiong Liang a 

 

a School of Information Science and Engineering, Central South University, Changsha 410083, China 

b Department of Biomedical Engineering, Central South University, Changsha 410083, China 

c School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China 

d Applied Vision Research Centre, Loughborough University, Loughborough, UK 

 

* Contact: lsh@csu.edu.cn; zyq@csu.edu.cn 

 

Abstract: This paper proposes a new automatic method for liver vessel segmentation by exploiting 

intensity and shape constraints of 3D vessels. The core of the proposed method is to apply two different 

strategies: 3D region growing facilitated by bi-Gaussian filter for thin vessel segmentation, and hybrid 

active contour model combined with K-means clustering for thick vessel segmentation. They are then 

integrated to generate final segmentation results. The proposed method is validated on abdominal 

computed tomography angiography (CTA) images, and obtains an average accuracy, sensitivity, 

specificity, Dice, Jaccard, and RMSD of 98.2%, 68.3%, 99.2%, 73.0%, 66.1%, and 2.56 mm, respectively. 

Experimental results show that our method is capable of segmenting complex liver vessels with more 

continuous and complete thin vessel details, and outperforms several existing 3D vessel segmentation 

algorithms. 
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1 Introduction 

Liver vessel segmentation from abdominal computed tomography angiography (CTA) images is an 

essential and key step for liver-related disease diagnosis and therapy, liver transplantation, as well as 



liver-tumor resection[1]. However, influenced by the significant noise, partial volume effects, various 

vessel sizes, and especially by inhomogeneous intensity distribution and highly ramified branches, 

accurate segmentation of liver vessels from abdominal CTA images is a challenging task. In fact, 

accurate vessel segmentation in clinical practice usually relies on the manual delineation by radiologists 

on each CTA slice, which is extremely tedious and time-consuming. Thus, automatic or semi-automatic 

segmentation of liver vessels gains increasing attention. 

Usually, three-dimensional (3D) vessels in medical images can be modeled as tubular structures, 

whose cross-sections can be described as asymmetrical circular or elliptic shape [2]. Based on this 

geometric structure, many efforts have been made for 3D vessel segmentation including active contour 

model/level set-based [3-8] and graph cuts-based techniques [9-10].  

Shang et al. [3] described a region competition-based active contour mode exploiting a Gaussian 

mixture model for the segmentation of thick vessels, and introduced a vascular vector field to drive the 

active contour into thin and weak vessels. This method is effective in various vessel segmentation. 

Cheng et al. [4] developed an active contour framework for vessel segmentation. It starts with an axis 

tracking technique to detect vessel cross-section, and then applies a B-snake model for boundary 

refinement. With the shape and size constrains on the cross-section of vessels, this method is able to 

accurately segment healthy vessels. In [5], Woźniak et al. employed a multi-scale Frangi filter and an 

improved level set method for 3D vessel tree segmentation. In their method, a vessel force generated by 

Frangi filter is introduced to the level set formation, which enables the contour to move toward vessel 

boundaries actively and finds more vessel branches. Lu et al. [6] proposed a variational level set method 

for liver vessel segmentation, which first adopts a K-means clustering to select seed points and extracts 

vessel features from these seed points, and then uses a variational level set combined with bias 

correction for vessel segmentation. Zhao et al. [7] adopted a region-based active contour model 

combined with a phase-field method and statistical information for vessel network extraction. This 

method shows satisfying segmenting results when the vessel regions and background are separated in 

maximum intensity projection (MIP) image. Based on an analysis of the intensity distribution of magnetic 

resonance angiography (MRA) images, Gao et al. [8] constructed a statistical model and applied a fast 

level set method combined with region and gradient information to segment cerebrovascular vessels. 

Generally, the active contour model can provide a satisfying result for the high-contrast image, but the 

performance may be limited when handling the object with serious inhomogeneity. 



