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Abstract

With the aim of developing a flexible and reliable procedure for superficial muscle innervation 

zone (IZ) localization, we proposed a method to estimate IZ location using surface 

electromyogram (EMG) based on robust linear regression. Regression lines were used to model 

the bidirectional propagation pattern of a single motor unit action potential (MUAP) and visualize 

the trajectory of the MUAP propagation. IZ localization was performed by identifying the origin 

of the bidirectional MUAP propagation. Robust linear regression and MUAP peak detection, 

combined with propagation phase reversal identification, may provide an efficient way to estimate 

IZ location. Our method offers high resolution in locating IZs based on simulation studies and 

experimental tests. Furthermore, our method is flexible and may also be applied using a relatively 

small number of EMG channels. A comparative study of the proposed method and the cross-

correlation method for IZ localization was conducted. The results obtained with simulated MUAPs 

and measured spontaneous MUAPs in the biceps brachii muscle in six subjects (four males and 

two females, 57 ± 10 years old) with amyotrophic lateral sclerosis (ALS). Our method achieved 

estimation performance comparable to that obtained by using the cross-correlation method but 

with higher resolution. This study provides an accurate and practical method to estimate IZ 

location.
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Introduction

Recording of muscle activity using surface electrode array electromyogram (EMG) 

technology is a useful technique that provides valuable information about muscle/motor unit 

anatomy and function [1–8]. Electrode array EMG can be used to locate the innervation 

zone (IZ) of a muscle. IZ localization has long been a question of great interest in the EMG 

studies and remains under active research. A considerable amount of literature has been 

published on IZ localization. For example, the optimal site of botulinum toxin (BT) injection 

is the muscle IZ and accurate local injection of BT into spastic muscle IZ is one approach to 

the treatment of spasticity [1, 9–11]. Electrode array EMG can also be used to study 

individual motor unit properties, including their innervation zone. In neuromuscular 

diseases, loss of motoneurons and motor unit remodelling may result in the reorganization of 

the IZ [12]. The study of the motor unit IZ may provide important information about 

denervation and reinnervation processes in conditions such as amyotrophic lateral sclerosis 

(ALS) [13].

The identification of the motor unit or muscle IZ using surface EMG signals detected with a 

linear array or a 2-dimensional electrode grids has been extensively discussed in the 

literature [1, 14–25]. Thus far, IZ locations of recognized motor units using linear electrode 

arrays have been estimated using cross-correlation, minimum amplitude (root mean square), 

and maximum center frequency (mean frequency) criteria [24] and interpolated image based 

methods[26, 27]. However, there is currently no practical standard clinical procedure for 

rapid localization of the IZ. Especially, many laboratories do not have access to a linear 

electrode array, this indicates a need to estimate the IZ by manually configuring the 

electrode arrangements.

The goal of the current study was to develop a quick and convenient method for automatic 

detection of motor unit IZ based on robust linear regression analysis. The performance of the 

proposed method was assessed with both simulation and experimental studies. As the cross-

correlation based method is more accurate for estimating IZ location in comparison with 

other methods, such as the lowest amplitude and highest mean frequency criteria based 

methods [24], the performance of the linear regression analysis was further compared with 

the cross-correlation based analysis for motor unit IZ estimation. Furthermore, given that 

many clinical laboratories do not have access to electrode array technology[24], with the aim 

of decreasing the number of recording channels, we also tested the regression method for 

accurate IZ estimation using surface EMG signals obtained from relatively few channels 

instead of using signals obtained from all available channels of the electrode array.
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Methods

IZ estimation using linear regression

Fig. 1 shows examples of experimental motor unit action potential (MUAP) propagation 

along muscle fibers, detected by an electrode array. The visual identification of motor unit 

IZ was determined using the following criteria: (a) the bipolar action potentials have 

opposite polarities on both sides of the motor unit IZ; (b) a clear motor unit action potential 

propagation pattern can be observed from the IZ to proximal and distal muscle tendons; (c) 

the channel located closest to the center of the motor unit IZ results in action potentials with 

much lower amplitude than the channels between the IZ and the tendon. Thus, the location 

of the motor unit IZ was visually identified as the origin from which bipolar motor action 

potentials propagate in opposite directions. Clear MUAP propagation was observed between 

the IZ and the muscle tendons. The IZ location can be identified as the origin of the 

bidirectional propagation of a single MUAP along the muscle fibers on multi-channel 

electrodes.

