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Abstract

Morphological characteristics of muscle fibers, such as their cross-sections, are important 

indicators of the health and function of the musculoskeletal system. However, manual analysis of 

muscle fiber morphology is a labor-intensive and time-consuming process that is prone to errors. 

Overall, the procedure involves high inter- and intra-observer variability. Therefore, it is desirable 

for biologists to have a tool that can produce objective and reproducible analysis for muscle fiber 

images. In this work, we propose a deep convolutional neural network (DCNN) followed by post-

processing for detecting and measuring the cross-sections of muscle fibers. We evaluate three 

segmentation networks for muscle boundary segmentation: (1) U-net, (2) FusionNet, and (3) a 

customized FusionNet. The customized FusionNet, which had the highest Dice coefficient on the 

test set, was used for subsequent morphological analysis of the muscle fibers. The proposed 

method was tested on microscopic images of the tibialis anterior muscles of a pre-clinical model 

of muscular dystrophy. The dataset contained four mosaic images, each having more than 3500 

fibers. Because of the severity of muscle injury in this pre-clinical model, its muscle fiber images 

present a challenge for quantitative analysis for several reasons. First, the muscle fibers had 

inhomogeneous spatial distribution and very different sizes. Second, the membranes of the muscle 

fibers had uneven signal intensity due to the loss of a membrane protein. Third, the shapes of 

intact muscle fibers were very different. All these factors contributed to the difficulty of acquiring 

good training data in the first place. Despite these difficulties, we achieved an average muscle fiber 

overlay precision of 0.65 and an average recall of 0.49. In this context, overlaid fibers are defined 

as fibers that have one or more pixels overlaying in the manual and DCNN cross-section 

segmentation. For the overlaid fibers, the proposed method achieved excellent segmentation 

accuracy of 94%±10.26%, as measured by the Dice-Sorensen coefficient.
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1. Introduction

There are more than 40 diseases related to the dysfunctions of skeletal muscles, ranging 

from Duchenne muscular dystrophy (DMD) to muscle myopathies [1, 2], with the key 

characteristic of muscular dystrophy being the lack of a membrane protein called dystrophin. 

This deficiency causes the muscle fiber to have a porous membrane and eventually to lose its 

cytoplasm. Morphologies of the cross-sections of muscle fibers provide important 

information about the health of a muscle and, more importantly, its capacity to regenerate 

new muscle fibers in the case of disease- or injury-caused damage [3]. However, due to the 

large number of objects, manual analysis of muscle fiber images is not only laborious but 

also subject to inter- and intra-observer variability.

Computer-aided analysis is a promising solution in muscle fiber detection and segmentation 

for its objective and quantitative measurements. Researchers have proposed various 

techniques to segment the muscle fiber boundary for muscle fiber segmentation. Most of 

these methods follow a multi-step image processing approach and adopt a combination of 

the following steps: (1) image enhancement to correct defects and uneven staining quality, 

(2) seed detection to find the centers of the muscle fibers, and (3) boundary segmentation. 

Representative boundary segmentation methods used in muscle fiber image processing 

include Otsu’s method [4], k-means segmentation, deformable models [5], watershed 

segmentation [6], active contours, and graph cut and the variations and improvements of 

each method. In addition, other methods have been developed by researchers to detect and 

segment cross-sections of muscle fiber. An early work by Briguet et al. in 2004 designed 

Feret’s diameter as a means to measure the sizes of hundreds to thousands of muscle fibers 

seen in microscopic images [7]. However, the application of Feret’s diameter depends on the 

segmentation of the muscle fibers. Hence, much effort has been dedicated to the 

segmentation and detection of the boundaries of muscle fibers. For example, Mula et al. 

proposed a method to first enhance the boundaries of muscle fibers by ridge detection and 

then use a gradient vector flow deformable model to delineate the boundaries of the seeded 

muscle fibers [8]. Sertel et al. applies a ridge detection method to segment the connective 

tissue components, which manifest as a bright curvilinear structure to segment muscle fibers 

[9]. Liu et al. proposed the adoption of a learning-based seed detection scheme to find the 

centers of the muscle fibers and then apply a deformable model to find the boundaries of the 

muscle fibers [10]. Janssens et al. designed a top-down multiclass support vector machine 