Recently, graph cuts algorithm has been widely applied in medical image segmentation for its efficient 

computation to the global optimal solution. Bauer et al. [9] applied a medialness filter together with height 

ridge traversal method to generate vessel prior which is then incorporated into graph cuts for the 

segmentation of 3D vessels. Their method was verified to be robust to separate different vessel systems 

and effective to determine the surface of tubular structures. Esneault et al. [10] introduced a 3D 

geometrical moment-based detector of cylindrical shapes to detect tubular structure, followed by graph 

cuts for liver vessel segmentation, and their experiments on the medical CTA images show a good 

segmenting ability. Sangsefidi et al. [11] defined a balanced data term of graph cuts to improve 

segmentation of hepatic vessels. They used vessel centerlines to estimate the local data term, which 

can be applied to balance the total energy in small vessels and low-contrast regions. In [12], the graph 

cuts is coupled with oriented flux measure and height ridge traversal to perform the segmentation and 

identification of liver vessels. This method works well on the high-contrast CTA images, and the effective 

extraction of centerline made it adaptive to various vessel structures. The drawbacks of [12] are its long 

computing time and sensitivity to image contrast. 

Besides, Law and Chung [13] proposed a physics-based deformable surface model for vessel 

segmentation by reducing the influence of intensity contrast fluctuations along blood vessels. An 

extreme learning machine (ELM) algorithm was employed by Zeng et al. [14] for liver vessel 

segmentation beginning with four 3D vessel filters including Sato, Frangi, medialness, and strain energy 

to extract vessel features, followed by an ELM to recognize liver vessels from the background. 

Considering the equal distances from vessel centerline to the edges, Foruzan et al. [15] defined a 

medial-axis enhancement filter according to the eigenvalues of the Hessian matrix, and applied a 

dynamic thresholding for vessel segmentation from the noisy CT image. Yang et al. [16] firstly applied 

empirical threshold intervals to extract seed points, and then preformed a region growing method 

integrated in insight segmentation and registration toolkit (ITK) for vessel segmentation. This method 

can separate hepatic and port veins, however, requires manual selection of optimal segmentation result 

from six vessel candidates generated from different threshold intervals. Marcan et al. [17] adopted the 

Frangi filter and region growing to segment hepatic vessels, which receives an average sensitivity of 

93.68% on magnetic resonance images (MRI). 

These aforementioned methods receive satisfactory segmentation results for most of 3D vessels; 

however, to the best of our knowledge, few methods consider the elongated and inhomogeneous 



structures of thin vessels with low contrast. In this paper, we propose an automatic liver vessel 

segmentation method using 3D region growing and hybrid active contour model. First, an anisotropic 

diffusion filter is used to remove noise while preserving vessel boundaries. Then, according to vessel 

geometrical structure, a bi-Gaussian filter together with a 3D region growing is adopted for thin-vessel 

segmentation. Next, based on an analysis of intensity distribution for liver vessels, a combination of 

K-means clustering and hybrid active contour model is used for automatic segmentation of thick vessels. 

Finally, both of the thin and thick vessels are integrated to generate the final liver vessel segmentation 

result. A flowchart of our method is shown in Fig. 1. 

 

 

 

Fig. 1. Flowchart of liver vessel segmentation. 

 

The remainder of this paper is organized as follows. Section 2 describes the details of the proposed 

method for liver vessel segmentation. In Section 3, the experiments and results are presented. Section 4 

gives a discussion, and Section 5 concludes the paper.  

2 Methodology 

Due to the limitation of imaging techniques of CT scans, the CTA images are inevitably contaminated 

by noise. In addition, to reduce harmful radiation effects of x-rays, the CT scans usually work with low 

tube voltage, which also leads to the increasing of noise. Therefore, a nonlinear anisotropic diffusion 

filter described in [12] and [18] is firstly applied to smooth noise while reserving vessel boundaries, then 

two different strategies are respectively used for the thin and thick vessel segmentation. For the 
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anisotropic diffusion filter, the parameter of gradient modulus threshold  is considered as an important 

sensitive parameter and should be chosen carefully. To obtain an optimal threshold , Fig. 2 shows the 

MIPs of filtering results with different s. As observed, a small  is unable to deal with the liver vessel 

image contaminated by significant noise, while a large one will lead to a slightly blurring of the vessel 

boundary. In our experiments, a default value  can keep a better balance between noise filter and 

boundary preserving for significantly noise-corrupted liver vessel images. 