The IZ location was detected by visual search for a minimal amplitude channel and/or phase 

reversal in the SD signal. When the minimal amplitude channel was between two SD 

channels showing phase reversal, it was assumed to be the location of the IZ (Fig. 1, left 

panel). Conversely, when two adjacent electrodes showed phase reversal, the IZ was 

assumed to be located between the two channels, (Fig. 1, right panel).

The MUAP propagation in the two different directions can be represented by applying 

regression lines to the identified MUAP peaks after identifying the reversal phases. Robust 

linear regression is an alternative to ordinary least squares regression and provides much 

better regression coefficient estimates when outliers are present in the data. Basically, 

outliers infringe the assumption of normally distributed residuals in least squares regression 

and lead to serious distortions in the estimated coefficients. A four-stage IZ estimation 

algorithm using MUAPs recorded simultaneously on multiple channels was developed based 

on robust linear regression to estimate motor unit IZ location.

1. The positive and negative peaks of MUAP signals were identified from all the 

measured signals from the array channels. All the channels were from one side if 

the positive peak was before the negative peak. In contrast, other channels were 

from the other side if the negative peak was before the positive peak. The 

program was inspecting signals for ensuring the positioning of the examined 

channels so that both sides from the innervation zone were covered by the 

channels.

2. The MUAP propagation phase reversal, based on MUAP polarity changes, was 

determined based on the positive peak lagging behind the negative peak by a few 

milliseconds.

3. Two straight lines were fit the peaks obtained from the same side from the IZ 

using linear regression. The most widely used method for fitting a regression line 

is the method of least-squares. By contrast, the weighted least squares method is 

a feasible alternative robust to outliers. Previous studies have demonstrated that 
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an iteratively reweighted least squares (IRLS) approach minimizes the influence 

of outliers, thus reducing confidence intervals relative to the standard ordinary 

least squares method [28, 29]. Therefore, we used IRLS with a bisquare 

weighting function to obtain the regression lines.

4. The IZ of the motor units was located at the intersection of the two linear 

regression lines.

In order to determine two straight regression lines respectively, MATLAB (Version R2008a, 

MathWorks Inc., Natick, Massachusetts) built-in function robustfit was used to perform 

IRLS regression. A regular least-square fitting was first performed. The residuals of the 

fitting R were calculated after the fitting. Iterations were then performed until there is 

convergence of the residual. The weights W for the next iteration were determined by 

Tukey’s bisquare function:

W = 1 − K2 2 whenabs(K) < 1
0 whenabs(K) ≥ 1

(1)

where

K = R
4, 685 × ( MAD

0.6745 ) × 1 − h
(2)

R is the vector of residuals from the previous iteration, MAD is the median absolute 

deviation of the residuals from their median, and h is the is the vector of leverage values 

from a least-square fit to identify observations with unusual or outlying values. To estimate 

the source of the propagation of MUAPs, two regression lines are required. Furthermore, 

recordings from at least two channels are required for determining each regression line. In 

addition to testing the method with all channels of the array, the method was also tested 

based on recordings from 4 array channels.

Simulation database

A validation study was conducted to evaluate the performance of the proposed method using 

simulated MUAPs collected via a linear electrode array where the IZ was known a priori. In 

general, a single fiber action potential (SFAP) can be modeled as a convolution of 

bioelectrical source and filtering functions [30, 31]. According to previous work [32, 33], the 

SFAP at the recording point is expressed as

ϕ(t, r, d) = k ⋅ s(t) * hl t, r, d, tl + hr t, r, d, tr (3)
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where k = 1
2

σiθ
2

4σe
 is a constant that accounts for conductivities and the fiber radius to velocity 

constant ratio, in which θ = α
v  can be considered constant, and in the order of 0.2 (μm) / (m / 

s) [34],

s(t) = ∑
1

3
bi(ci(

t
2 − gi)) ⋅ e

ci(
t
2 − gi) (4)

where b1 =51, b2 =72, b3 =18, c1 =−64, c2 =−28.41, c3 =−11.09, g1 =0.54, g2 =0.66, g3 

