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Abstract—With the rapid evolution in modern multimedia 

networks and systems, services such as telemedicine and tele-

surgery are becoming more popular. Quality estimation and 

monitoring of medical videos is becoming important not only in 

the field of research, but also in real-time applications and 

services.  The state-of-the-art video quality metric (VQM) called 

Video Multimethod Assessment Fusion (VMAF) is a promising 

solution for quality estimation of videos impaired by compression 

and scaling artifacts. The metric was developed by Netflix for 

entertainment video content and its good performance does not 

necessarily extend to medical video. This paper focuses on 

evaluating the performance of VMAF in the context of quality 

assessment (QA) for medical videos.  We consider in this paper 

medical video compressed via   High Efficiency Video Coding 

(HEVC) and refer in particular to medical ultrasound videos and 

wireless capsule endoscopy (WCE) videos for the performance 

estimation of VMAF. The correlation between the subjective 

scores of these two datasets and VMAF’s quality estimates is 

studied and presented. The results show that VMAF outperforms 

other state-of-the-art VQMs in the context of WCE videos, but this 

is not the case for medical ultrasound videos. 

 
Index Terms—High efficiency video coding, objective video 

quality assessment, subjective video quality assessment, medical 

ultrasound imagery, wireless capsule endoscopy. 

 

I. INTRODUCTION 

esearch, development and commercialization of 

multimedia systems, applications and services has 

witnessed an exponential growth in recent times. With billions 

of videos being streamed, shared, downloaded every day, it is 

crucial to maintain quality of service (QoS) and quality of 

experience (QoE) [1]. Especially for video-related applications 

and services the need for provision of quality of experience to 

the consumers becomes inevitable [1-3]. Telemedicine, image 

guided surgery, tele-surgery, etc., are becoming increasingly 

popular, as modern communication systems support high data 

rates hence allowing seamless delivery of videos to the end 

users [4]. Medical videos contain sensitive content which is of 

utmost importance to the clinicians and physicians. Large 
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amounts of medical visual contents are created continuously on 

a daily basis for viewing and manipulation by medical 

professionals [5].  Video acquisition, processing, compression, 

transmission and display can result in inducing some artifacts, 

despite the fact that video capturing, and processing techniques 

are continuously evolving. Such artifacts in medical imagery 

may negatively impact the perception of medical professionals. 

As mentioned earlier, medical videos contain sensitive data, 

and their quality cannot be compromised as it might lead to 

medical errors [5].  

High efficiency video coding (HEVC) has emerged as a 

promising solution for providing video compression without 

significantly reducing the video quality [6]. Bandwidth and 

storage limitations always prompt the service providers to adopt 

an efficient compression scheme. In medical videos, 

compression artifacts should not lead to medical errors as it can 

have dire consequences, in particular in the form of false 

diagnosis. Recent studies on HEVC compressed medical 

imagery, such as medical ultrasound and wireless capsule 

endoscopy (WCE) videos [3] [7-9], have shown that HEVC 

allows high amounts of compression without reducing the 

perceptual and diagnostic quality of the medical videos.  

Objective video quality metrics (VQM) play an important 

role in the estimation of the perceptual quality of videos [2]. 

Though limited, several works have been done in the field of 

medical video quality assessment (VQA), which are discussed 

in the next Section. The Video Multimethod Assessment Fusion 

(VMAF) metric is a full-reference (FR) metric that estimates 

the quality based on compression and scaling artifacts [10]. 

Netflix, a leading USA-based media-services vendor, provides 

internet entertainment services such as TV series, 

documentaries, feature films, etc.  Given the nature of Netflix’s 

entertainment-oriented services, VMAF’s application on 

medical videos has not been tested and verified before. Recent 

publications in the field of medical VQA have focused on the 

suitability of recent VQMs in the context of medical imagery. 

However, to the authors’ knowledge VMAF has never been 

tested for its suitability for the estimation of the quality of 

compressed medical videos.  
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This paper focuses on studying the performance of VMAF in 

the context of medical videos. Two datasets are considered, 

namely medical ultrasound videos and wireless capsule 

endoscopy (WCE) videos. Both these datasets contain various 

types of ultrasound and WCE videos compressed via HEVC.  

