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Our main contribution is an efficient machine learning ap-
proach to fitting parameters of a biological model. We study
the binding of the shrimp protein Pen a 1 with antibody-
receptor complexes because this process is important in
understanding the allergic response. Previously, we devel-
oped a BioNetGen model that simulates this process. We
previously developed amethod for encoding steric effects
via the optimization of two parameters: the cutoff distance
and the rule rate. We optimized these two parameters by fit-
ting the output to that generated by a 3D robotics-inspired
Monte Carlo simulation that explicitly represents molecular
geometry.

In this work, we aim to optimize the parameters for our
BioNetGen model using an efficient method: an adaptive-
network-based fuzzy inference system implemented inMAT-
LAB.Wewant to develop fuzzy systems that can accurately
predict the rule binding rate and cutoff distance given a
residual-sum-of-squares value or a probability distribution.
We construct the fuzzy systems using fuzzy c-means clus-
tering with existing data fromBioNetGenmodel parameter
scans as the training data. We create and test fuzzy systems
with various input data and number of clusters, and analyze

Abbreviations: ANFIS, Adaptive network based fuzzy inference system; FIS, Fuzzy inference system; nm, Nanometers; RSS, Residual
sum of squares; s, Seconds.
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their performance with regard to the effective optimization
of our rule-basedmodel. We find that the fuzzy system that
uses a residual-sum-of-squares value as the input value per-
forms acceptably well. However, the performance of the
fuzzy systems that use probabilities as their input values
perform inconsistently in our tests.
The results of this study suggest that the system that

uses a residual-sum-of-squares valueas the input value could
potentially be used to find an adequate fit for our biochem-
ical model. However, the systems that use probabilities as
their input values need further development to improve the
consistency and reliability of their output. Testing more val-
ues for other clustering parameters other than the number
of clusters may accomplish this. Further research could also
include similar studies using other training or clustering al-
gorithms. This methodology could bemodified for use with
fitting other biological models.
K E YWORD S

optimization, fuzzy inference systems, adaptive algorithms,
biological modeling, molecular geometry

1 | BACKGROUND

1.1 | Introduction

Fuzzy inference systems (FISs) are models that consist of a set of IF-THEN rules in which the antecedents and/or
consequents of the rules are fuzzy rather than crispWang andMendel (1992). The rules can be provided by a human
expert, but it can be highly useful for the rules to be constructed automatically using only a set of training data and
an appropriate learning algorithm. Various FIS learning algorithms have been developed. FISs can be applied to
regression and classification problems in various fields including robotics, datamining, prediction, estimation, control,
and computational biology.

In this paper, we examine a novel application of FISs in the field of biology; namely, the optimization of the param-
eters of a biochemical rule-based model implemented in BioNetGen Blinov et al. (2004) which could potentially be
modified for implementation in other biological models. Ideally, this methodwould require only one parameter scan
to generate the set of data used to train the FIS. In general, BioNetGenmodels consist of a set of “rules" that control
interactions betweenmolecules. In a previous line of work, we developed a BioNetGenmodel that captures the binding
interactions between molecules of the shrimp tropomyosin Pen a 1 and IgE antibody-receptor complexes that lead
to the formation of aggregates. We are interested in this biological process because the size and structure of these
aggregates is important in understanding the allergic response in shrimp-allergic human subjects as aggregate size and
structure is theorized to be linked to the strength of the allergic response. Such knowledge could be useful in developing
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treatments for people with allergies, such as the administration of recombinant hypoallergens Vargas et al. (2018).
Using this BioNetGenmodel, we want to determine the probability that an aggregate of a particular size will be formed.
We use the term aggregate size to refer to the number of IgE antibody-receptor complexes bound to a single Pen a 1
molecule. We use the BioNetGenmodel output to calculate these probabilities.

