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Abstract

Objective: For small abdominal aortic aneurysms (AAAs), a regular follow-up examination is 

recommended every 12 months for AAAs of 30–39 mm and every six months for AAAs of 40–55 

mm. Follow-up diameters can determine if a patient follows the common growth model of the 

population. However, the rapid expansion of an AAA, often associated with higher rupture risk, 

may be overlooked even though it requires surgical intervention. Therefore, the prognosis of 

abdominal aortic aneurysm growth is clinically important for planning treatment. This study aims 

to build enhanced Bayesian inference methods to predict maximum aneurysm diameter.

Methods: 106 CT scans from 25 Korean AAA patients were retrospectively obtained. A two-step 

approach based on Bayesian calibration was used, and an exponential abdominal aortic aneurysm 

growth model (population-based) was specified according to each individual patient’s growth 

(patient-specific) and morphologic characteristics of the aneurysm sac (enhanced). The 

distribution estimates were obtained using a Markov Chain Monte Carlo (MCMC) sampler.
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Results: The follow-up diameters were predicted satisfactorily (i.e. the true follow-up diameter 

was in the 95% prediction interval) for 79% of the scans using the population-based growth 

model, and 83% of the scans using the patient-specific growth model. Among the evaluated 

geometric measurements, centerline tortuosity was a significant (p=0.0002) predictor of growth for 

AAAs with accelerated and stable expansion rates. Using the enhanced prediction model, 86% of 

follow-up scans were predicted satisfactorily. The average prediction errors of population-based, 

patient-specific, and enhanced models were ±2.67, ±2.61 and ±2.79 mm, respectively.

Conclusion: A computational framework using patient-oriented growth models provides useful 

tools for per-patient basis treatment and enables better prediction of AAA growth.
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1. INTRODUCTION

An Abdominal Aortic Aneurysm (AAA) is diagnosed by an enlargement of the abdominal 

aorta to 30 mm or more in diameter [1]. Rupture of the AAA, associated with over 80% 

mortality, may eventually be observed if no surgical intervention, either open surgery or 

Abdominal Endovascular Aneurysm Repair (EVAR) intervention is performed [2]. Decision-

making related to clinical management for AAA patients is complex, because the evaluation 

of the rupture risk can only be assessed by monitoring the AAA without any intervention, 

which has its own risk. There have been several papers [3]–[6], wherein the traditional 

guideline for clinical AAA management based on a single criterion has been challenged; 

alternatives have been proposed which take into account various factors such as growth rate 

[3][6], AAA volume [4], thrombus accumulation [8], asymmetry and tortuosity [8][9] for 

improved assessment of aneurysm development and rupture risk. Particularly, there is recent 

consensus that the growth rate is critical for AAA clinical management even for small 

diameter AAAs [11]. Lee et al. [12] summarized responses from vascular surgeons stating 

that “discovering new tests to predict [that] an AAA will be fast growing” should be a top 

research priority.

Motivated by recent studies, this study aims to develop a tool that detects patients who have 

fast growing AAAs and predicts the growth rates of their respective aneurysms during 

surveillance. There has been substantial heterogeneity of AAA growth rates among various 

studies; some studies reported that 11.4% [3] and 12% [13] of AAAs stop expanding, while 

others reported that AAA diameter size was associated with increases of growth rate [7]. 

The difficulty of AAA growth rate prediction was exacerbated by the high uncertainty of 

different diameter measurements so Gharahi et al. [5] suggested an alternative, semi-

automatic method of measuring the maximally inscribed spherical diameter, reducing 

uncertainty in measurements. Akkoyun et al. [14] then investigated the correlations among 

21 geometrical measurements of retrospectively obtained longitudinal CT scan images and 

concluded that “spherical diameter” could be the most accurate predictor representative of 

the growth curve.
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Even by minimizing the uncertainty of measurement, the variability of AAA expansion rates 

is still high [15]. It is unclear why some patients have AAAs with accelerated expansion 

rates, while others, with identical risk profiles, do not [16]. This makes prediction of the 

natural growth pattern difficult because aneurysm growth over time does not necessarily 

follow a common pattern [16][17]. Significant progress has been made toward patient-

specific AAA growth modeling to assess the rupture risk using biological tissue growth and 

remodeling (G&R) [18][19]. Zeinali-Davarani et al. presented patient-specific modeling of 

an AAA, which is able to trace alterations of the geometry [19]. In summary, these G&R 

models used finite element method (FEM) to simulate the exact mechanical state of an AAA 

at a given time but do not accommodate the uncertainty in their predictions [20].