(SVM) scheme to segment muscle fibers in the steps of thresholding an image and 

classifying the segmentation into categories of individual muscle cells, clumps of muscle 

cells, and remnant connective tissues and then splitting the clumps of muscle cells into 

individual cells according to [11]. Smith and Barton proposed the use of a smooth filter to 

first suppress local minimums, followed by watershed transform to segment the boundaries 

of muscle fibers [6]. Wang et al. presented an approach to utilizing threshold selection, 
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morphological ultimate erosion, and morphological dilation to find muscle fiber boundaries 

[12]. Combinations of image processing pipelines have also been proposed to segment 

muscle fiber boundaries. Voronoi and reversible jump Markov chain Monte Carlo has also 

been used for muscle fiber segmentation [13]. Miazaki et al. proposed an image-processing 

pipeline that consists of enhancement, noise reduction and binarization, and shape analysis 

of contours generated in the binarization process to detect muscle fiber boundaries [14]. 

Sapkota et al. developed a series of image-processing steps to find muscle fiber boundaries 

via automatic cell segmentation, perimysium annotation, and nuclei detection, followed by 

feature extraction and quantification to characterize the fibers [15]. Furthermore, Strange et 

al. presented a four-step approach to segment muscle fiber boundaries, namely, pre-

processing to extract only the eosinophilic structures, coherence-enhancing diffusion 

filtering to enhance the boundaries, morphological operations to connect boundary regions, 

and watershed to split touching muscle fibers [16]. Deformable models have also been 

applied to find muscle fiber boundaries [5] but their performance depends on signal-to-noise 

ratio (SNR) of the images as a low SNR may cause the deformable models to break through 

the valid boundaries. The performance of deformable models can be improved if the process 

can be guided, as shown by Kim et al. [17] in which a level set approach was used to provide 

additional cues to the deformation process.

Although these existing techniques can obtain good results, their performances tend to 

deteriorate when the underlying images have low SNR, high heterogeneity in fiber size, and 

close adjacency between muscle fibers – a situation that we often encounter in practice. In 

fact, in musculoskeletal disease research, it is common to witness muscle specimens that 

contain broken fiber boundaries or extremely unevenly distributed muscle fibers, or both. 

From a biomedical research perspective, such scenarios may offer important insights into the 

mechanisms of musculoskeletal diseases, but we postulate that the existing methods may not 

be able to produce satisfying segmentation results in the challenging cases.

In this paper, we propose a deep convolutional neural network (DCNN) followed by post-

processing for measuring cross-sections of muscle fibers in histopathological images with 

low SNR, uneven background, and close adjacency between muscle fibers. The cross-

sections that we target for segmentation are the ones with muscle fiber boundaries that are 1) 

fully enclosed and 2) bright, which together is an indicator of the presence of dystrophin. 

These two conditions are required in our applications to differentiate the healthy muscle 

fibers, which tend to have consistently bright boundaries and fully enclosed boundaries, 

from the diseased ones, which tend to have broken boundaries or weakly stained boundaries 

due to the lack of even distribution of dystrophin. Thus, to segment such cross-sections, we 

must first find the muscle fiber boundaries that satisfy the aforementioned requirements.

2. Materials and Methods

2.1. Animal Experiments and Image Acquisition

We used a mouse model of muscular dystrophy to assess the health of the muscle fibers. The 

work had been approved by our institutional animal care and use committee. Male mdx mice 

at the age of four to eight weeks were used to mimick muscular dystrophy, a genetic disease 

with no available treatment. All the animal experiments were conducted under the approval 
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of our institutional animal care and use committee. We transplanted wild type myoblasts 

from C57BL6 mice to the hind legs of the mdx mice to evaluate how the transplanted 

myoblasts might survive in the host. Before the transplantation, the hind legs of the mdx 

mice were irradiated at 18 Gy for three consecutive days to mimick the damage seen in 

muscular dystrophy cases. Then 105 myoblasts were injected into the tibialis anterior (TA) 

muscle at three evenly distanced positions. The mdx mice were then maintained on regular 

rodent food and cycles of 12-hour light and 12-hour dark in our animal housing facility for 

observation. At different time points after post cell transplantation (PCT), the mice were 

euthanized to enable harvesting of the TA muscles to investigate how they might regenerate 

muscle fibers. The harvested tissues were post-fixed, dehydrated, and then frozen in an 

optimal embedding temperature compound. The specimen was sectioned along the 

longitudinal axis of the muscle every 12 μm, starting from the mid-portion of the TA muscle, 

and mounted on slides. The slides were washed with phosphate buffered saline and blocked 

with 5% goad serum, incubated with a rabbit anti-dystrophin antibody, and then incubated 

with a goat anti-rabbit Cy3-conjugated secondary antibody. We imaged the slides using an 