The Pen a 1 allergen is a shrimp tropomyosin. It is a dimer; it has a double-stranded coiled structure. In previous
experimental work, ten binding regions of the double-stranded Pen a 1molecule have been identified (five per strand)
Ivanciuc et al. (2003); Ayuso et al. (2002); Reese et al. (2005). However, in previous work performed by colleagues, one
large binding region was effectively split into two regions based on a study of conditional binding probabilities of these
two regionsManavi et al. (2016). Consequently, we treat each Pen a 1molecule as having a total of 12 binding regions
(six per strand). This means that there are 13 possible aggregate sizes (0-12 regions can be bound).

Wewish to optimize two parameters of our biochemical rule-basedmodel: the cutoff distance and the rule binding
rate, which we refer to throughout this paper as the “rule rate". The cutoff distance is the distance between tropomyosin
binding sites at or belowwhich steric effects become strong enough to significantly reduce the probability of a binding
event taking place at a neighboring tropomyosin binding site. We encode steric effects between the binding sites by
changing the set of rules according to the cutoff distance. The rule rate is the probability that an event encoded by that
rulewill occur. For our simplemodel, wemake the assumption that the same rate is associatedwith each rule. Previously,
the determination of the rule rates for the rule-basedmodel has been achieved by parameter scanning, which can be
time-consuming and risks skipping over the best fit if the step size is too large. An algorithm that uses theMetropolis
method has also been used, though it can also be time-consuming. FISs only take amaximum of a fewminutes to train
for our model, and they can then produce output instantaneously given a set of input values. The greater efficiency
and possibly greater accuracy of the FISmethod of parameter optimization are themotivations for trying to apply this
method to the optimization of our BioNetGenmodel.

A common reason to optimize the parameters of a biologicalmodel is to fit themodel output to a set of experimental
data. Because experimental data for this particular biological process is not currently available, we substitute aggregate
size data froma three-dimensional rigid-bodyMonteCarlo simulation previously developedby our collaboratorsManavi
et al. (2012). We seek to optimize the rule rate and cutoff distance for our biological model to reduce the difference
between the aggregate size distribution of theMonte Carlo data and that of our rule-basedmodel. We quantify this
difference by calculating the residual sum-of-squares (RSS) value between the aggregate size distribution generated by
ourmodel and that generated by theMonte Carlo simulation.

There aremultiple options for designing an FIS for this optimization problem since there are 13 possible aggregate
sizes, a cutoff distance, a rule rate, and an RSS value associatedwith each training data point. All of these parameters
could be used as input parameters to the FIS. We could potentially construct a single-input FIS with only one input
parameter, or a multiple-input FIS withmore than one input parameter. Themain contributions of this work are the
creation and testing of different FISs, including single-input andmultiple-input systems, and an analysis of their perfor-
mancewith regards to the effective optimization of our rule-based biological model for allergen-antibody aggregation
implemented using BioNetGen. We came to the conclusion that the single-input RSS system performs acceptably well,
but the performance of the multiple-input systems is inconsistent, with one system performing well and the other
systems performing poorly.

1.2 | RelatedWork

There have been numerous learning algorithms developed for FISs. One of the earliest andmost widely used algorithms
is theWang-Mendel techniqueWang andMendel (1992), in which the input and output spaces are divided into fuzzy
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regions that form the basis of the fuzzy rules, and each rule is assigned a degree of usefulness. The adaptive-network-
based fuzzy inference system (ANFIS) Jang (1993); Jang et al. (1997) is a two-stagemodel. The forward stage consists of
multiple layers, including fuzzification, inference, and other calculations, and parameter learning using the least-squares
method takes place in the backward stage. In the subtractive clustering and fuzzy c-meansmethod Chiu (1996); Yager
and Filev (1994), rule cluster centers are determined by calculating the distance of each data point fromevery other data
point, and then optimizing the clusters using fuzzy c-means. TheMOGULmethodHerrera et al. (1998); Cordon et al.
(1999) uses iterative rule learning to generate chromosomes that consist of the rule membership function parameters.
In the fuzzy inference rules by descentmethodNomura et al. (1992), the antecedentmembership function is an isosceles
triangle, and the consequent part of the rule is a real number obtained using a descent method.