There is emerging evidence that the geometrical properties of an AAA might provide more 

valuable information for predicting AAA growth [21]. Shum et al. [22] derived 28 

geometrical measurements from 76 CTA scans describing the size and shape of the 

aneurysm, and developed a model capable of discriminating aneurysms as ruptured and 

unruptured with an accuracy of 86.6%. Similarly, Parikh et al. [23] investigated geometrical 

indices derived from 75 electively and 75 emergently repaired AAA scans, and revealed the 

three most significant indices in the classification of an AAA (with an average accuracy of 

81.0%) using decision trees, a machine learning algorithm. Similarly, Lee et al. [21] applied 

a non-linear support vector regression (SVR) model to predicting patient-oriented growth 

with an additional biomarker, flow mediated dilation. These tools can be categorized under 

supervised machine learning, yielding discrete categorical output (e.g. ruptured vs 

unruptured), and provide single maximum likelihood estimates. In contrasts, the model in 

this study provides predictive distributions of the aneurysm growth with the associated 

uncertainty inherent in the distribution.

In this study, a two-step approach based on Bayesian calibration [24] was used and the 

aneurysm growth model was specified according to individual patient characteristics. The 

estimated distributions on samples were drawn from the specified model using Markov 

Chain Monte Carlo (MCMC) samplers [20]. This estimate is made practical by using 

automatic Bayesian inference on a user-defined probabilistic model, which sharpens the 

subjective prior belief in the probability of an event by incorporating experimental data [26]

[27]. MCMC is used frequently for Bayesian inference [27]–[29]. However, to the best of 

our knowledge it has not been used before in AAA diameter estimation. The unique 

computational advantage of this approach, which is; incorporating prior belief (i.e. a 

generalized model) with observations (i.e. the scans) results in the prediction of diameters 

with associated uncertainty at any time-point and in the capability of taking individual 

characteristics and other geometry into account.

To this end, an exponential growth model was built specifically on patient characteristics 

using 21 geometrical measurements derived from 106 Computed Tomography (CT) scan 

images. Thus, the prediction of a measurement at any time-point can be made, along with an 

associated uncertainty to provide a clinically helpful tool for surgical planning and patient 

management during the surveillance of abdominal aortic aneurysms.
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2. METHODS

2.1. CT Scan Data

We recently studied AAA geometric evolution using retrospective longitudinal CT images 

(Akkoyun et al., submitted). Specifically, 106 CT scans from 25 patients obtained from 

Seoul National University Hospital, South Korea, were used to construct 3D models of the 

aneurysms and calculate 21 different measurements describing the geometrical properties of 

the aneurysms. 3D medical imaging software, MIMICS (Materialise, Leuven, Belgium), was 

used to semi-automatically construct a 3D model of each aneurysm sac between the most 

inferior renal artery and iliac bifurcation region. Since the aneurysm sac has a complex and 

dynamic structure, a number of different measurements are required to reflect its complexity 

in different aspects and to properly observe the change over time. The list of all 

measurements and their definitions, which were introduced by Gharahi et al.[5], are 

summarized in Table 1. Volume measurements are denoted by VOLand the global maximum 

and minimum of local measurements are denoted by MAX and MIN, respectively.

Patients were monitored and scanned at various time intervals between 6 to 56 months with 

a median interval of 11 months. 81 of the 106 scans were used for diameter prediction, as 

the first scan of each patient (i.e. the baseline) is assumed to be known, and required, for the 

prediction of subsequent diameters. Therefore, one scan per patient (for a total of 25 scans) 

was excluded from the follow-up set, leaving 81. In addition to predicting the follow-up 

diameter at any arbitrary time, we also categorized the scans to time intervals of 6–18 and 

18–30 months as 1st and 2nd year, respectively, to be able to compare the performance of the 

prediction models with other studies presented in literature, which use yearly time 

categories. Retrospective growth data were recorded at the 1st year (10±4 months) in 68 

scans and at the 2nd year (20±3 months) in 8 scans. We did not categorize the remaining 5 

scans, recorded after 30 months (44±13 months).

2.2. Exponential AAA Growth Model

Previous studies demonstrated that aneurysm growth should be modeled in a non-linear 

fashion [4], [5]. In this study, we consider an AAA growth model using the maximum 

spherical diameter, in which the diameter D at time t is given by

D(t) = αeβt (1)

where α denotes the initial maximum diameter at t = 0 and β denotes the diameter growth 

rate. In the analytic solution approach, α and β are the parameters, each of which takes a 

constant value for a given data set.

2.3. Bayesian Framework of Model Calibrations

A Bayesian inference technique calibrates the growth model with clinical data and predicts 

future AAA growth for each patient. To test the prediction capability of AAA growth, the 

Quantity of Interest (QoI) is defined as the maximum spherical diameter expansion rate for 

per-patient and specific cases. That is, each time point that a CT scan obtained was 
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sequentially selected as a QoI, which enables us to determine a statistical model and 

investigate the associated uncertainties.

The scans were categorized into three classes: ‘over-estimated’, ‘under-estimated’ and 

‘within tolerance’, based on whether the true follow-up diameter was below, above, or 

within the 95% Prediction Interval (PI) of the estimate, respectively. The number of scans 

for which the respective follow-up scan falls ‘within tolerance’ of the prediction determines 

the accuracy performance of the model.