In this work the measurements of VMAF are fitted to 

subjective measurements of both the datasets in order to obtain 

a curve fitting model that produces best results. Correlations 

between subjective and objective measurements are also 

studied for comparison between the state-of-the-art quality 

metrics considered as benchmark and VMAF, and their results 

are discussed in detail.  

In the following section we provide a survey of the state-of-

the-art and the principal contributions of this work.  

II. BACKGROUND AND RELATED WORK 

There have been several efforts in designing, standardizing 

and modelling VQMs specially designed for estimating the 

quality of medical videos. This section firstly discusses the 

state-of-the-art in VQA studies for medical videos and then 

discusses the contemporary FR objective VQMs. 

A. VQA in the context of Medical Videos & Images 

Quality assessment of medical imagery has been under 

Table I. Existing FR-VQMs considered as benchmark. 

 

Quality metric Abbreviation  Description 

Peak Signal to Noise 

Ratio 
PSNR This metric is based on the calculation of the Mean Square Error (MSE).  

Structural Similarity 

Index Metric [13] 
SSIM 

SSIM measures the quality of the video based on luminance, contrast and 

structural comparison between original and impaired videos. 

Multi Scale SSIM 

[14] 
MS-SSIM 

MS-SSIM is an extension of SSIM with the same mathematical principles but 

estimates the quality of the image on multiple scales. 

Visual Signal to 

Noise Ratio [15] 
VSNR 

Contrast thresholds are used to identify the impairments in the video 

sequences. All the impairments above these thresholds are mapped to represent 

the quality of the video sequences. 

Information Fidelity 

Criterion [16] 
IFC 

Natural scene statistics (NSS) from the reference and impaired videos are 

combined to constitute a quality index. 

Visual Information 

Fidelity [17] 
VIF 

Based on the Human Visual System (HVS), specific information is extracted 

from the reference video in wavelet domain. HVS refers to the information 

that can easily be extracted by the human brain from a video sequence. This 

same information is extracted from the impaired video sequence and then 

combined with the reference video information to measure the visual quality 

of the distorted video. 

Pixel-based VIF [17] VIFP 
A simpler and less complex version of VIF is pixel-based VIF, which uses the 

same principles in the pixel domain to estimate the video quality. 

Universal Quality 

Index [18] 
UQI 

UQI, like SSIM and MS-SSIM, measures the structural impairments in a video 

and then maps them to a model that predicts the quality. 

Noise Quality 

Measure [19] 
NQM 

By considering the variation in contrast sensitivity, local luminance mean and 

contrast measures of the video sequence, this metric obtains a weighted signal 

to noise ratio measure between the reference and the processed video 

sequence. 

Weighted Signal to 

Noise Ratio [19] 
WSNR 

WSNR, measured in dB scale, is calculated using the ratio between weighted 

signal power and noise power.  

Video Quality Metric 

[20] 
VQM NTIA 

Standardized by National Telecommunications and Information 

Administration (NTIA) USA, this metric estimates the quality based on seven 

different parameters from the reference and impaired videos. 

Video Multimethod 

Assessment Fusion 

[10] 

VMAF 

As Netflix’s video related services are based on the Transmission Control 

Protocol (TCP), the current version of VMAF estimates the video quality by 

considering only compression and scaling artifacts. The latest version of 

VMAF is based on support vector machine (SVM) regression which uses three 

features based on measurements from VIF and detail loss metric (DLM) [21] 

and temporal motion estimates. The motion estimation is done using a simple 

algorithm based on temporal difference of consecutive frames. 

 



 

limelight for quite a while and several relevant works have been 

published in the recent years. The authors in a recent survey [5] 

have detailed the subjective methods and findings of various 

medical image and video quality assessment studies. The 

survey encompasses 12 major studies that cover aspects of 

different medical imaging modalities. It includes three studies 

each about magnetic resonance imaging (MRI) and endoscopic 

imagery including WCE videos, one each about pathology 

imaging, heart imagery, ophthalmology videos and tele-surgery 

videos, and finally two about ultrasound videos. 