1.3 | Contributions

The contributions of this work are as follows:
1. The proposal of an efficient fittingmethod for biological models using fuzzy inference systems.
2. The application of this method to the problem of fitting the parameters of a biological rule-basedmodel.
3. The testing of the accuracy of this method for finding reasonable fits and consistency of the results.

2 | METHODS

For our FIS learning algorithm, we selected the adaptive-network-based fuzzy inference system (ANFIS) for its imple-
mentation and customization options inMATLAB. An initial fuzzy inference system (FIS), which includes the fuzzy rule
base and membership functions, is generated using fuzzy c-means clustering. The parameters of this initial system
are then trained further using ANFIS. Further detail regarding the construction of the FIS can be found in the online
MathWorks documentationMathWorks (2018). One parameter of particular interest is the number of clusters used in
fuzzy c-means clustering. During this process, clusters are identifiedwithin the training data, and these clusters are then
employed in the generation of the FIS. The number of clusters may be specified by the user and can have a significant
effect on the results, so this study includes systemswith various numbers of clusters used.

Ideally, we want to develop two FISs: one that can accurately predict the rule rate, and another that can accurately
predict the cutoff distance, given an aggregate size probability distribution or an RSS value as the input value. Having
such FISs would be helpful for optimization of our BioNetGenmodel, as ideally, only a small set of training data would be
needed to train the FISs. These FISs could then be fed in theMonte Carlo aggregate size probability distribution as the
input values and would accurately predict the rule rate and cutoff distance that best corresponds to that particular
distribution. This methodwould be far less time-consuming thanmultiple-parameter scans and evenMetropolis-based
algorithms.

For the application of FISs to our BioNetGen model, the ANFIS method was chosen based on its easy-to-use
implementation inMATLAB and its customization options. This method employs an adaptive network that is composed
of nodes and directional links that connect the nodes, and at least some of the nodes are adaptive (the nodes are
associated with parameters that are adapted to minimize an error of measure according to the learning rules of the
network) Jang (1993). ANFIS uses hybrid learning rules that combine the gradient method and the least squares
estimate Jang et al. (1997).

The application of FISs to the BioNetGen model is based on previous work using a 3D geometric Monte Carlo
simulation tomodel the aggregation of IgE antibodies onto the shrimp allergen tropomyosinManavi et al. (2016). For
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this simulation, isosurface models of Pen a 1 were created from all-atom structures of shrimp tropomyosin. These
structures were obtained from the Protein Data Bank (PDB:1CG1) and the Structural Database of Allergenic Proteins
(SDAPModel #284) Ivanciuc et al. (2003, 2002). The tropomyosinmolecule used contains 568 amino acids and 4,577
atoms. It is a dimer and has a double-stranded coiled structure.

A rule-basedmodel implemented in BioNetGen that implicitly represents antigen geometry was used to quantify
the differences in the Monte Carlo results for different allergen conformations and resolutions of theMonte Carlo
model. This work employs amethod to construct sets of rules based directly on the distances between the IgE binding
regions of the tropomyosinHoard et al. (2015, 2016). Once the cutoff distance is specified, the set of rules is constructed
according to the cutoff distance and the distances between the binding regions. Hence, the number of rules in themodel
varies according to the cutoff distance.

We use the ANFISmethod, implemented inMATLAB, to train the FISs. The FISs will be constructed using fuzzy
c-means clusteringwith existing aggregate size data fromBioNetGenmodel parameter scans as the training data. Either
an RSS value or some of the 13 possible aggregate size probabilities will be used as input variables, and a rule rate or
cutoff distance will be the output variable. For the final test, all of theMonte Carlo aggregate size probabilities will be
used as input variables to the FIS.