 

   

(a)                    (b)                   (c) 

   

(d)                    (e)                   (f) 

Fig. 2. Results of anisotropic diffusion filtering with different gradient modulus thresholds. (a) The MIP of 

original liver vessel image, and (b)-(f) are the MIPs of filtering results with  equal to 10, 40, 70, 80, 

and 90, respectively. 

 

2.1 Thin vessel segmentation   

Usually, the thin vessels in CTA images suffer from low contrast and blurring edges and therefore, 

traditional intensity- and gradient- based algorithms, such as the K-means and level set, often fail to 

segment these vessels. To solve these problems, a thin-vessel segmentation method is proposed based 

on an analysis of the geometric structure of liver vessels, which first utilizes a bi-Gaussian filter to detect 

the thin vessels, and then a 3D region growing algorithm for segmentation. 
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To detect vessel structure, typical vessel filters usually rely on a scaled Hessian matrix to describe 

vessel geometry, such as Frangi and medialness filters. As is well known, the Hessian matrix usually 

involves a convolution operation on the image and second-order derivative of Gaussian kernel [19-21]. 

However, the Gaussian kernel will lead to the blurring of object boundaries and undesired merging of 

adjacent objects because of its adopting a single scale on both foreground and background. To deal with 

the disturbance from adjacent objects, a bi-Gaussian kernel is presented by merging two traditional 

Gaussian kernels with different scales [19], and is defined as: 

  (1) 

where  and  are the foreground and background scales,  the Gaussian kernel with the 

mean 0 and variance ,  the Gaussian kernels with the mean  and 

variance , and  is set as 0.2 in this paper. 

Once the bi-Gaussian kernel is determined, the vessel structure can be described in terms of the 

eigenvalues of Hessian matrix , where  is the convolution result of  

and , , and  the Hessian matrix. Assuming the eigenvalues  

( ) of  are sorted in order, say , a bright vessel structure will satisfy 

 and . According to the distribution of eigenvalues, the bi-Gaussian filter [19] is 

defined as: 

  (2) 

where the ratio of  to  is used to punish deviation from the tubular center, and the sum of the two 

eigenvalues (i.e.,  and ) defining the vessel cross-section is applied to measure the strength of 

vessel structure. 

Considering the variety of vessel radii, a multi-scale framework is used to obtain the maximum 

response of vessels with various sizes: 

  (3) 

where  and  represent the minimum and maximum scales, respectively, determining the scale 
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range of vessels to be detected.  

To better describe the impact of scale ranges on vessel detection, Fig. 3 gives the detecting results 

performed by multi-scale framework, where Fig. 3 (a) is an original liver vessel image obtained by 

previous works [22, 23], and Figs. 3(b)-(d) show the detecting results of bi-Gaussian filter with different 

scale ranges [ , ] of [1, 2], [1, 4], and [1, 7], respectively. Here, the visualization of 3D vessel 

images is implemented in MeVisLab [24], using the volume rendering mode. As observed, a wider scale 

range of [ , ] is beneficial to detect vessels with different scales, but also leads to a relatively 

weaker response of thin vessels, i.e., a smaller ratio of the intensity of thin vessels to that of thick ones. 

In this section, as we mainly focus on the detection of thin vessels, the scale range of [ , ] is set 

to a narrow one covering most of the radii of thin vessels, instead of a wide one covering all possible 

radii of vessels as traditional vessel detection methods do.  

 

    

(a)                     (b)                      (c)                    (d) 

Fig. 3. Vessel detecting results of bi-Gaussian filter with different scale ranges [ , ]. (a) Original 

liver vessels image, and (b) through (d) detetion results with different scale ranges of [1, 2], [1, 4], and [1, 

7], respectively. 