B. Objective Quality Metrics 

Objective video quality assessment is the least complex way 

of estimating the quality of visual content for various purposes, 

such as network optimization. Service providers employ 

objective video quality metrics to get automatic feedback of the 

video-related services, which consequently helps them to 

optimize the network. Such feedback is often used to prevent 

future encoding and transmission errors. For medical video-

related services, such as telemedicine, this is very important. as 

preserving the diagnostic information is necessary.  

Objective quality models can be classified into three major 

categories namely Full Reference (FR), Reduced Reference 

(RR) and No Reference (NR). The former two require full or 

partial reference of the original video, whereas the latter does 

not. FR methods are often used in cross-layer optimization [11], 

testing and validation of video compression methods, [6] etc. A 

detailed review of FR quality metrics can be found in [12]. A 

brief description of recent FR-VQMs, including Netflix’s 

VMAF, is given in Table 1.   

The FR metrics described in Table 1 are freely available 

online for research and academic purposes. These FR metrics 

are used in this paper for comparison purposes, using   the 

recommended parameters recommended in the corresponding 

publications. 

Inferring from the existing literature presented in this section 

and with the authors’ best of knowledge, there has been no work 

so far which studies the performance of VMAF in the context 

of medical videos. The principal contributions of this paper are 

as follows: 

• Performance of VMAF in quality estimation of 

HEVC compressed medical ultrasound videos and 

wireless capsule endoscopy videos. 

• Presenting a curve fitting model for VMAF that 

produces best fit to the subjective DMOS for both 

video datasets. 

• Comparison of VMAF with other state-of-the-art   

video quality metrics in terms of correlation 

between objective and subjective measurements. 

The next section covers a concise description of both medical 

video datasets, i.e., with ultrasound and WCE videos. 

III. SUBJECTIVE MEDICAL VIDEO DATASETS 

The FR video quality metrics presented in Section II are 

designed to estimate the visual or perceptual quality of a video. 

These methods are not specifically designed for medical videos, 

so they are considered general purpose quality metrics. In order 

to assess the suitability of a video quality metric   for specific 

visual content, it is important to conduct subjective 

experiments.  Such measurements are used for evaluating the 

correlation with the objective VQMs’ measurements.  

In order to assess the performance and suitability of 

aforementioned VQMs in the context of medical videos, we 

have used two video datasets, described below.  

A. Dataset for Medical Ultrasound Videos [7] 

This dataset comprises nine different ultrasound videos, out 

of which three videos are related to heart and liver each, two to 

kidney and one to lungs. These nine videos have a spatial and 

temporal resolution of 640×416 and a frame rate of 25 frames 

per second (fps) respectively. With 100 frames in total for each 

video sequence, the total duration is 4 seconds. An example 

frame from each video with a brief description is available in 

[7]. These nine original videos were compressed at 8 different 

quantization parameter (QP) levels, ranging between 29 and 41, 

using the HEVC video encoder. A total of 72 HEVC 

compressed videos were evaluated by 4 medical experts and 15 

non-experts.  

The subjective measurements taken in this study use the 

double stimulus continuous quality (DSCQS) scale type-II 

methodology. The final measurements in this study are given in 

the form of differential mean opinion score (DMOS).  

B. Dataset for Wireless Capsule Endoscopy Videos [3] 

Wireless capsule endoscopy, or WCE, is a process in which 

a wireless capsule-shaped swallowable medical device is used 

to record imagery of the gastro-intestinal (GI) tract of living 

beings [22]. The information related to the WCE dataset 

provided in this subsection has been extracted from [3]. The 

WCE videos used in this study comprise ten different 

pathologies which are described in [3], along with the snapshot 

of each pathology. Each video in this dataset was compressed 

using the state-of-the-art HEVC encoder at eight different 

compression levels. Similar to the ultrasound dataset, the QP 

range was kept between 27 and 41, with a step size of 2. With a 

spatial and temporal resolution of 320×320 and 3 fps 

respectively, each video is 10 seconds in duration. The total 

number of videos in this dataset is 90, with 10 original videos 

compressed at eight different compression levels resulting in 80 

HEVC compressed videos.  

The scoring method used for the subjective measurements of 

this dataset was the same as the Ultrasound videos dataset, i.e., 

DSCQS type-II. The results, which were collected from 6 

experts and 18 non-experts, are in the form of DMOS. 