=0.86 [30]

hl t, r, d, tl =

0 t < 0

h(t + d
v ) 0 ≤ t ≤ tl

0 t > tl

(5)

hr t, r, d, tr =

0 t < 0

h(t − d
v ) 0 ≤ t ≤ tr

0 t > tr

(6)

where tl =
ll
v , tr =

lr
v  and h(t) = t

(t2 + ( r
v )

2
)
3
2

In the above equations, r is fiber depth underneath the recording electrode; d is axial distance 

from the motor point to the recording electrode; lr and ll are distances from the motor point 

to the right and left fiber terminations, respectively; σi and σe intracellular and extracellular 

conductivities; a is fiber radius; v is conduction velocity.

Using the model of SFAP based on the convolution of a source and a tissue filter, surface 

MUAPs were simulated by summing the resulting multiple SFAPs [32, 33]. The dispersion 

limits were chosen to model a typical motor unit of the brachial biceps muscle to account for 

individual fiber differences[35]. These parameters were chosen to model surface EMG 

measurements from the biceps muscle using a linear electrode array in single differential 

(SD) mode [35]. A summary of the physiological parameters is given in Table I, with all 

dispersions randomly generated according to a uniform distribution. Electrodes with 5 mm 

inter-electrode distance were assumed to be placed along the length of the biceps which 

extended from −30 mm to + 50 mm and −32.5mm to +47.5mm with respect to the center of 

the simulated motor unit IZ. The duration of each simulation was 100 ms.
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To simulate MUAPs with different signal-to-noise ratio (SNR) levels, an independently 

generated zero-mean white Gaussian noise was artificially added to the simulated clean 

MUAPs. The standard deviation of the noise was determined by different SNRs (20, 15, 10, 

8, 5, 3, 2 and 1 dB) of simulated MUAPs. For each SNR, 50 MUAPs were generated. All the 

simulated signals were sampled at 2000 Hz and processed with a 4th order Butterworth 

band-pass filter at 20–500 Hz.

We simulated two types of experimental MUAP recordings. The first type represents a 

MUAP recording where the IZ is detected at one channel (Fig.1 left panel). The second type 

represents a MUAP recording where the IZ is detected between two adjacent channels (Fig.1 

right panel). Both groups of simulated MUAPs were used to examine the IZ estimation 

performance of the proposed method under different conditions.

Experimental database

The proposed motor unit IZ estimation method was also tested with experimental 

recordings. Six subjects with “ definite ALS “ or “ probable ALS with laboratory support 

“ based on El Escorial criteria participated [36]. Table II provides demographic information 

about the ALS subjects: four males and two females, aged 46–71 years (average age 57 ± 10 

years). The study was approved by the local Human Ethics Studies Committee. Spontaneous 

biceps brachii muscle activity was recorded with the elbow partially flexed and forearm in 

semi-pronation. The subject was asked to keep the muscle as relaxed as possible. A 20-silver 

bar linear electrode array (10 mm long and 1 mm width bars, 5 mm inter-electrode distance) 

was used for surface EMG recording. A reference electrode was located on the olecranon. 

The array was placed longitudinally over the biceps between the proximal to distal tendon 

junctions. The EMG signals were amplified by the Refa EMG system (TMS International 

BV, The Netherlands), sampled at 2000 Hz per channel, and band pass filtered (20–500 Hz). 

The waveform information from multiple channels was used to classify spontaneous action 

potentials from different motor unit origins. For each identified motor unit origin, the action 

potential template was obtained by averaging those action potentials clustered to the origin 

with confidence. Then, the monopolar action potentials were processed by subtracting each 

pair of adjacent bars along the muscle fibers. The three most proximal and distal bars were 

excluded from the analysis because they were close to the tendons and sometimes resulted in 

noisy signals. The remaining 17 bars resulted in 16 channels of spatially filtered bipolar 

signals.