 

To efficiently segment thin vessels, a 3D region growing algorithm is then applied on the bi-Gaussian 

filter detected image. First, the voxels with their intensities ranked in the top 2% of the whole image are 

selected as the seed points. Then, if a voxel  belonging to the neighborhood of seed voxel  meets 

the similarity criterion,  and , it is added to the object and set as a 

new seed voxel, where the thresholds  and  are set as 5 and 20 in this paper. The procedure 

stops until no more voxels satisfy the similarity criterion. In this way, we can obtain thin vessels efficiently. 

To further analyze the influence of salce range [ , ] on segmentation performance, Figs. 4(a)-(c) 
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give the corresponding segmentation results of Figs. 3(b)-(d). As seen in Fig. 4, the narrowest scale 

range [ , ] can effectively segment most of the thin vessels, even if some of them suffer from low 

contrast and blurring boundaries. With the increasing of scale range, the segmentation performance of 

thin vessels will gradually decrease. Therefore, the scale range [ , ] is set as [1, 2] for clinical 

CTA data set, and Fig. 4(a) shows corresponding thin-vessel segmentation result. 

 

 

 

   

(a)                    (b)                  (c) 

Fig. 4. Influence of salce range [ , ] on 3D region growing. (a)-(c) Segmentation results of Figs. 

3(b)-(d), respectively. 

 

2.2 Thick vessel segmentation 

In this section, a thick-vessel segmentation method is proposed based on K-means clustering and 

hybrid active contour model. Generally, the active contour model requires an initial segmentation for 

contour evolution and therefore, a K-means clustering method [25] is performed to generate this initial 

segmentation. To balance clustering performance and computing time, the cluster number of K-means is 

set as 3 in our experiments. Figs. 5(a)-(c) show the clustering results of Fig. 3.(a), whose clustering 

centers are sorted in an ascending order as 2.10, 45.90, and 160.73, respectively, and they are 

intuitively corresponding to the background, transition region (from background to thick vessels), and 

thick vessels, respectively. According to the vessel prior in CTA image, the intensities of the thick vessels 

are relatively higher than the background and the transition region, and thus we choose the clustering 

result with maximal clustering center as the initial thick vessels, as shown in Fig. 5(c). 
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(a)                      (b)                    (c) 

Fig. 5. K-means clustering results of Fig. 3(a). (a)-(c) Clustering results with clustering centers of 2.10, 

45.90, and 160.73, respectively. 

2.2.2	Boundary refinement with hybrid active contour model 

Compared with the edge- and region- based active contour model, such as the geodesic active 

contour (GAC) model and Chan-Vese (CV) model, the hybrid active contour model is more effective to 

deal with the boundary leakage and intensity inhomogeneity [26]. Therefore, we apply it for the boundary 

refinement of thick vessels, and its energy function is defined as: 

  (4) 

where  and  are the region and boundary weight coefficients, respectively,  is the closed 

contour (or surface in 3D),  the image domain,  the lower bound of the intensity in target object, 

 is the positive decreasing function, and  is the Heaviside function defined as 

  (5) 

According to the theory of gradient descent flow, the partial differential equation (PDE) of the evolution 

contour is expressed as: 

  (6) 

where  is a Dirac function with . 

In Eq. (4),  is a key parameter significantly affects the segmentation performance. To give an 

intuitive understanding, Figs. 6(a)-(c) show the segmentation results of thick liver vessels for Fig. 3(a) 

with different  values of 25, 35, and 60, respectively. As observed, a smaller  value easily leads to 

serious over-segmentation, as shown in Fig. 6(a), where many intertwined or parallel vessels belonging 
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to different vessel systems are mistakenly classified into one vessel system. On the contrary, a larger  

value results in the loss of many vessel branches, as shown in Fig. 6(c). 

   

(a)                     (b)                  (c) 

Fig. 6. Thick liver vessel segmentation results by active contour model with different  values of (a) 25, 

(b) 35, and (c) 60, respectively. 