Olympus inverted IX-70 microscope to scan the whole cross-section of a TA muscle. An 

individual image usually has a dimension of 800×600 with a pixel size of 0.7 μm. 

Approximately 20–30 images were collected with slight overlaps in all four directions to 

cover the whole cross-section of the TA muscle.

An image dataset was collected over four mdx mice from two groups, with two in each 

group. The first group of mice was euthanized at one month PCT while the second group 

was euthanized at three months PCT. From each mouse, we acquired images over the TA 

muscles from both hinder legs. Overall, the dataset consisted of four mosaics of images, 

with each mosaic corresponding to the histology of one TA muscle. Our biologists manually 

labeled the muscle fiber boundaries in the dataset.

2.2. Dataset and Data Augmentation

The four mosaic images and their manually segmented labels were divided into 200×200 

patches, resulting in a total of 5,136 patches in the dataset. We used windowing to map the 

images’ pixel value to a range from 0 to 255 and then up-sampled the images to 256×256. 

Each mosaic image consisted of 13 to 28 individual images, depending on the size of the 

specimen. In our data, the sizes of mosaic images were in the range of 1,400×1,900 pixels to 

4,800×5,900 pixels. Figure 1 shows several zoomed-in regions of an original muscle fiber 

image with manually marked intact cross-sections.

We implemented the augmentation method as described in [18] and augmented the training 

data with eight variations of image orientations. Figure 2 shows an example of a training 

image and its augmented counterparts.

2.3. Network Architecture Selection

We evaluated three segmentation networks for muscle boundary segmentation: (1) U-net 

[19], (2) FusionNet [18], and (3) a customized FusionNet. We randomly selected 4,300 

patches from the 5,136 patches and split the data with a 0.8–0.2 train-to-validation ratio for 

evaluating the performance of these networks. The training set was augmented as described 
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in Section 2.2. The Dice coefficient was used to gauge the performance of the network. The 

comparison result from one mosaic image is shown in Table 1. The network architecture that 

produced the highest Dice coefficient, in this case, the customized FusionNet, was selected 

for subsequent morphological analysis of the muscle fibers.

2.4. Architecture of Proposed Segmentation Network

The proposed network architecture is built upon the FusionNet [18]. We combine the 

modified architecture with the exponential logarithmic loss function in [20] to improve the 

segmentation of small objects.

The dimensions of the feature maps from each layer are shown in Figure 3. The encoder 

consists of 3 residual blocks, each sandwiched by 2 convolutional blocks and followed by a 

max-pooling layer. A convolutional block is composed of a 3×3 convolution layer with 

stride 1 and padding 1, a batch normalization layer, and an activation layer. Correspondingly, 

the decoder consists of 3 deconvolutional blocks, each followed by a convolutional block, a 

residual block, and another convolutional block. A deconvolutional block consists of a 3×3 

transposed convolution layer with stride 2, padding 1, and output padding 1, a batch 

normalization layer, and an activation layer. Specifically, we have four modifications to the 

FusionNet: (1) we reduced the starting number of filters of the FusionNet from 64 to 16, (2) 

we implemented a softmax activation instead of the tanh activation at the end of the network, 

for use of the loss function proposed in [20], (3) we decreased the depth of the network; and 

(4) we reduced the number of summation-based skip connections. Combining these 

modifications reduced the network trainable parameters from almost 5 million to only 0.7 

million and increased the Dice coefficient from 0.35 to 0.37.