Each individual patient has a varying number of sequential measurements over differing 

time lengths. These sequence of measurements were partitioned into two subsets; a 

calibration (DC, i.e. training) and a validation (DV, i.e. test) data set, as proposed by 

Hawkins-Daarud et al. [30]. The calibration set was used to calibrate the model, whereas the 

validation set was used for validation of the calibrated model. Apart from the initial scans, 

all scans in the population were incrementally and sequentially employed in validation to 

demonstrate whether our model predictions were consistent with the maximum diameter 

measured experimentally. As an example, let us say we have a patient with six consecutive 

scans and want to predict the maximum diameter at the 4th scan. Then, the known data set is 

DC={t1,t2,t3} and the “true” diameter to be predicted is DV=t4, in other words, the DV is the 

ground truth for the QoI. The performance of the predictive model at each particular QoI 

was assessed independently, because an acceptable performance at a specific QoI does not 

necessarily imply reasonable performance for all possible QoI.

All model parameters are encapsulated in the vector θ = θ1, θ2, ⋯, θd ∈ Rd and this is treated 

as a vector of random variables θ:Ω Rd, where Ω denotes a suitable sample space. This 

vector is estimated numerically (using MCMC) thus calibrating the exponential AAA 

growth model, given in Eq. (1), against a subset of the experimental data.

2.3.1. Calibration model—We use a Bayesian approach and follow the notation and 

terminology introduced by Gelman et al. [31]. The set of calibration parameters is denoted 

by the aforementioned θ, and the observed data are denoted by y = y1, y2, …, yn .
Furthermore, the marginal and conditional probability of the density function (pdf) were 

denoted by p(∙) and p(∙|∙), respectively. In our AAA growth model, θ corresponds to the 

model parameters in Eq. (1) (i.e.,θ1 = α and θ2= β) and y corresponds to the maximum 

spherical diameter at the time points in the calibration data set SC. The observable outputs in 

the prediction model are related to the input parameters by

y = D(t; θ, e) (2)

where D and e respectively correspond to the maximum spherical diameter and the 

measurement error (the biological variability). The relationship between the maximum 

spherical diameters (observable outputs) and model inputs at time t can be formulated as

y = D(t; θ) + δ(t) + ε (3)
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where ε corresponds to error, the diameter D(. ;.) can be viewed as a function of t and 

θ(α,β), and δ(t) corresponds to a discrepancy function. However, we ignored systematic 

model discrepancies explicitly by following the methodologies referred by Kennedy et al.

[32], Higdon et al. [33] and Bayarri et al.[34]. As a result, a calibration model related to 

AAA growth outputs was given by;

y = D(t; θ) + ε . (4)

2.3.2. Bayesian inference and prediction

Statistical Model: The joint probability density function (pdf) denoted by PJOINT(θ,y) can 

be defined as the product of the prior distribution of θ, denoted by PPRIOR(θ) and the 

sampling distribution denoted by PSAMPLE(y|θ) as follows;

PJOINT(θ, y) = PPRIOR(θ)PSAMPLE(y θ) . (5)

The conditional probability assigned to the parameters, i.e. the posterior density, can be 

obtained by Bayes’ theorem

PPOST(θ y) = PPRIOR(θ)PSAMPLE(y ∨ θ)
PPRIOR

PRED (y)
, (6)

where PPRIOR
PRED (y) denotes the marginal distribution, which is averaging the likelihood over 

all possible parameter values with respect to the prior density.

PPRIOR
PRED (y) = ∫ PPRIOR(θ)PSAMPLE(y θ)dθ . (7)

The density of PSAMPLE(y |θ), a function of θ rather than y, is the likelihood function and 

interpreted as how likely a parameter value is, given a particular outcome. The subjective 

beliefs in the values of the parameters before the measurement are denoted by PPRIOR(θ) .
Thus, a posterior distribution denoted by PPOST (θ |y) can be considered as an enhanced 

degree of belief, which is obtained with incorporation of experimental data.

Selection of the Prior Distribution: The posterior distribution of the population serves as 

the prior for both growth prediction models: Patient-Oriented Growth Prediction Model 

(POGPM) and Generalized Linear Model (GLM) enhanced POGPM. The methodology to 

find the Posterior Distribution of Population (PDoP) for a spherical diameter, which is used 

in POGPM, is explained here. The same approach was also followed to estimate the 

parameters for other significant geometrical parameters, which is used in GLM enhanced 

POGPM combined with a spherical diameter measurement.

The prior distributions of α and β are assumed to be normally distributed random variables 

with parameters (mean and deviation). The prior of α, the initial diameter at time t=0, was 

set at mean 30 mm because a AAA is clinically defined as an enlargement of the abdominal 
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aorta to >3.0 cm [1] and deviation 2 mm because the absolute intra-observer difference of 

the maximum diameter was 2 mm [35]. The prior of β (the growth rate) is set at mean 0.004 

and variance 0.001 based on statistical characteristics of aneurysm growth [14]. Although 

the base distributions used in the common (population) model was Gaussian, Student’s t-test 

distribution was used in the patient specific model because the number of observations for a 

single patient is too small to support a Gaussian. Student’s t-distribution, on the other hand, 

can be applied as the POGPM since it is designed to be less concentrated around its peak 

and has heavier tails as the degree of freedom decreases, thus better capturing the level of 

uncertainty given less evidence, especially with respect to extreme observations. The more 

evidence we have per patient, the more this distribution will approximate a Gaussian.