Comparison with cross-correlation method

All data processing was performed offline using MATLAB. Signals were processed by three 

different methods for automatic detection of motor unit IZ. (1) Cross correlation method; 

This method calculates the cross correlation of signals from adjacent channels of the linear 

electrode array. When the IZ is detected at a channel, the correlation of this channel with 

other channels is low. The two channels that had the lowest peak cross correlation value 

between the bipolar signals were first determined. The IZ was then estimated to be located 

between these two channels; (2) linear regression based on data from all 16 channels; (3) 

linear regression based on data from 4 channels. The effect of the estimation method on IZ 

estimation performance was evaluated.
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Results

Results from simulated surface EMG signals

Fig. 2 depicts examples of applying the proposed method to representative simulated 

MUAPs for IZ estimation. It was observed that the linear regression based method was able 

to estimate IZ location as being located on one channel (Fig. 2b) or between two adjacent 

channels (Fig.2c).

Fig. 3 demonstrates an example of applying the proposed method compared to the cross-

correlation method for IZ estimation based on simulated MUAPs. The maximum cross-

correlation coefficients between adjacent channels are shown. Both the cross correlation and 

the robust regression methods achieved the same estimation.

Table III presents a performance comparison of the two IZ estimation methods. In summary, 

the cross-correlation based method estimated the location of the IZ in 100% (800 out of 800 

MUAPs) of the cases regarding the overall accuracy. The robust linear regression based 

method estimated the location of the IZ in 99.8% (798 out of 800 MUAPs) of the cases. In 

order to decrease the number of recording channels, we also compared the performance 

achieved by using 16 channels versus 4 channels in terms of the robust linear regression 

method. The normality of distribution of accuracies of all the examined SNRs was examined 

by using the Lilliefors test, revealing that the accuracies are different from the normal 

distribution. The mean estimation accuracies of the RLR method and the CORR method 

were not significantly different from each other (a Kruskal-Wallis (nonparametric one-way 

ANOVA) test, p > 0.1). The robust linear regression method achieved robust performance 

with varying SNR levels like the cross-correlation method. Furthermore, the resolution 

achieved by linear regression was not limited by the inter-electrode distance of the linear 

electrode array, which was higher than that obtained by the cross-correlation method. Table 

IV shows the comparison of running times for IZ estimation using the RLR and CORR 

methods. Note that the time cost for identifying action potentials from single units were not 

considered. The mean time was averaged across 200 MUAP signal segments at each tested 

SNR. The analyses were performed with a custom-made MATLAB program. It took 3.3 

± 0.4 ms to estimate the IZ by using a 100 ms simulated MUAP recording by the cross-

correlation method. In contrast, our method is computationally efficient. it took 1.8 ± 0.3 ms 

to estimate the IZ of the same signal by using our method (performed on a 2.5-GHz Intel 

Core i5 based PC using a 64-bit Windows 10 operating system with 8-GB Memory). The 

RLR method is statistically superior to the CORR method at each examined SNR in terms of 

running time (Kruskal-Wallis test, p <0.01)).

Testing on experimental surface EMG signals

The spontaneous action potentials collected from biceps brachii muscle of six ALS subjects 

were used to extract the motor unit for each identified motor unit origin. We have 40 

experimental MUAPs in total. A comparative study of the proposed method and the cross-

correlation method for IZ localization was conducted with measured spontaneous MUAPs in 

the biceps brachii muscle. For experimental MUAPs, each individual IZ was estimated 

visually as a standard. Fig. 4 demonstrates examples of applying the proposed method to 
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experimental MUAPs for IZ estimation. The proposed method was able to estimate the IZs 

accurately. Using visual inspection of the experimental signals as a standard, the estimation 

performance of the two methods was further examined. The cross-correlation based method 

estimated the location of the IZ in 92.5% (37 out of 40 MUAPs) of the cases. The proposed 

method estimated the location of the IZ in 90.0% (36 out of 40 MUAPs) of the cases. 

Similarly, we also compared the performance of the robust linear regression method using 

16-channel and 4-channel recordings collected from the opposite sides of the IZ. We found 

that the proposed method was able to estimate the location of the IZ by using all 16 channels 

(36 out of 40 MUAPs) and 4 channels (34 out of 40 MUAPs).