 

To optimize the parameter , vessel prior in CTA images is considered. As stated early, the intensities 

of the thin vessels are lower than those of the thick vessels, and the similar situation exists between 

vessel boundaries and their centers. That is, the intensities of thin-vessel boundaries are the lowest 

among the whole liver vessels, and therefore, they can be used to estimate the parameter . 

To obtain the intensity information of thin-vessel boundaries, a morphology method is firstly adopted to 

extract the boundary voxels from thin-vessel segmentation result. Let  be the thin-vessel 

segmentation result by bi-Gaussian filter combined with 3D region growing, and  be the boundary 

voxels of thin vessels ,  can be expressed as 

  (7) 

where  represents the erosion operation, and is a 3D structuring element composed of three 3×3 

matrices in a symmetrical spatial structure, as shown in Fig. 7, in which “0” and “1” are the values of 

structuring element. As  may include noise with high intensity and some non-thin-vessel-boundary 

voxels, to maximally exclude these voxels, we only consider the voxels in  with their intensities in 

range [ , ], and use their mean intensity to specify the parameter . By sorting voxels in  

in an ascending order of their intensities,  and  are set as the intensities with associated 

voxels ranked in the top 10% and top 40%, respectively, i.e., , and , 

where  is the voxel number in ,  and  represent the indices in the ordered 
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voxel set. 

 

 

Fig. 7. 3D structuring element for erosion operation. It is composed of three 3×3 matrices in a 

symmetrical spatial structure, in which “0” and “1” are the values of structuring element. 

 

Next, a hybrid active contour model is applied to refine the vessel boundaries of thick vessels, in which 

the vessel segmented by K-means clustering is set as the initial contour and the weigh coefficients  

and  are respectively set as 0.1 and 0.2 in this paper. Fig. 8 shows an example of boundary 

refinement, where the first row is the original liver vessel images, and their corresponding boundary 

refinement results are given in the second row. From Fig. 8, we can find that the proposed method can 

effectively segment almost all thick vessels, and avoids serious over- or under-segmentation caused by 

improper  values. Moreover, our method can also preserve the smoothness of vessel surfaces and 

keep the continuity of vessel shapes. However, some thin vessels fail to be segmented due to their lower 

intensities. 
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Fig. 8. Thick liver vessel segmentation by hybrid active contour model with  obtained by our method. 

The first row is the original liver vessel images and the second row their corresponding segmentation 

results. 

 

2.3 Vessel integration 

As discussed above, the bi-Gaussian filter combined with 3D region growing shows good 

segmentation results on the thin liver vessels, even if they appear with low contrast and blurring edges, 

however, not so good segmentation results on the thick liver vessels. On the contrary, the K-means 

clustering together with active contour model can effectively segment thick vessels, but fails to segment 

thin vessels with low intensities. Therefore, to exhibit the advantages of these two methods, we integrate 

their results to obtain a new liver vessel segmentation image. Since the image may contain some 

isolated regions caused by noise, which are usually incorrectly grouped into the vessels, we reclassify 

the regions with their volumes less than 20 voxels as the background. An example of liver vessel 

incorporation as described above is shown in Fig. 9. For intuitive comparison, Figs. 9(a) and (b) 

repeatedly display the segmentation results of Fig. 3(a), which have been previously shown in Fig. 4(a) 

and the bottom left of Fig. 8, respectively, and Fig. 9(c) is the final segmentation result which, as 

observed, is satisfying. 

 

   

(a)                    (b)                    (c) 

Fig. 9. Vessel incorporation. (a) Segmentation result of thin vessels, (b) segmentation result of thick 

vessels, and (c) final segmentation result. 

3 Experiments and Results 

In this section, we will validate the proposed method with a synthetic data set and a clinical CTA data 

set. The former is generated with the VascuSynth software [27, 28], which includes ten groups of data, 

μ



and each group contains twelve synthetic vessel images with different numbers of bifurcations. The latter 

includes twelve different patients’ CTA volumes at portal venous phase, four of which are pathologic, and 

each CTA slice has an in-plane resolution of 512×512 pixels with the slice thicknesses varying from 0.5 

to 2 mm. 