The performance of the FISswill be evaluated by calculating the percent error between the output values generated
by the FIS and the actual values, and by simply observing the output values and seeing if they are reasonable for our
expectations of the particular model. This point is further discussed in the Results section. For the final test, the FIS will
be evaluated by comparing the RSS values to theminimumRSS value predicted by theMetropolis algorithm.

2.1 | Computational Experiments

In order to construct a fuzzy system using ANFIS, the genfis3 function inMATLAB is first run to create a Sugeno-type
FIS structure using fuzzy c-means clustering to extract a set of rules andmembership functions that model the training
data. This function allows the specification of the number of clusters used tomodel the data. This parameter will be
varied throughout this study. The other parameters were set to their default values; the number of training epochs was
set to 10, the initial step size was set to 0.01, the step size increase rate was set to 1.1, and the step size decrease rate
was set to 0.9.

The data used to train the FIS consists of the rule rates, the aggregate size probability distributions, the cut-
off distances, and the RSS values. This data was obtained by running a parameter scan of the rule rate from 0.000
mol ecul e−1s−1 to 0.020mol ecul e−1s−1 with a step size of 0.001mol ecul e−1s−1 over a range of cutoff distances from
3.5 nm to 10.0 nm with a step size of 0.1 nm. This training set consists of 1,365 data points and is provided in the
supporting information for this article.

Before developing themore complexmultiple-input FIS, there is another type of FIS we can develop that could be
applied to optimization: a single-input FIS that uses an RSS value as an input variable and the rule rate or cutoff distance
as the output variable. The disadvantage of this FIS is that we do not knowwhat theminimum possible RSS value is;
however, we do have an idea from our experience with our biological models of what a “good" RSS value should be, and
we can try using different “good" RSS values to find an accurate rule rate or cutoff distance. The advantage of this FIS is
that it is far less computationally expensive than amultiple-input FIS.

In order to determine howwell the FIS can predict the rule rate and cutoff distance, we first randomly select five
RSS values within the range of the training data (but with none matching that of any of the training values). Since
the lowest RSS value is likely to be outside of the range of the training data, we also want an idea of howwell the FIS
performs with this type of input. Two small RSS values below the lowest RSS value in the range of the training data are
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F IGURE 1 RSS values for the BioNetGenmodels with the rule rates predicted by the FIS with various numbers of
clusters using the selected RSS values as input.

chosen for this purpose. After training the FIS, we use each of these seven RSS values as the input variable and use
the FIS to predict the rule rate and cutoff distance for each of these seven values. We then run a simulation for our
BioNetGenmodel using the rule rate and cutoff distance predicted by the FIS and note the actual RSS value calculated
for the BioNetGen simulation. Ideally, the inputted and predicted RSS values should be similar.

3 | RESULTS

3.1 | Single-Input FIS

Figure 1 and Figure 2 show the results of this test. Figure 1 displays the predicted RSS values for the five randomly
selected inputted RSS values and the two non-randomly selected inputted RSS values. In this figure, the inputted RSS
values are plotted on the x-axis, and the RSS values predicted by the FIS are plotted on the y-axis. There are five curves,
one for each of the number of clusters used in the initial construction of the FIS. Figure 2 displays the percent error
between the inputted and predicted RSS values for each number of clusters.

From Figure 1, we can observe that the FIS performs the best for this test with only 10 clusters. We also observe
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F IGURE 2 Percent error between the inputted and predicted RSS values.

from Figure 2 that the system performs especially poorly for the higher RSS values, with errors of over 90% for two
tests. This could be due to the fact that a high RSS value may correspond to a large range of poorly fitting data sets,
while a lower RSS value corresponds with amuch smaller number of well-fitting data sets.