We adopted the combined exponential logarithmic loss function in [20] to improve 

segmentation on small structures:

ℒ = ωcrossℒcross  + ωDiceℒDice  (1)

where ωcross and ωdice are the weights of the exponential categorical cross-entropy loss and 

the exponential logarithmic Dice loss, respectively, whereas

ℒ cross  = E ( − ln(p(x)))
βcross  (2)

where x represents the pixel position and р(x) is the softmax probability, the network’s 

predicted value for pixel at position x. Here E is the mean value with respect to x. The 

logarithmic Dice loss is defined as

ℒDice = E[( − ln(Dice))
βDice (3)

and
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 Dice  =
2 ∑x y(x)p(x) + ∈

∑x y(x) + p(x) + ∈
(4)

where y(x) is the ground truth segmentation of the muscle fiber boundaries, which is 1 when 

the pixel x is on a boundary and 0 otherwise. In Eq. (4), ∈=1 is a smoothing constant to 

handle images with no ground truth labels in the training samples. βDice and βCross are 

hyper-parameters that control the nonlinearities of the loss functions. We set βDice = 

βcross=0.3 as suggested by [20].

2.5. Post-processing of DCNN Output

We processed the output from the proposed DCNN in three steps. First, we used a flat, disk-

shaped structuring element to close any small gaps that may exist in the DCNN output. The 

radius that we used for the disk is 2 pixels. Second, we filled any holes in the output image 

from step one. Third, we subtracted the output image of step one from the resulting image of 

step two. Figure 3 shows the post-processing results on a challenging testing image patch 

that had both clustered objects and inhomogeneous signal intensity.

2.6. Robustness of the Proposed Network

To evaluate the robustness of our proposed network, we designed four experiments to test 

the network’s ability to recognize 1) an already learned pattern at a different location in the 

image, 2) a slightly and a significantly rotated version of an already learned pattern, 3) an 

already learned pattern with decreased contrast, and 4) an unenclosed version of an already 

learned enclosed pattern. As shown in the testing results, the proposed network can 

recognize the learned pattern at several different locations in the image as well as a slight 

rotated version of the learned pattern. In addition, the network can also omit recognition of 

the unenclosed and the lower contrast version of the already learned pattern. The segmented 

results were both weak and unenclosed in these cases, indicating that partial activation of the 

learned pattern was present in some of the feature maps. Here, a complete activation refers 

to a full light-up of all the neurons that were needed to reconstruct the learned pattern. We 

evaluated the proposed neural network through both qualitative and quantitative comparisons 

with manual segmentation. We applied the proposed neural network to analyze and compare 

the mosaic images from each group. It can be observed that the proposed method learns to 

segment the entire structure of the muscle fiber boundaries. Figure 5 shows examples of the 

simulated testing images and their testing results.

2.7. Training Strategy

The image augmentation method introduced in Section 2.2 was used to learn invariant 

features to avoid overfitting. All the weights in the model were made trainable. The 

optimizer Adam was used with a learning rate of 10−3, batch size of 35, and 100 epochs. The 

proposed model was implemented in Keras on an NVIDIA TITAN X GPU with 12 GB 

memory.
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3. Results

3.1. Morphological Analysis of Muscle Fibers

The proposed network was used to perform the morphological analysis of the muscle fibers 

using a leave-one-out method through selection of three mosaic images as the training set 

and the remaining one as a testing set. This process was repeated with each mosaic image in 

turn, resulting in four testing results. To evaluate the proposed network’s performance 

quantitatively, we adopted a set of metrics, including the total number of muscle fibers, the 

mean and standard deviation of the area of muscle fibers, and mosaic overlay precision and 

recall. In this context, overlaid fiber is defined as having one or more pixels overlaying in its 

manual and DCNN cross-section segmentation. The mosaic overlay precision is equal to the 

number of overlaid fibers in a mosaic image (true positives) divided by the total number of 

fibers segmented by the DCNN (true positives + false positives). The mosaic overlay recall 

is equal to the number of overlaid fibers in a mosaic image (true positives) divided by the 

sum of the number of overlaid fibers and the number of the fibers that are segmented by the 

manual label but are not segmented by the DCNN (true positives + false negatives).