The pre-assumed values for the mean of the prior distribution are updated using the 

Maximum A Posteriori (MAP) method based on the aforementioned data. A version of the 

Expectation-Maximization algorithm is used to find the most likely parameters; first, an 

initial growth curve, a function of α and β in Eq. (1), is chosen and patients’ scans are time-

shifted based on the measurements at the first observed scans. Then, the MAP estimate is 

made to update the predictors of the growth curve and to find a better fit function. The 

shifting and MAP estimation steps are iteratively repeated until the likelihood converges (i.e. 

total amount of error no longer decreases). As a result, the best fit of the growth curve, 

namely the “master curve”, is found.

Selection of Likelihood: The likelihood function for the parameter θ, given data y, 

determines how the biological AAA growth model and experimental data y inform the 

posterior distribution. The measurement error of the maximum diameter at each time point 

was assumed to be independent and the processes determining the true diameter are 

deterministic. Furthermore, the experimental noise is assumed to be normally distributed 

about 0 (i.e. unbiased) with variance σD (t), which denotes σD at time t.

Under these assumptions, the likelihood is formulated by

PSAMPLE(y θ) = ∏iϵSC
1

2πσV
2 ti

exp − yi − D ti; θ 2

2σV
2 ti

. (10)

Sampling of Posterior Distribution: Obtaining the posterior distribution is analytically 

possible only when certain combinations of prior distribution and likelihood have been met; 

in general this is not the case. A numerical approach, using samples drawn from the 

posterior distribution PPOST(θ|y) via a discrete approximation is often required for this 

purpose. Hawkins-Daarud et al. [30] and Gelman et al. [31] proposed a solution to draw 

samples from the posterior distribution using a regular grid in the parameter space. However, 

this has a significant computational cost, especially for complex models having many 

inferred parameters. Instead, we applied a well-known method, Markov Chain Monte Carlo 

(MCMC) sampling, for posterior distribution in this study.

Probabilistic programming is an approach that uses automatic Bayesian inference on a user-

defined probabilistic model with the help of MCMC sampling, and is therefore used to 
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perform inference and parameter estimation on arbitrarily complex probabilistic graphical 

models. The MCMC algorithm used is the No-U-Turn Sampler (NUTS) algorithm [20]. 

PyMC3 [36], an open source probabilistic programming framework written in Python, was 

used in POGPM and GLM enhanced POGPM. PyMC3 was preferred as it is a commonly 

used framework, with good community support, featuring an optimized inference engine 

based on likelihood gradient convergence, as well as a number of common distributions, 

such as Beta, Gamma, Binomial and Categorical, where the values of the parameters 

determine the location, shape or scale of the randomly generated numbers depending on the 

specific parameterization of the distribution.

2.4. Patient-oriented Growth Prediction Model (POGPM)

The Bayesian method is applied to predicting patient-oriented growth, as summarized in Fig. 

1. In this study, a two-step approach based on Bayesian calibration [24] was used and the 

aneurysm growth model was specified according to individual patient characteristics.

The parameters of PDoP were estimated based on the spherical diameter using the whole 

population. The POGPM is specified, in contrast, based on each patient individually, as each 

patient has varying characteristics and growth rate. The posterior distribution from the 

population model (i.e. common for the subset of Korean patients) was set and fed to 

POGPM as the prior for each patient’s specific model by using the Bayesian two-step model 

[24]. Once a patient specific model is built, the prediction of a measurement at any future 

time-point can be made, along with an estimate of the uncertainty associated with the 

prediction.

2.5. Generalized Linear Model (GLM) enhanced POGPM

Although, the POGPM can accurately predict follow-up diameter in the majority of cases, in 

some scans, sudden increases or decreases were observed. The commonalities between these 

scans were analyzed. First, all the scans were categorized based on their baseline spherical 

diameter into three classes, namely ‘over-estimated’, ‘under-estimated’ and ‘within 

tolerance’. Then, all geometrical measurements belonging to the three groups were analyzed 

separately using pairwise t-tests to reveal if there was a significant predictor for sudden 

diameter growth. A p-value less than 0.05 was considered statistically significant.