The lowest RSS value, 0.00004, also performs poorly, probably because this RSS is too small to be achievable. It is
well outside the range of the training data. The system performs reasonably well for the next lowest RSS input value,
0.0004, which is also outside the range of the training data, but close to theminimum value found by theMetropolis
algorithm, 0.000481558. Many of the predicted RSS values are close to thisMetropolis value, which is an indication
that the performance of this FIS is similar to that of ourMetropolis fitting algorithm. Since the predicted RSS values for
these two input values are all less than 0.001, and since we ultimately seek to use this system to find reasonably good
fits (generally corresponding to RSS values less than 0.001), this performance is acceptable.

| RandomRule Rates

The purpose of this test is to determine how accurately the FIS can predict a rule rate given a set of aggregate size
probabilities corresponding to that rule rate. Firstly, five rule rates were selected from a uniform distribution in the
interval [0.00,0.02]mol ecul e−1s−1, andwere each specified as the variable rule rate for the same BioNetGenmodel.
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TABLE 1 Rule rates predicted by the FIS comparedwith the actual rule rates.

Selected rate Clusters
10 30 50 80 100

3.26 × 10−3 3.01 × 10−3 3.26 × 10−3 3.26 × 10−3 3.27 × 10−3 3.29 × 10−3

7.43 × 10−3 7.02 × 10−3 7.47 × 10−3 7.42 × 10−3 7.42 × 10−3 7.43 × 10−3

7.91 × 10−3 7.43 × 10−3 8.07 × 10−3 7.92 × 10−3 7.91 × 10−3 7.91 × 10−3

9.76 × 10−3 9.88 × 10−3 9.69 × 10−3 9.75 × 10−3 9.76 × 10−3 9.77 × 10−3

1.78 × 10−2 1.78 × 10−2 1.78 × 10−2 1.78 × 10−2 1.78 × 10−2 1.78 × 10−2

TABLE 2 Cutoff distances predicted by the FIS comparedwith the actual cutoff distances.
Selected distance Clusters

10 30 50 80 100
4.31 4.71 4.66 4.54 4.55 4.55

5.86 5.72 5.84 5.81 5.80 5.80

6.90 6.55 6.61 6.84 6.81 6.79

7.84 8.03 8.13 8.13 8.13 8.11

8.83 9.51 9.40 9.40 9.44 9.42

The rule base varies with the cutoff distance, so for this initial test, a cutoff distance of 4.7 nm was specified for all
five BioNetGenmodels. This distancewas chosen because ourMetropolis fitting algorithm found that the best fitting
BioNetGenmodel has this cutoff distance. The BioNetGen aggregate size probability distributions were generated for
each of the five rule rates. The probability values for aggregate sizes 5 through 10were then fed into the FIS, which was
used to predict the rule rates. (Not all 13 of the size values were used as input variables because 13 input variables
makes themodel computationally intractable. Sizes 5 though 10were selected because these sizes aremost likely to
correspond to values that are large enough to be significant.) These predicted rule rates should ideally be similar to the
actual rule rates used to generate the BioNetGenmodel.

Table 1 and Figure 3 show the results of this test.
Table 1 and Figure 3 show that this FIS performs well at predicting the rule rates given a set of aggregate size

probabilities generated by BioNetGen, with most of the percent error values being less than one. We also observe that
the system performs better with a higher number of clusters for this test.

3.2 | RandomCutoff Distances

The purpose of this test is to determine how accurately the FIS can predict a cutoff distance given a set of aggregate
size probabilities corresponding to that cutoff distance. Firstly, five cutoff distances were selected from a uniform
distribution in the interval [3.5,10.0] nm, and were each specified as the cutoff distance for a BioNetGenmodel with the
same rule rates. For this test, the variable rule rate was specified as 0.00983mol ecul e−1s−1 for all models. This rule
rate was chosen because ourMetropolis fitting algorithm found that the best fitting BioNetGenmodel has this rate. The
aggregate size probability distributions were generated for each of the five cutoff distances. These probability values
were then fed into the FIS, which predicted the cutoff distances. These predicted cutoff distances should ideally be
similar to the actual cutoff distances used to generate the BioNetGenmodel.

Table 2 and Figure 4 show the results of this test.
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F IGURE 3 Percent error between the actual and predicted rule rates.