IV. RESULTS AND DISCUSSION 

The subjective tests for the aforementioned datasets and their 

corresponding results are thoroughly presented in [3] [7]. In this 

section, we have used the subjective measurements in the form 

of DMOS from these two datasets to evaluate the performance 

of VMAF and of the other FR-VQMs considered for 

comparison. 

In order to quantify the relationship between measurements 

from FR-VQMs and the subjective measurements, the objective 

measurements are fitted to curve fitting models. The curve 



 

fitting in the next subsections is done for both experts’ and non-

experts’ DMOS and the results for both datasets are discussed 

separately. 

A. Results for the Ultrasound Videos Dataset 

For the performance evaluation of VMAF in the context of 

ultrasound videos, we have considered exponential, linear and 

logistic curve fitting approaches, where all three exhibit 

monotonic curves. The results are reported in terms of 

coefficient of determination (𝑅2), adjusted coefficient of 

determination (Adj. 𝑅2) and root mean square error (RMSE). 

These performance metrics are calculated for the 

aforementioned three types of curve fitting approaches.  

First, we have used the simplest of curve-fitting approaches 

i.e. linear curve fitting and the results are shown in Fig. 1a. It 

can be observed that the VMAF measurements exhibit a good 

fit to the subjective DMOS of both experts and non-experts. The 

mathematical representation of linear fitting is given in eq. (1), 

where 𝑍𝑗 and  𝑍𝑗
′ represent mean score before and after fitting 

for the jth video sequence respectively. The parameters 𝛽1 and 

𝛽2 are estimated using the nlinfit tool in MATLAB. 

 𝑍𝑗
′ = 𝛽1𝑍𝑗 +  𝛽2 .                               (1)                       

The results in Fig. 1b show that using the exponential 

approach, VMAF measurements for the ultrasound videos 

exhibit a better fit to the subjective DMOS of both experts and 

non-experts. The mathematical expression for exponential 

curve fitting is given as follows. 

 𝑍𝑗
′ = 𝛽1exp (𝑍𝑗𝛽2).                               (2) 

 Finally, we have used four-parameter logistic curve fitting, 

as it is one of the most common monotonic approaches used in 

the context of VQA. The authors in [7] also use the same 

approach for fitting the objective measurements to the 

subjective DMOS of ultrasound videos. Fig. 1c shows that the 

VMAF measurements for the ultrasound videos exhibit an 

excellent fit to the DMOS measurements using the logistic 

model. The mathematical expression for this model is given in 

eq. (3) and the four parameters (𝛽1, 𝛽2, 𝛽3 & 𝛽4) are estimated 

the same way i.e. using the nlinfit tool in MATLAB. 

 𝑍𝑗
′ = 𝛽2 +

𝛽1−𝛽2

1+𝑒𝑥𝑝(−(
𝑍𝑗−𝛽3

|𝛽4|
))

 .                             (3) 

Table 2 contains the numerical results for all the three curve 

fitting approaches for both expert and non-expert DMOS. It can 

be observed that in terms of both 𝑅2 and RMSE, VMAF shows 

best performance when Linear fitting is used. The exponential 

and logistic curve fitting approaches are comparable in terms of 

𝑅2, but in terms of RMSE the latter performs better for both 

expert and non-expert DMOS. So, it can be inferred that for 

ultrasound videos, linear fitting produces the best fit of VMAF 

w.r.t.. expert and non-expert DMOS. The RMSE and 𝑅2 results 

for experts’ DMOS are lower as compared to non-experts, the 

reason being that the former assesses the quality of medical 

videos in terms of diagnostic quality only. 

Furthermore, we have compared the performance of VMAF 

with other VQMs in terms of correlation. In Table 3, the results 

for Pearson’s linear correlation coefficient (PLCC) and 

Spearman’s rank order correlation coefficient (SROCC) are 

presented. The presented correlation values have been 

calculated between the objective VQMs’ measurements and 

DMOS from the ultrasound videos dataset. For experts’ DMOS 

it can be observed that, in terms of PLCC, VMAF shows better 

performance as compared to MS-SSIM, VSNR, NQM, VIFP 

 

(a) 

 

(b) 

 

(c) 

Fig. 1. Results for fitting the VMAF measurements of ultrasound 

videos to subjective DMOS of both experts and non-experts. (a) 

Linear model, (b) Exponential model, (c) Logistic model. 