In the synthetic data set experiments, we normalize the intensities of synthetic images and add 

Gaussian noise to simulate real CT images. Due to the difference of vessel intensities, shapes, as well 

as radii between clinical CTA data and synthetic data, we re-optimize some parameters used for the 

processing of synthetic data such as  and  for thin-vessel detection, and 

 and  for the configuration of parameter . In addition, due to lower 

ratio of vessel volume to whole image volume, the top 0.7% of voxels with highest intensities are 

selected as the seed points of 3D region growing. 

Fig. 10 presents the segmentation results of synthetic vessels with different noise levels, where the 

first row is the MIPs of synthetic images with different Gaussian noises of =10, 15, 20, and 25, 

respectively, and the second row is their corresponding segmentation results. As observed from the first 

image of the second row in Fig. 10, both of the thin and thick vessels can be effectively segmented from 

the images with lower noise level. With the increasing of noise, some thin vessels fail to be segmented, 

but the thick vessels can be still correctly segmented. 

    

    

Fig. 10. Segmetnation result of synthetic vessel images with different noise levels. The first row is the 

MIPs of synthetic images with different Gaussian noises of =10, 20, 30, and 40, respectively, and the 

second row is their corresponding segmentation results. The visualization of the color images is 
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implemented using Visualization Toolkit (VTK) software (http://www.vtk.org). 

 

To illustrate the effectiveness of the proposed method on different vessel structures, we conduct 

experiments on these 120 synthetic vessel images with noise level equal to 0.1, and Fig. 11 shows four 

typical images and their corresponding segmentation results. As observed, except few vessel branches 

labeled by blue arrows fail to be extracted, most of the vessels can be accurately segmented. For 

quantitative analysis, the Dice overlap and Jaccard measures are used to assess the segmentation 

performance, and our method obtains an average Dice overlap and Jaccard of 86.50% and 76.31%, 

respectively, which are very close to those of the recent vessel segmentation methods with average 

values of 86.76% and 76.61% [11]. Thus, we can conclude that the proposed method is an effective 

automatic vessel segmentation method. 

 

    

 

    

 

Fig. 11. Segmetnation results of different vessel structures. The first row is the MIPs of synthetic images 

with noise level equal to 0.1, and the second row shows their corresponding segmentation results. 

 

For clinical CTA images, the detailed parameters are set as the default values listed in the 

methodology section. Fig. 12 presents four different original liver vessel images and their corresponding 

segmentation results by the methods in [14], [29], and the proposed method, respectively. As observed, 



compared with the methods in [14] and [29], the proposed method can segment more thin vessels 

despite the presence of weak boundaries and low contrast between thin vessels and liver parenchyma, 

as shown in the closed blue circles in the last row of Fig. 12. This is mainly because the bi-Gaussian filter 

can effectively highlight thin vessels while suppressing the background by constraining the scale range 

of multi-scale framework. In addition, due to effective exploitation of both intensity and gradient 

information of thick vessels, the proposed method also segments the thick vessels more accurately than 

the other two methods. 

 

    

 

    

 

    

 

    

 

 

 

Fig. 12. Liver vessel segmentation results of different methods. The first row is the original liver vessel 

images, and the second through fourth rows are their corresponding segmentation results by the 



methods in [14], [29], and the proposed method, respectively. 

 

To compare the segmentation performance of the proposed method under the influence of low 

contrast, an example of liver vessel segmentation is given in Fig. 13, where Figs. 13(a)-(b) are the 

original liver vessel imges with low contrast, Figs. 13(c)-(d) are their corresponding segmentation results. 

Compared with the high contrast CTA volumes shown in Fig. 12, the proposed method segments fewer 

vessel branches due to their obviously lower contrast, but still performs well for the vessels with their 

intensities slightly higher than those of the background. 