In addition to spherical diameter, the study was extended using the GLM with Bayesian 

inference to take such significant features into account. Each pair of geometrical properties 

was analyzed in terms of their correlations and if two features were highly correlated (corr > 

0.9), one of the two was dropped, because features with high correlation have almost the 

same effect on the dependent variable. For example, perimeter is strongly correlated with 

diameter (corr=0.93) and was removed from the feature set. Furthermore, the optimal model 

was built with only statistically significant variables (p<0.05). Different features were 

removed and p-values in each case were measured in order to decide whether to keep a 

feature or not. Thus, additional candidate geometrical measurements, denoted by CAN, were 

selected based on p-values using Backward Elimination.
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Growtℎ X1MAXDIAS + XkCAN, (11a)

where CAN is an additional candidate geometrical measurement. The growth is a function of 

the posterior distribution of both spherical diameter (MAXDIA_S) and CAN while Xk are the 

coefficients. The PDoP for CAN was found by following the same approach, as already 

explained, to find PDoP for MAXDIA_S. The parameters of the population (mean and 

standard deviation), unknown parameters in Eq. (11), were then found using the GLM 

model, and were set as priors. These PDoPs, which were already specified for MAXDIA_S 

and CAN according to observations made on the CT scans belonging to a particular patient, 

were used to subsequently predict aneurysm follow-up diameter based on time.

3. RESULTS

3.1. Posterior distribution of population (PDoP)

The Bayesian inference explained in the previous section was used to estimate the 

parameters of PDoP for 25 AAA patients using the exponential function. This will serve as 

prior to a distribution of predictors.

The estimated parameters of population posterior distribution using spherical diameter are 

demonstrated in Fig. 2. There are two parameters being estimated: the baseline diameter α 
(mean=32.06 mm, standard deviation=0.55 mm) and exponent of the growth rate β 
(mean=0.0043, standard deviation=0.0002). The parameters of the growth prediction model, 

α and β, are specified based on this fit.

The characteristics of the population growth were analyzed using different distributions such 

as z-score and Student’s t-test. The posterior distributions of the stochastic values were 

virtually the same for both Gaussian and t-distributions because the number of samples 

(n=106) is sufficient that the t-distribution (alpha ~ N(31.9, 0.54), beta ~ N(0.0043, 0.0002)) 

approximates the normal distribution (alpha ~ N(32.06, 0.55), beta ~ N(0.0043,0.0002)). 

Fig. 3 represents the normal distribution of the samples drawn from the specified model. The 

average and standard deviation of the follow-up diameter for the population is 43.41 mm and 

7.05 mm.

The PDoP provides a growth model of two predictor variables; α and β were normally 

distributed random variables with parameters (α ∼ ƞ32.063, 0.5498); β∼ ƞ(0.0043,0.0002 )) 

respectively. Based on the mean of posterior distribution, aneurysm growth for the next 

diameter at any time can be predicted by Eq. (11) and Eq. (12):

T = ln Dbaseline ÷ 32 . 063 ÷ 0 . 0043, (11b)

Dfollow − up = 32 . 063 * e(0.0043 * (t + T )), (12)

where Dbaseline describes the diameter at the baseline scan, T represents how many months 

have passed once the aneurysm was observed and t determines the period of time in months 

for the next prediction.
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Figure 4 shows that the follow-up diameter was predicted within 2.7 mm error in 64 of 81 

scans (79%) using the PDoP based on a 95% prediction interval. However, 17 of 81 scans 

(21%) did not follow the common properties of the population. The number of CT scans for 

which the growth rates are over- and under-estimated are 4/81 (5%) and 13/81 (16%) 

respectively.

3.2. Patient-oriented prediction of AAA growth

An individual POGPM was specified according to the patient specific growth characteristics. 

Figure 5 shows examples of a POGPM constructed for Patient 11 and Patient 23, using the 

consecutive scans of each as incremental observations, and the posterior distribution of the 

parameters for the whole population (i.e. using the PDoP) as a prior, as per the workflow of 

POGPM (Fig. 1).

The mean, standard deviation and the degree of freedom of the posterior distribution 

(estimated parameters of student-t distribution) at the 77th month were 43.72 mm, 0.47 mm 

and 1.81 , respectively. Similarly, all these parameters of the distribution were estimated 

from the 4th scan observed, and both blue and orange lines were drawn in order to represent 

the upper and lower limit of the next prediction with respect to time. In this example, the 

observed diameter of Patient 11 at the 4th scan is 43.34 mm. The predicted diameters were 

between 43.05 and 44.39 mm with 0.68 confidence (p=0.32) and 41.50 and 45.94 mm with 

0.95 confidence (p=0.05). The figure also shows that the last CT scan of the patient was 

outside of the prediction range with 0.68 confidence. However, the growth model would be 

updated using the observation for the 4th and 5th CT scans and the prediction range would 

be changed accordingly. This is an example of successful model construction according to 

the patients first 3 observed scans, because the observed diameter was found inside the limit 

of prediction range with both 0.68 and 0.95 confidence levels.

The growth model using diameter provided different results for posterior distributions 

specified by the characteristics of patient and population as Table 3 shows. The percentages 

of observed scans, accurately modeled in population and patient oriented growth, are 

respectively 79% (n=64) and 83% (n=67) specified with .95 confidences (p=0.05). The 

average errors were ±2.67 mm and ±2.61 mm respectively. Furthermore, 60 of 68 (88%) and 

6 of 8 (75%) of scans were accurately predicted by POGPM in the 1st and 2nd years, 

respectively.