Discussion

This study investigated a robust linear regression method for motor unit IZ localization using 

a linear electrode array. The performance of the proposed method was compared with the 

cross-correlation method. Compared with cross correlation methods, the method introduced 

in the current study has several advantages including high resolution, less sensitivity to the 

effects of inter-electrode recording distance. The method based on robust linear regression 

analysis can give the location of IZ with high resolution for a MUAP recording where the IZ 

is between two adjacent channels (Fig.1 right panel). The estimated IZ achieved by using the 

cross-correlation method, is only estimated between the two channels and without a 

specified point, thus the estimated IZ is sensitive to inter-electrode recording distance.

Our method successfully located the IZ using a small subset of the channel array less than 

other methods, thus further decrease the computation load for IZ localization. We observed 

that our method estimated IZs using only 4-channel bipolar EMG signals aligned with the 

muscle fiber direction (Fig. 4). Theoretically, the four channel EMG signals need to be 

collected from the opposite sides of the IZ. The 4-channel configuration is easy to apply. 

Because the identified IZ will not lie between the two set of channels, the method can 

determine the wrong placement of the electrodes on only one side. Thus our findings are of 

practical importance because many laboratories do not have access to a linear electrode 

array. In particular, combining manually configuring the electrode arrangements and the 

proposed method would allow for flexible and reliable procedures for superficial muscle IZ 

localization.

The present work focused on motor unit IZ localization, and the performance of the 

proposed method was evaluated with both simulation and experimental recordings of 

spontaneous EMG from ALS subjects. The method is also possibly applicable to global 

muscle innervation estimation following motor nerve stimulation, which results in the near 

simultaneous activation of the motor units. For example, the proposed method can also be 

applied to estimate IZ location based on reconstructed evoked compound muscle action 

potentials (CMAPs) [37] particularly for patients who have poor motor control, after 

removing the stimulation artifacts using a method presented in our previous research [38]. In 

terms of locating the IZs, one main difference between evoked CMAPs and MUAPs 

obtained from spontaneous surface EMG recordings is that stimulus artifacts are likely to 

contaminate the CMAPs when stimulation and recording electrodes are close [38]. In this 

case, the linear regression method in conjunction with the stimulus artifact suppression 
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proposed in our previous study [38] could be applied to evoked CMAPs to estimate IZs. This 

combined approach may potentially lead to practical EMG guided botulinum toxin injection 

to reduce muscle tone [1, 9–11].

Our method with further improvements may be applied to different types of signals 

including motor units decomposed from the surface EMG interference pattern. For example, 

our method can possibly be applied to interference EMG recordings when the delay between 

two adjacent channels is computed based on the cross correlation of the signals from the two 

channels. It is worth noting that in cases which demonstrate multiple IZs, this approach may 

still result in accurate IZ estimations if the MUAPs from different motor units are 

decomposed successfully and essential criteria for the segmentation of recording channels 

are carefully considered.

Several limitations of the proposed method need to be acknowledged. First, this method 

unlikely applies when end-of-fiber effect is present and far-field potentials is the dominant 

component of the detected surface signal[39, 40]. Second, this method does not apply to 

boundary conditions, when there is none or only one potential propagating towards either 

ending of the muscle fiber [26]. Third, because we used a one-dimensional linear electrode 

array, the medial–lateral positioning of the IZ was not accounted for. Application of two-

dimensional electrode arrays would help identify IZs of more lateral or medial motor units, 

thus being able to offer information about motor unit IZ distribution of the whole muscle 

[22, 41]. The electrode was aligned in parallel with the fiber direction in this study. It is 

noteworthy that it is challenging to find a clinically feasible method for IZ localization that 

is applicable to all muscles due to muscle-specific diffuse distribution of motor endplates. 

Further studies are therefore required to determine the most appropriate method for muscle-

specific IZ localization, particularly in muscles with in-depth pinnate (e.g. gastrocnemius 

[42, 43]) and skin parallel-fibered (e.g. vastii [40]) architectures.