 

and IFC, whereas for SROCC it only performs better than two 

metrics i.e. MS-SSIM and IFC. For non-experts’ DMOS, 

VMAF performs better than PSNR, SSIM, MS-SSIM, VSNR, 

WSNR, VIFP and IFC in terms of PLCC, but for SROCC its 

performance is only better than MS-SSIM, VIFP and IFC. 

Overall, for ultrasound videos, UQI and VIF are the best 

performing metrics in terms of PLCC and SROCC respectively, 

for both experts’ and non-experts’ DMOS. 

In [7], the authors have reported a compression threshold of 

𝑄𝑃 = 35 in terms of maximum allowed compression for 

diagnostically acceptable quality for ultrasound videos. This 

threshold was suggested based on results from the experts’ 

subjective scores. In Table 4, objective metrics’ results, 

including VMAF, are reported that correspond to each 

ultrasound video compressed at 𝑄𝑃 = 35. The nomenclature in 

Table 4 for each ultrasound video has been taken from [7]. 

Ultrasound videos are non-conventional videos as compared 

to other medical videos, such as WCE and entertainment 

videos. The support vector classifier (SVC) in the VMAF 

metric is trained on general videos as NETFLIX’s target 

audience is from the entertainment domain.  

The next section reports the evaluation of VMAF for the 

second dataset i.e. WCE videos dataset. 

B. Results for the WCE Videos Dataset 

We have used the same three curve fitting approaches for the 

WCE dataset, and the results are provided in Fig. 2a, 2b and 2c 

for linear, exponential and logistic fitting respectively. 

Observing the results for all the three monotonic fits, it can be 

observed that they exhibit a good fit, yet almost the same, for 

both experts’ and non-experts’ DMOS. The curve fitting results 

in terms of RMSE and 𝑅2 for the WCE dataset are also 

presented in Table 2. It can be observed that, compared to the 

Ultrasound videos dataset, the performance of VMAF is much 

better for the WCE videos dataset in terms of 𝑅2 and RMSE 

values. In terms of a better fit for experts’ DMOS, the results 

follow a different trend as compared to ultrasound videos. It can 

be seen that the 𝑅2 values are highest for linear fitting, followed 

by the logistic fit and exponential fit. All the three fits exhibit 

approximately the same results, with negligible difference at 

third decimal place, in terms of 𝑅2. Further for the experts’ 

DMOS, in terms of RMSE, VMAF shows better performance 

using the logistic fit as compared to linear fit and shows 

comparable performance to the exponential fit. For the non-

experts’ DMOS, the exponential fit shows the best results, in 

terms of both 𝑅2 and RMSE, followed by logistic and linear fit 

respectively. 

Like ultrasound videos, the diagnostically acceptable quality 

for WCE videos was suggested 𝑄𝑃 = 35 and 37 based on 

subjective scores of experts and non-experts respectively. In 

this paper we have mainly focused on expert opinion, so in 

 

(a) 

 

(b) 

 

(c) 

Fig. 2. Results for fitting the VMAF measurements of WCE videos to 

subjective DMOS of both experts and non-experts. (a) Linear model, 

(b) Exponential model, (c) Logistic model. 
 

Table II. Results for fitting the VMAF measurements to the subjective DMOS. 
 

Dataset Category 
Exponential Linear Logistic 

R2 Adj. R2 RMSE R2 Adj. R2 RMSE R2 Adj. R2 RMSE 

Ultrasound 

Videos 

Expert 0.8032 0.8004 11.1736 0.8620 0.8601 9.3557 0.8544 0.8502 9.680 

Non-Expert 0.8334 0.8310 8.7630 0.8862 0.8846 7.242 0.8791 0.8756 7.5199 

WCE 

Videos 

Expert 0.9214 0.9204 3.8859 0.9267 0.9258 4.9820 0.9268 0.9239 3.7994 

Non-Expert 0.9501 0.9494 3.0967 0.9433 0.9426 5.8556 0.9501 0.9481 3.1370 

 



 

Table 5, values for objective metrics are provided that 

correspond to WCE videos compressed at 𝑄𝑃 = 35. The 

nomenclature for WCE videos in Table 5 is taken from [3]. 