    

(a)                    (b)                      (c)                    (d) 

Fig. 13. Liver vessel segmentation results of low contrast CTA volumes. (a)-(b) Original liver vessel 

imges with low contrast, and (c)-(d) their corresponding segmentation results. 

 

To further evaluate the segmentation performance, a professional radiologist is invited to guide the 

generation of the ground truth of liver vessels. First, a trained operator is asked to delineate the initial 

liver vessels with the help of ITK-SNAP tool (http://www.itksnap.org/pmwiki/pmwiki.php), and then, we 

correct the delineated results slice by slice under the guidance of the radiologist. Besides Dice overlap 

and Jaccard, three commonly-used evaluation measurements including accuracy, sensitivity, and 

specificity, as well as Root Mean Square Symmetric Surface Distance (RMSD) are introduced to indicate 

the segmentation performance, where RMSD is defined as: 

  (8) 

where  and  represent voxel sets of the segmented and truth liver vessel regions,  and 

 are the sets of the vessel surface voxels of  and , respectively,  is the voxel number, and 

 is the shortest distance of a set . Usually, the lower the RMSD, the better the segmentation 

result. 
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Table 1 shows the segmentation performances on these twelve patients’ CTA volumes. It can be found 

that the average segmentation accuracy, sensitivity, specificity, Dice, Jaccard, and RMSD of our method 

reach 98.1%, 68.3%, 99.2%, 73.0%, 66.1%, and 2.56 mm, respectively. The accuracy and specificity of 

the proposed method are very close to those of the methods in [14], [29], and [30], whereas our method 

obtains obviously higher sensitivity, Dice, and Jaccard than the other three methods, which indicates our 

method is capable of segmenting liver vessels effectively. Note that the average RMSD of our method is 

a little bigger than that of method in [14]. The reason is that some thin vessels may be ignored by the 

trained operator due to the low contrast, but they can be segmented by the proposed method, as shown 

in Fig. 14, which results in longer distances between the surfaces of segmented and truth vessels.  

Table 1 Segmentation performances of different methods 

Methods Accuracy Sensitivity Specificity Dice Jaccard RMSD(mm) 

Method in [14] 0.980 0.677 0.994 0.670 0.603 2.27 

Method in [29] 0.976 0.657 0.992 0.645 0.554 2.72 

Method in [30] 0.970 0.501 0.994 0.540 0.430 3.05 

Our method 0.981 0.683 0.992 0.730 0.661 2.56 

 

   

(a)                    (b)                     (c) 

Fig. 14. Comparison between the ground truth and the segmentation result of the proposed method. (a) 

Original liver vessels, (b) ground truth, and (c) segmentation result of the proposed method. 

 

There are also some drawbacks in the proposed method. For example, it does not work well for the 

thick vessels with lower intensities. As shown in the closed region labeled by a white ellipse in Fig. 15(a), 

part of the thick vessel fail to be segmented (see Fig. 15(b)). This is mainly because the hybrid active 

contour model tends to segment the vessels with their intensities larger than , leading to the fact that 

the vessels with lower intensities are incorrectly classified into the background. But they can be 

μ



perceived by the radiologist according to the continuity of vessel positions and the intensities between 

the adjacent slices, and the manual segmentation results are shown in Fig. 15(c). 

   

(a)                   (b)                   (c) 

Fig. 15. Failed segmentation for thick vessel with lower intensities. (a) Original liver slice, (b) vessel 

segmentation results of the proposed method, and (c) manual segmentation results. 

 

4 Discussion 

In this paper, we develop a 3D region growing and hybrid active contour model based method for liver 

vessel segmentation. Generally, due to the intensity inhomogeneity between thin and thick vessels, 

serious noises as well as the low contrast, an effective segmentation of both thin and thick liver vessels 

is quite difficult. For example, the GAC model relies on a large propagating coefficient to find more 

vessel branches, which easily results in over-segmentation. The graph cuts-based methods usually 

suffer from the problem of shrinking bias on elongated vessel structures, and the same problem also 

occurs in level set based methods [10]. In fact, due to the complex geometrical structures and intensity 

distribution, few methods only directly adopt one model or algorithm for the segmentation of 3D vessels, 

and thus the combination or fusion of two or more methods is necessary and considered [3, 10, 11, 14]. 