3.3. Enhanced prediction of AAA growth with morphological characteristics

The aneurysm growth could not be successfully modeled for some scans using only 

diameter. For example, the diameter of Patient 23 at the 3rd scan, was predicted between 

39.13 and 44.1 mm with prediction intervals of 0.95 as demonstrated by Fig. 5. However, the 

observed diameter was 45.02 mm. Thus, the other geometric measurements were considered 

to help explain such unexpected change in the growth and to decrease the number of such 

inaccurate observations.

The common properties of the baseline scans were analyzed by taking all other geometrical 

measurements into account. The means and standard deviations of each category (under-

estimated, over-estimated and within tolerance scans) are summarized in Table 2. The inter-
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variance between categories was analyzed using the t-test (two tailed, equal variance) and 

the tortuosity of centerline was found significant (p=0.0002) for the categories of under-

estimated and within tolerance scans. In the GLM enhanced POGPM for Eq. 11, PAR is 

replaced by the parameter, TORT_CL.

Therefore, aneurysm growth was also modeled by considering the tortuosity of the 

centerline, in addition to diameter, using GLM enhanced POGPM. 86% (n=70) of observed 

scans were accurately modeled in GLM enhanced POGPM with .95 confidence intervals 

(p=0.05), and the average error was ±2.79 mm as shown in Table 3. Furthermore, 93% and 

75% of scans were accurately predicted by GLM enhanced POGPM in the 1st and 2nd years, 

respectively. The estimated parameters of posterior normal distribution of predictors and 

coefficients are as follows; 
αDIAS
η(32.063, 0.549), βDIAS η(0.0043, 0.0002), αTORTCL η(1.012, 0.0047), βTORTCL
η(0.0013, 0.00005),
θ1 η(1.023, 0.039), θ2 η( − 0.313, 1.532), σ |η(0.0, 1.0) | , μ = θ1 * MAXDIAS + θ2 * TORTCL,

and Y η μ, σ2 .

4. DISCUSSION

In this study we developed an enhanced growth prediction model applicable to AAA growth, 

using Bayesian inference. An exponential growth model, commonly demonstrated in 

previous studies, was selected and the parameters for the posterior distributions were 

estimated from observations (scans). We used 106 CT scans from a 25 patient dataset to 

construct PDoP and further predicts patient-specific AAA growth. Thus, the prediction of a 

measurement at any time-point can be made, along with an evaluation of the associated 

uncertainty.

Follow-up diameters can be determined if a patient follows the common growth model of the 

population. However, this is not true for all scans belonging to the same patient. For 

example, 23% (n=3) of previously underestimated scans (n=13), were accurately modeled 

within tolerance, if the POGPM was specified according to individual characteristics, while 

their errors in millimeters were almost the same. The characteristic of an individual are 

important aspects for AAA patient management, because, for example, a slow growing AAA 

would not require frequent monitoring, whereas the opposite is true for a fast growing AAA. 

Therefore, Lee et al. [21] applied machine learning techniques for accurate prediction of 

AAA growth in an individual.

A patient-specific modeling of an AAA growth is an important step in terms of 

individualized diagnosis and clinical treatment. Zeinali-Davarani et al. used 3D geometry 

constructed from medical images and developed a computational framework for modeling 

AAA G&R [19]. In most studies of AAA biomechanics, the influence of the surrounding 

tissues was ignored [18]. This study, therefore, focused on further improvement of the G&R 

computational framework account for mechanical interaction between AAA and spine[18]. 

In addition to the prediction of an AAA, Zhang et al. also applied Bayesian calibration 
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method to G&R computational model to quantify the associated uncertainty in the prediction 

[37].

One of the main strengths of this study is to have a relatively large number of scans 

analyzed. Although there exist previous papers using a physics-based computational 

modeling approaches for predicting AAA growth [18][19] and a study associated with 

uncertainty [37], the number of real observations was relatively small and no such 

assessment of the prediction model accuracy was available in their comparisons. Therefore, 

the results of our proposed solution could not be directly compared with these results, even 

though their approaches have similar advantages as Table 4, the state of the art comparison, 

shows.

The morphology of aneurysms has also been found to play an important role, affecting the 

rate of growth and risk of rupture [8][9][38][39]. Among the total number of features 

(n=28); sac length, sac height, volume and surface area were found to be the highest indices 

from the feature selection algorithm, and the risk assessment of an AAA should be based on 

the accurate quantification of aneurysm sac and shape [22]. Similarly, Parikh et al. [23] 

implemented a decision tree algorithm to find the three most significant indices: AAA 

centerline length, L2-norm of Gaussian curvature and AAA wall surface area. These studies 

developed a model using a machine learning algorithm that is capable of discriminating 

whether an AAA requires elective or emergent intervention with high accuracy. In this study, 

the common properties of AAA scans with sudden aneurysm growth were also analyzed to 

see if there were significant (p ≤ 0.05) predictors of sudden growth. The tortuosity of 

centerline was found to be significant (p=0.0002) for the categories of under-estimated and 

within tolerance scans, which might be a main factor behind such sudden growth. Our study 

corroborates the findings [23][24], which shows the importance of the aneurysm centerline 

in evolution of an AAA. Additionally, we developed a model based on probabilistic 

programming and predicted the growth rate at any time for better management of an AAA 

during the surveillance period rather than a classification.