Comparing the performance of VMAF with other video 

quality metrics, it can be observed in Table 3 that VMAF 

outperforms all other VQMs in terms of both PLCC and 

SROCC. The authors in [3] have concluded VIF to be the best 

performing metric according to their study, but it can be seen 

that VMAF outperforms VIF with a clear margin for both 

experts’ and non-experts’ DMOS. 

V. CONCLUSION 

In this paper, we evaluated the performance of the state-of-

the-art video quality objective metric VMAF in the context of 

medical videos. The metric’s ability to correctly estimate the 

quality of two types of medical videos, ultrasound and WCE, 

was tested and compared to other contemporary metrics. The 

VMAF measurements were fitted to the subjective DMOS of 

expert and non-expert observers using exponential, linear and 

logistic curve fitting models. The linear fitting model exhibited 

the best fit in terms of 𝑅2 and RMSE for the ultrasound videos 

for both experts’ and non-experts’ DMOS. In case of WCE 

videos, for the experts’ DMOS the linear model exhibited the 

best fit only in terms of 𝑅2, but in terms of RMSE, the logistic 

fit exhibited the best fit. For the non-experts’ DMOS the 

exponential model exhibited the best fit in terms of both 𝑅2 and 

RMSE. 

 Furthermore, the presented results indicated different 

outcomes for the two considered video datasets in terms of 

PLCC and SROCC, as VMAF outperformed all other metrics 

 

Table III. Comparison of VMAF with other FR-VQMs 
 

Dataset Scores CC PSNR SSIM 
MS-

SSIM 
VSNR WSNR NQM UQI VIF VIFP IFC VQMNTIA VMAF 

Ultra-

sound 

Experts 
PLCC 0.9109 0.9264 0.8570 0.8925 0.9123 0.8961 0.9292 0.9258 0.8887 0.8644 0.8080 0.9056 

SROCC 0.9331 0.9375 0.8907 0.9139 0.9251 0.9090 0.9251 0.9382 0.8997 0.8926 0.8368 0.8941 

Non-

experts 

PLCC 0.8896 0.9208 0.8668 0.8888 0.9173 0.9233 0.9520 0.9431 0.8796 0.8446 0.8146 0.9220 

SROCC 0.9280 0.9383 0.8899 0.9277 0.9354 0.9464 0.9495 0.9663 0.9047 0.8906 0.8606 0.9186 

WCE 

Experts 
PLCC 0.8039 0.6840 0.8366 0.6055 0.8010 0.7158 0.8701 0.9016 0.8955 0.8844 0.7764 0.9627 

SROCC 0.8611 0.8063 0.9127 0.6571 0.8709 0.8257 0.8930 0.9424 0.9263 0.9482 0.8426 0.9763 

Non-

experts 

PLCC 0.8257 0.7232 0.8696 0.6204 0.7963 0.7371 0.8909 0.9238 0.9227 0.9020 0.7578 0.9712 

SROCC 0.8642 0.8129 0.9247 0.6474 0.8774 0.8311 0.9061 0.9533 0.9408 0.9525 0.8402 0.9796 

 

Table IV. Quality Values for FR-VQMs corresponding to acceptable diagnostic quality in terms of compression in WCE videos 

 

Video 

Sequences 
PSNR SSIM 

MS-

SSIM 
VSNR WSNR NQM UQI VIF VIFP IFC VQMNTIA VMAF 

Angiodysplasia 30.7381 0.8585 0.9351 20.0233 27.8509 18.4914 0.6164 0.2707 0.3889 1.4493 1.8433 77.308 

Ascaris 34.9131 0.9141 0.9579 26.3202 30.7488 21.2988 0.6269 0.3102 0.4753 1.2059 1.2615 76.4479 

Crohn’s Disease 35.7274 0.9153 0.9567 27.6202 32.6963 22.5215 0.592 0.3177 0.4551 1.2372 1.1593 75.6877 