3.2. Quantitative Results

The quantitative results of the morphological analysis are shown in Table 2. In our context, 

an optimal model is one that provides the most distinguishing power between the three-

month PCT group and the one-month PCT group. To measure the distinction, we computed 

the absolute mean group-difference between the manually labeled results and those given by 

our proposed method. In this context, the absolute mean group-difference is defined as the 

difference between the mean number of fibers in the three-month PCT and that of the one-

month PCT. As expected, as a result of the treatment intervention, the three-month PCT 

group had more healthy muscle fibers. Also, areas of muscle fibers of the three-month PCT 

group were larger than those of the one-month PCT group, indicating that the transplanted 

cells regenerated healthy muscle fibers to grow over time. For the detected fibers, the 

proposed method achieved excellent segmentation accuracy of 94%±10.26%, as measured 

by the Dice-Sorensen coefficient. When comparing the results given by the neural network 

with those from manual analysis, the absolute mean group-difference is 1,427 for the 

proposed method and 544 for the manually segmented results. It can be observed that the 

proposed neural network can distinguish mosaic images between the two groups. In terms of 

comparing the results given by the neural network and manual analysis, we note that the 

discrepancies may arise from two perspectives. First, there was high inter- and intra-observer 

variation in the manual analysis in selecting valid muscle fibers, and this variation affects the 

consistency in ground-truth as provided by a human observer. Second, in tracing the 

boundary of a muscle fiber to furnish the training dataset, there was also variation in 

manually marking the boundary. While a human observer can be very robust in determining 

which objects are valid muscle fibers, the use of a pointing device to trace the muscle fiber 

boundaries is often an inconsistent and time-consuming procedure. This variation also 

affects the quality of the training dataset for the purposes of tuning the neural network. 

Despite the above compounding factors, we note that, from each example given in Table 1, 

the areas of muscle fibers given by the neural network had a smaller standard deviation than 
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those given by manual analysis, pointing to the advantage of a neural network in generating 

a more consistent measurement in analyzing complex shapes.

4. Discussion

Because of the large number of muscle fibers observed in a field of view in microscope 

imaging, their labeling done manually is time-consuming and subject to observers’ bias. 

Over the last twenty to thirty years, computerized analysis—conducted to replace or 

augment manual methods—of muscle fiber images has been under active development. 

These methods, ranging from global thresholding [4] and watershed [6] to level set [21], and 

deformable models [5, 10], have achieved various degree of success. However, one 

limitation of the existing methods is that they tend to work well on images of high SNR and 

intact muscle fiber boundaries. Though this limitation does not hinder the usage of existing 

methods on healthy and normal muscle fiber specimens, these methods may achieve sub-

optimal performance on diseased models of musculoskeletal conditions. From a research 

perspective, often one needs to work with diseases models to gain insight into the 

pathophysiology of muscular dystrophies and other disorders. For example, one prominent 

feature of several muscular dystrophy disorders is the loss of certain membrane protein. To 

study how the affected muscle fibers may retain or regain the membrane protein in response 

to therapies, we need to label the muscle fibers with the corresponding antibody and the 

acquired images then may have uneven signal intensity due to the fact that the healthy 

muscle fibers demonstrate strong and even expression of the antibody while the diseased 

muscle fibers have low and uneven expression. This phenomenon can render the existing 

methods unsuitable for analyzing and quantifying muscle fibers in some applications. We 

proposed a neural network approach that can be trained to recognize muscle fibers in 

challenging cases. As the neural network is trained on individually delineated muscle fibers, 

it can avoid some caveats in finding valid muscle fibers. For example, it can avoid the inter-

fiber spaces and non-convex contours.

To the best of our knowledge, our work is the first to focus on severely diseased models of 

muscular dystrophies. The complexity of our data arises from the fact that, in a diseased 

model of musculoskeletal disorders, the muscle fibers are often damaged and do not have a 

uniform appearance, in contrast to healthy muscles. This complexity makes it very 

challenging to collect good training data.

5. Conclusions

As many musculoskeletal diseases are characterized by the destruction of muscle fiber 

membranes, it is imperative for researchers to have computer-aided analysis techniques to 

evaluate muscle fibers at the microscopic scale for objective and quantitative comparisons. 

However, challenges arise, as there is a large variation in the geometrical and morphological 

distribution of muscle fibers, particularly in diseased muscle fibers. In this work we 

introduced a neural network approach to analyze the histopathological images to identify 

muscle fibers that have contact expression of dystrophin on their membranes, an indicator of 

their health. From a computational perspective, the approach is applicable to similar images 

regardless of how the membranes are labeled. As a training-based technique, the proposed 
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approach depends on the availability of the marked ground truth. In practical application, the 

approach’s performance will largely depend on the quality and quantity of the training data. 