Based on this idea, we apply two different strategies to segment both of the thin and thick vessels. 

To deal with the thin vessels with low contrast and blurring boundaries, a bi-Gaussian filter is used 

based on the analysis of vessel structure. Unlike classical vessel detection methods, which usually 

adopt a wide-scale framework covering all possible radii of vessels to generate the maximum response, 

a bi-Gaussian filter based on a narrow-scale framework is adopted to highlight these thin vessels. It can 

partly overcome the weak response of thin vessels during the procedure of multi-scale optimization, as 

observed in Fig. 3. To avoid manual selection of vessel seeds, an experiential threshold based on vessel 

prior is performed, followed by a 3D region growing to automatically segment thin vessels. In the 

thick-vessel segmentation stage, we first adopt a K-means clustering algorithm to yield an initial vessel 



region, and optimize the parameter  according to the vessel intensity and position information. Then, 

by taking advantages of region and boundary information of CTA volumes, a hybrid active contour model 

is used to segment thick vessels. In the end, both of thin and thick vessels are intergraded to generate 

the final liver vessels. 

The presented method has been evaluated on a synthetic and a clinical CTA data set, and the 

experimental results show that it can effectively segment liver vessels, achieving average accuracy, 

sensitivity, specificity, Dice, Jaccard, and RMSD of 98.1%, 68.3%, 99.2%, 73.0%, 66.1%, and 2.56 mm, 

respectively. In addition, our method can segment more thin vessels compared with the methods in [14], 

and [29]. Generally, the good performance of the proposed method is mainly ascribed to the effective 

thin-vessel detection by using a narrow scale framework, as well as optimization of the key parameter  

of hybrid active contour, which is able to accurately driver the active contour to thick-vessel boundaries. 

However, there are also some drawbacks in our method. For example, some thick vessels with lower 

intensities fail to be segmented, which is also a common problem for other segmentation methods. In 

addition, the surface of liver vessels segmented by our method is not so smooth compared with some 

existing methods, although a nonlinear anisotropic diffusion filter is firstly employed to filter image. In the 

future, we will consider more vessel priors and develop more effective segmentation schemes to 

increase the robustness of our method.  

5 Conclusions 

This paper presents an effective liver vessel segmentation method based on 3D region growing and 

hybrid active contour model. As the liver vessels in CTA images usually suffer from low contrast, serious 

noise, and intensity inhomogeneity between the thin and thick vessels, two different strategies are 

adopted for effective segmentation of these vessels. For thin liver vessel segmentation, a bi-Gaussian 

filter is applied to highlight thin vessels based on the selection of narrow scale range in multi-scale 

framework, followed by a 3D region growing to segment these vessels. For thick liver vessel 

segmentation, a K-means clustering algorithm is first applied to generate the initial thick vessels, and a 

hybrid active contour model is then used for the boundary refinement according to vessel geometric 

structure and intensity distribution. Finally, both of the thin and thick liver vessel segmentation results are 

integrated to generate the final liver vessels. 

The proposed method does not require any manual selection of seed points, and avoids heavy 
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training procedure like the machine learning methods. The experiments on a clinical CTA data set of 

portal venous phase show that our method achieves better segmentation performance than some other 

3D vessel segmentation methods in terms of the accuracy, sensitivity, specificity, Dice, Jaccard, and 

RMSD. In addition, the segmentation results of the proposed method contain more thin vessels with 

continuous and complete details, even if some of them appear with low contrast and blurring boundaries, 

which are very difficult to be segmented by traditional algorithms. Moreover, our method can also 

accurately segment thick vessels by employing both of their intensity and gradient information.  
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