Diverticulum 35.2772 0.9129 0.9538 27.2796 30.8014 22.2541 0.5661 0.2839 0.4391 1.0523 1.2454 79.8377 

Phlebectasia 34.7786 0.8952 0.943 26.0166 31.9825 21.1328 0.5317 0.2506 0.4018 0.9719 1.2192 73.5249 

Polyp 36.3554 0.9363 0.9643 32.4502 29.6683 23.0757 04806 0.3336 0.4607 1.0953 1.3219 78.8445 

Stenosis 35.3696 0.9138 0.9515 28.7107 30.2745 21.5594 0.4953 0.2771 0.4102 0.9817 1.2306 74.763 

Subepithelial 

Tumor 
36.4692 0.926 0.9572 27.9799 31.4753 21.6927 0.5627 0.3209 0.4454 1.14 1.0842 74.2097 

Tumor 34.0502 0.8871 0.9398 22.6127 31.3318 19.6339 0.5621 0.2758 0.4071 1.1649 1.3467 74.8874 

Xanthoma 35.2061 0.8975 0.9421 23.5172 32.0486 19.8628 0.495 0.2625 0.3916 1.0222 1.2149 73.1839 

 

 

 
Table V. Quality Values for FR-VQMs corresponding to acceptable diagnostic quality in terms of compression in Ultrasound videos 

 

Video 

Sequences 
PSNR SSIM 

MS-

SSIM 
VSNR WSNR NQM UQI VIF VIFP IFC VQMNTIA VMAF 

Sequence A 33.6696 0.9030 0.9432 39.1150 26.3375 27.7196 0.7605 0.3785 0.4026 1.3070 1.3921 78.2096 

Sequence B 34.6696 0.9340 0.9555 41.5616 28.5047 29.1442 0.7932 0.4218 0.4469 1.2471 1.3962 78.1267 

Sequence C 34.4605 0.9197 0.9575 40.9681 29.2536 28.9021 0.7850 0.4063 0.4319 1.2178 1.2711 77.3104 

Sequence D 33.8895 0.9197 0.9549 40.4798 29.1883 30.7338 0.7808 0.4235 0.4639 1.5282 1.2881 81.8238 

Sequence E 34.1383 0.9122 0.9443 37.5422 24.3815 25.0479 0.7630 0.3791 0.3889 1.2058 1.3244 73.8655 

Sequence F 33.6477 0.9117 0.9416 40.3240 27.9050 29.0924 0.7924 0.4079 0..4349 1.4746 1.3864 79.9976 

Sequence G 34.9024 0.9342 0.9503 39.2744 26.6547 27.3438 0.7815 0.4443 0.4504 1.3296 1.2035 76.9455 

Sequence H 33.1649 0.8963 0.9402 37.8752 27.7311 26.9436 0.7395 0.3706 0.3797 1.2958 1.3944 74.9981 

Sequence I 34.2645 0.8974 0.9528 39.2703 26.1668 25.9475 0.6932 0.3389 0.3425 0.9752 1.3012 76.4415 

 

 

 



 

for HEVC compressed WCE videos, but for ultrasound videos 

this is not the case.  The results for ultrasound videos are 

substantially different from those for WCE videos. According 

to authors’ understanding, the reason appears to be that 

ultrasound videos are different in terms of the capturing 

process. Ultrasound videos are produced through multiple 

scans, called sonograms, and the sound waves are used to create 

an image of an internal organ of the body. Hence, conventional 

image capturing processes, such as the CMOS camera in WCE, 

are not used in ultrasounds which makes the video not well 

represented / assessed by a quality metric mainly trained for 

natural videos.  

VI. FUTURE WORK 

The performance of VMAF showed very good results in 

terms of quality estimation for wireless capsule endoscopy 

videos but the same was not observed for ultrasound videos. 

This leaves room for improvement in VMAF’s performance for 

medical videos, specifically ultrasound videos. Based on the 

reasons mentioned in conclusion section, VMAF can be trained 

for a large dataset of ultrasound videos in order to improve its 

quality estimation.  

Furthermore, VMAF can be tested for other types of medical 

imagery, as mentioned in Section II of this paper. 
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