Table 2 and Figure 4 show that this FIS performs reasonably well at predicting cutoff distances given a set of
aggregate size probabilities generated by BioNetGen, although some of the error values are rather high, with a few
greater than five percent and one greater than nine percent. This could potentially pose a problem for this system, since
we seek a cutoff distance accurate to within 0.1 nm according to the cutoff distance step size. As it stands, this FIS is
better suited to finding an approximate “best" cutoff distance that can then be used to select a small range of cutoff
distances that can be further optimized to find the true best cutoff distance (and rule rate). We also observe that the
system tends to perform better with a higher number of clusters for this test.

3.3 | Monte CarloModel Prediction

The final test of our FIS is whether theMonte Carlo data can be used as input variables to predict a rule rate and cutoff
distance that correspond to a good fit. In this test, a set ofMonte Carlo aggregate size probabilities is fed into the FIS,
and the rule rate and cutoff distance are predicted. The predicted rule rate and cutoff distance are tested by using these
values as the rule rate and cutoff distance in the BioNetGenmodel, generating the aggregate size distribution from
BioNetGen, and comparing this distribution to theMonte Carlo data. Since we do not knowwhat the optimal RSS value
is, we compare the results to that of theMetropolis-based optimization algorithm to see howwell the FIS compares.
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Table 3 shows the results of this test.
We note that the minimum RSS value found for this BioNetGen model using a Metropolis-based algorithm is

0.000481558. Comparing this value with the results in Table 3, we observe that all of the FIS-predicted values are at
least one order of magnitude higher than this value. We also note that the performance of this system is inconsistent,
andmany RSS values are unacceptably high (greater than 0.01). This FIS needs improvement before it can be used as a
tool for finding best fits.

4 | CONCLUSIONS

In this study, we sought to create an FIS that can accurately predict best-fit rule rates and cutoff distances for a
BioNetGen rule-basedmodel. We tested different FISs using (a) an RSS value, (b) a set of aggregate size probabilities,
and (c) a set of aggregate size probabilities directly from theMonte Carlo simulation data as the FIS input variables. A
FIS corresponding to (a) or (c) would be especially useful for this optimization problem. Our FIS based on (a) performed
well for low RSS values and could potentially be used to predict rule rates and cutoff distances that result in a good
fit for the BioNetGenmodel (although it will not necessarily find the best possible fit, it could come very close). The
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TABLE 3 RSS values for the BioNetGenmodel using the FIS-predicted rule rate and cutoff distance. The leftmost
column represents theMonte Carlo aggregate sizes used as input variables.

Input sizes Clusters
10 30 50 80 100

5,6,7,8,9,10 2.34 × 10−2 1.73 × 10−2 2.70 × 10−3 8.96 × 10−2 2.95 × 10−3

6,7,8,9 1.44 × 10−3 1.42 × 10−3 8.94 × 10−2 1.60 × 10−2 1.88 × 10−3

7,8,9 1.02 × 10−3 9.01 × 10−2 8.75 × 10−2 1.46 × 10−2 1.35 × 10−2

FISs based on (b) consistently performedwell at predicting rule rates, but its prediction of cutoff distances was rather
inaccurate. However, this system could still be used to narrow down the range of cutoff distances. Finally, the FIS based
on (c) performed poorly overall. We also note that the optimal number of clusters varies depending on the type of input.
Formost tests, a higher number of clusters was linked to better performance of the FIS, although this was not always
the case.

Our results suggest that the use of an FIS for fitting parameters of a biologicalmodel has the potential to be effective
and efficient. Futurework on this problem could involve testing other fuzzy training algorithms besides ANFIS and other
clustering or rule construction algorithms besides fuzzy c-means clustering. Other ANFIS and clustering parameters
besides the number of clusters, such as change in step size rate, training epoch number, and initial step size, could be
tested to see if any of these parameters have a significant effect on the FIS performance.
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