Generalized Linear Model (GLM) enhanced POGPM was also used to take the tortuosity of 

centerline into account in the growth model and decrease the number of incorrect predictions 

due to cases of sudden growth. The percentage of observed scans that the diameter growth 

was over- and under-estimated were 5% (n=4) and 9% (n=7) respectively in GLM enhanced 

POGPM. 3 of 7 under-estimated scans were recorded at distant periods of time at 32, 54 and 

56 months, which is not clinically routine during the surveillance period because the 

rescreening interval of almost more than 3 years is too long. The accuracy would be 

increased if these scans were discarded, but nevertheless chose to keep them. 30% (n=6) of 

previously overestimated scans (n=13) using POGPM were accurately modeled within 

tolerance, whereas there is no performance improvement observed in the under-estimated 

scans. Additionally, the average error (in millimeters) in GLM enhanced POGPM was 

almost the same as the others.

Time interval between consecutive scans affects the accuracy of the growth prediction 

model. For example, the aforementioned Lee et al. predicted the individual’s AAA diameter 

in 85% and 71% of patients at 12 and 24 months follow-up, respectively [12]. Time interval 
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between consecutive scans, from 6 to 56 months, is not consistent in this study. Therefore, 

we categorized the scans based on the time intervals, namely, 1st and 2nd year. 88% and 

93% of the scans are predicted using POGPM and GLM enhanced POGPM, respectively, 

within the 1st year (n=68). Both prediction models thus offer reasonable accuracy. However, 

their accuracy becomes 75% if the scans are recorded at 2nd year (n=8).

An alternative approach to make a diameter prediction for future AAA growth in an 

individual patient is to do a classification via a supervised machine learning technique. 

Shum et al. [22] developed a model on a retrospective study of 10 ruptured and 66 

unruptured aneurysms using a decision tree algorithm and 87% of dataset were correctly 

classified. Similarly, Parikh et al. built a decision tree based on 150 AAA patients (75 

electives and 75 emergent repaired) and demonstrated the classification accuracy of 

81%[23]. They derived similar number of geometrical measurements from 3D constructed 

of an AAA (n=25 and n=31) as we have (n=21) and provide preferable results. The 

weakness of these approaches is, however, that they output a binary classification predicting 

the future state of the AAA as a categorical value rather than a numerical value.

UK Small Aneurysm Trial (UKSAT) [40] showed that the probability of exceeding 55 mm 

for small aneurysms is less than 1%, and annual, or less frequent, surveillance intervals are 

safe for all AAAs less than 45 mm. In other studies, the rupture risk for an AAA of 4–4.9 

cm-diameter has been estimated to be 0.6–2.1% per year [41]. We also found that aneurysms 

of 4.5 and 4.9 cm are estimated to reach surgical size in 3 and 2 years, respectively 

(CI=0.95). This result was supported by the ADAM study, in which 27% of 4–5.5 cm-AAA 

randomized to the surveillance group had undergone surgical exclusion at 2 years’ follow-up 

[41]. Similarly, AAAs of 4.5–4.9 cm-diameter are expected to reach surgical size in 2–3 

years [42].

To avoid the computational inefficiency of a random walk and the requirement to tune the 

proposal distribution, especially given the high-dimensional target distribution in question, 

we decided on the Hamiltonian Monte Carlo (HMC) algorithm (or Hybrid Monte Carlo)

[20], which is a Markov Chain Monte Carlo method for obtaining a sequence of random 

samples. We have not reported the complexity of the proposed solution to classify 

algorithms with respect to their run time or memory space requirements using Big-O 

notation. The main reason is that the algorithm does not take a very long time and requires a 

large memory requirement. Additionally, the HMC algorithm is a stochastic algorithm which 

is run with a pre-determined burn-in and subsequent fixed number of iterations [20].

A rapid expansion of AAA, often associated with higher rupture risk, might be observed. 

This is clinically important for the prognosis of aneurysm growth during surveillance 

because the required immediate intervention based on the criteria defined by international 

guidelines might be overlooked. Therefore, the aneurysm growth model was specified 

according to individual patient characteristics. Additionally, using other geometrical 

measurements enhanced the exponential growth model. A tool with the improved potential 

of predicting AAA expansion or assessment of rupture risk, which is important in terms of 

elective surgical intervention and patient management, was developed.
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LIMITATIONS

Although this study has been able to provide a tool with the improved potential of predicting 