Here we note that, as shown in the results, the performance of the neural network depended 

largely on the quantity of the training data, and, in particular, the number of morphological 

shapes that were available in the training data. We also showed several variations of a 

learned pattern in our simulated experiments and, through those experiments, we observed 

that, if the testing pattern differed from any of the training patterns by a large degree, the 

proposed network would not recognize the new pattern. The underlying task of detecting and 

segmenting muscle fiber cross-sections is very challenging, because the muscle fibers 

manifest a large variation of morphologies and have close adjacency to each other. In 

addition, in our biology study, only the healthy muscle fibers have an enclosed boundary and 

consistent signal intensity along the boundary. Many diseased muscle fibers have very 

similar shapes and similar signal intensities, making them difficult to differentiate from 

healthy fibers. In this work, we developed the neural network approach for focusing on a 

single channel image of the membranes of muscle fibers. The distribution of nuclei provides 

additional information about the health of muscle fibers, and the nuclei can be imaged in a 

different channel [22]. It is beneficial to develop computer-aided analysis of both channels to 

gain insight into how muscle fibers may survive and regenerate in cell therapy, as mature 

fibers have nuclei distributed peripherally, and newly regenerated fibers have centrally 

located nuclei [23].
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Highlights

• We presented a deep learning approach tailored to analyzing microscopic 

images of cross sections of muscle fiber

• The deep learning neural network was trained on a preclinical model of severe 

muscular dystrophy

• Challenges include inhomogeneous signal intensity, large variation in sizes 

and uneven distribution of the muscle fibers

• Data augmentation was applied to improve the performance of neural network

• Results show that the approach can identify the cross sections of intact muscle 

fibers while avoiding unenclosed cross sections
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Figure 1. 
Sample training images randomly drawn from the training data set. The top row comprises 

the input images to the DCNN and the bottom row shows the corresponding manual label 

(segmentation of the muscle fiber boundaries). The dimension of the input image is 

256×256. Scale bar = 100 μm.
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Figure 2. 
A sample of the input image and its augmented counterparts. By collecting this, we increase 

the training data size by eight times.
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Figure 3. 
Proposed network architecture optimized for segmentation of muscle fiber boundaries.
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Figure. 4. 
Segmentation results of a challenging image patch selected from our testing dataset. From 

left to right, the top row presents the segmented muscle fiber boundaries by DCNN; output 

image from post-processing steps 1, 2, 3; and the segmented cross-sections overlaid on top 

of the input image. The bottom row shows their corresponding counterparts by manual 

analysis.
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Figure 5. 
Examples of simulated testing images for testing the proposed network architecture. From 

left to right, the top row shows the simulated images for testing the network’s ability to: 1) 

recognize analready learned pattern at a different location in the image, 2) recognize a 

significantly rotated version of an already learned pattern, 3) recognize a slightly rotated 

version of an already learned pattern, and 4)recognize an unenclosed version of an already 

learned enclosed pattern and an already learned pattern with decreased contrast. The bottom 

row is the testing results with the proposed network structure.
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Table 1.

Dice coefficients of different network architectures.

Method Dice coefficient

U-Net 0.3474

FusionNet 0.3516

Customized FusionNet 0.3704
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Table 2.

Morphological analysis results of mosaic images at three-month and one-month PCT.

Three month PCT One month PCT

Specimen 1 Specimen 2 Specimen 3 Specimen 4

DCNN detected number of fibers 2173 1335 389 266

Manually labeled number of fibers 1243 1006 483 678

DCNN detected muscle fiber area (mean) 170.43 145.78 158.58 172

Manually labeled muscle fiber area (mean) 279.56 245.31 220.7 529

DCNN detected muscle fiber area (STD) 158.18 138.32 177.1 113

Manually labeled muscle fiber area (STD) 222.73 279.75 305.34 455

Mean Dice for overlaid fibers 0.9512±0.1015 0.9428±0.0973 0.9295±0.1136 0.9358±0.0978

Mosaic overlay precision 0.4054 0.6 0.72 0.891

Mosaic overlay recall 0.4154 0.63 0.55 0.3553
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