Conclusions

This project was undertaken to estimate motor unit IZ based on robust linear regression 

analysis. This study has shown that this method can locate the IZ using a small channel 

subset (4 channels collected from the opposite sides of the IZ) of the 16-channel array. This 

study is unable to examine the end-of-fiber effect and boundary conditions. In spite of its 

limitations, the present research explores the use of a relatively small number of electrode 

for IZ estimation.
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Fig. 1. 
Examples of experimental individual MUAPs detected by a linear array. Sixteen single 

differential (SD) surface EMG signals over a 0.10 s epoch are numbered from distal to 

proximal locations of the biceps brachii of a healthy adult. The dashed line represents 

MUAP propagation. The dotted circle indicates the IZ location, estimated by the operator 

(Left: channel 8; Right: between channel 7 and channel 8).
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Fig. 2. 
Examples of IZ location determined by the intersection of two linear regression lines which 

represent the estimated trajectories of bidirectional propagating potentials. The circles 

indicate the identified MUAP peaks measured on 16 SD channels. Gray lines are resultant 

regression lines and represent MUAP propagation. The intersection point of the two 

regression lines indicates the estimated IZ location (b: channel 7, c: between channel 7 and 

channel 8).
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Fig. 3. 
The MUAP and the corresponding IZs estimated by the robust linear regression method and 

the cross-correlation method. The MUAP obtained from two adjacent channels are cross-

correlated. The peak cross-correlation coefficients obtained from adjacent channels are 

presented and the minimum value corresponds to the IZ (0.31, gray).
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Fig. 4. 
Examples of experimental MUAPs and the corresponding IZs estimated by the proposed 

method. The IZs were estimated by using 16 SD surface EMG signals (a) and (c) or four SD 

surface EMG signals (b) and (d). The circles indicate the identified positive and negative 

MUAP peaks. The gray dotted lines are resultant regression lines and represent MUAP 

propagation. The intersection point of the two regression lines indicates the estimated IZ 

location. (Left panel (a) and (b): channel 12; Right panel (c) and (d): between channel 11 

and channel 12)
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Table I:

physiological parameters of muap simulation

Physiological Parameter Value

Number of MU M 50

Number of fibers/MU N [50, 100]

Distance from motor point of a fiber to its left termination ll −220 ±5 mm

Distance from motor point of a fiber to its right termination lr −190 ±5 mm

Motor point dispersion md 0±2mm

Vertical depth of motor units dv [5,20] ± 5 mm

Horizontal alignment of motor units de [−5,5] ± 5 mm

Limb radius Rl 40 mm

Conduction velocity v 4 m/s

Source duration Ts 3 ms
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Table II:

Demographic information of the ALS subjects

Subject # Age (year) Gender Diagnosis

1 56 M Definite

2 71 M Probable
with Lab Support

3 46 M Definite

4 52 F Definite

5 48 M Definite

6 68 F Definite
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Table III:

estimation Accuracy of Innervation zone location (Unit: %)

SNR
Type I Type II

RLR CORR RLR CORR

1 100(100) 100 98(98) 100

2 100(100) 100 98(98) 100

3 100(100) 100 100(100) 100

5 100(100) 100 100(100) 100

8 100(100) 100 100(100) 100

10 100(100) 100 100(100) 100

15 100(100) 100 100(100) 100

20 100(100) 100 100(100) 100

*
RLR and CORR: Accurate estimation of IZ location obtained from the robust linear regression method, the cross-correlation method, respectively. 

Numbers in parenthese show the estimation accuracy by using the RLR method with only 4 channels collected from the opposite sides of the IZ.
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Table IV.

AVERAGED RUNNING TIMES (MEAN ± SD IN MILLISECONDS) OF THE RLR AND CORR 

METHODS AT EACH EXAMINED SNR

SNR CORR RLR

1 3.8 ± 1.5 2.2 ± 0.7

2 3.1 ± 0.3 1.8 ± 0.6

3 3.3 ± 0.9 2.0 ± 0.7

5 3.2 ± 0.6 1.7 ± 0.6

8 4.0 ± 1.6 2.3 ± 1.1

10 3.2 ± 0.7 1.7 ± 0.4

15 2.9 ± 0.3 1.5 ± 0.3

20 3.1 ± 0.3 1.5 ± 0.3

Averaged (Mean ± SD) 3.3 ± 0.4 1.8 ± 0.3

Comput Biol Med. Author manuscript; available in PMC 2020 March 01.


	Abstract
	Introduction
	Methods
	IZ estimation using linear regression
	Simulation database
	Experimental database
	Comparison with cross-correlation method

	Results
	Results from simulated surface EMG signals
	Testing on experimental surface EMG signals

	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table I:
	Table II:
	Table III:
	Table IV.