AAA expansion in order to help assessment of rupture risk, it has some limitations. First, 

this is a retrospective study, in which 106 CT scan images from 25 Korean AAA patients 

were obtained from a single center. The prediction model was specified based on the 

characteristics of a subset of a Korean population. However, it is known that the average 

annual growth rates based on baseline diameter have large variation [5], because various 

populations were examined [15]. Therefore, a new set of measurements in a large 

multicenter study can enhance the prediction capability of the model and contribute to the 

current method of surveillance of patients with small AAAs. The proposed solution would 

be applicable to any population for surgical planning and patient management. In addition to 

the morphology of an aneurysm, the individual genotypes [43] and environmental and 

demographic features of patients such as gender, a history of tobacco use, comorbidities and 

medications, which are important in aneurysm growth rate [7][43][44] but were out of the 

scope of this study. Furthermore, since the intra- and inter-observer variability in CT 

measurements is usually ± 5mm, recognizing an aneurysm with a growth rate of 2 mm/year 

takes 3 years [3]. Even given these limitations, this study provides a clinically helpful tool 

for the management of AAA development by considering patient specific characteristics and 

various geometrical measurements, and offers an acceptable growth model for the 

development of an improved surveillance program, even for AAAs with sudden growth.

CONCLUSIONS

The proposed probabilistic growth model, which enhances the prediction of AAA expansion 

at any future time-point, can have important implications in elective surgical planning and 

patient management during surveillance. This study highlights the utility of such a 

prediction model built on patient individual characteristics and various geometrical 

measurements as a predictor for AAA growth, and the value of probabilistic programming 

techniques in the new era of precision medicine.
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Figure 1. 
The work-flow diagrams for POGPM (top) and GLM enhanced POGPM (bottom).
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Figure 2. 
The frequencies of estimated parameters for the PDoP growth model (α and β) and 

parameter values from drawn samples
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Figure 3. 
The distribution of observed scans (above) and the posterior distribution of the drawn 

samples for the Korean population (below)

Akkoyun et al. Page 20

Comput Biol Med. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The observed scans and aneurysm growth model based on the estimated parameters of PDoP 

and time interval between consecutive scans with 0.68 and 0.95 prediction interval. The 

aligned time is the shared time axis for all the patients. Since the AAA stages of the patients 

at the time of first scan were not the same, the time of the scan must be shifted in the shared 

time axis. The follow-up diameters of the 81 CT scans from 25 patients are marked on the 

plot with dots, where each color indicates an individual patient. Since the first scan of each 

patient was known, only follow-up scans (81 of 106 scans) that were QoIs in prediction, are 

presented in the graph.
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Figure 5. 
An example of the demonstration of the prediction capability of a POGPM at the 77th month 

(4th observed scans of patient with id 11) and at the 59th month (3rd observed scans of 

patient with id 23) with prediction intervals of 0.68 and 0.95. The time was aligned 

according to population growth curve. All previously obtained measurements for a patient 

were used for predicting the measurement at the next scan.
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Table 1

The definitions of geometrical measurements

Measurement Description

MAXDIA_S the maximum inscribed spherical diameter within an AAA in mm

MAXDIA_A, MAXDIA_O the maximum axial and orthogonal diameter for the entire AAA in mm

MAXPER_A,MAXPER_O the maximum perimeter for the entire AAA on axial and orthogonal planes in mm

DIAPER_A, DIAPER_O the perimeter on axial and orthogonal planes at the maximum spherical diameter in mm

VOLAAA the total volume of the aneurysm in mm3

VOLILT the total volume of the thrombus in mm3

VOLLUMEN the total volume of the lumen in mm3

MINDIA_A, MINDIA_O the minimum diameter throughout the AAA on axial and orthogonal planes in mm

MAXECC_A, MAXECC_O the maximum eccentricity throughout the AAA on axial and orthogonal planes

DIAECC_A, DIAECC_O the eccentricity on axial and orthogonal planes at the maximum spherical diameter

MAXILT the maximum thrombus thickness for the entire AAA in mm

AILT the AAA surface fraction of area covered by ILT content

TORT_CL the ratio of the total centerline length to the length of the line joining the first and last point
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Table 2

The mean and standard deviation of each category, and their paired t-test results.

AILT MAXILT VOLLUMEN MAXECC_O MINDIA_O TORT_CL

Under-estimated Scans (U) n=10
mean 0.35 13.04 62019.15 1.40 17.92 1.19

sd 0.22 4.00 16077.36 0.27 4.06 0.12

Over-estimated Scans (O) n=4
mean 0.26 10.50 59352.61 1.24 19.58 1.12

sd 0.22 6.41 9093.67 0.04 2.35 0.05

Within Tolerance Scans (T) n=67
mean 0.30 13.92 61669.42 1.34 19.14 1.10

sd 0.17 6.86 16930.94 0.23 2.96 0.06

T-Test Between Categories (p-values)
U-T 0.3747 0.6952 0.9513 0.4247 0.2511 0.0002

T-O 0.6755 0.3357 0.7879 0.4112 0.7743 0.5114
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Table 3.

The percentage of scans accurately modeled using PDoP, the POGPM and GLM enhanced POGPM

Underestimated Scans Overestimated Scans Within
Tolerance
Scans

Error in mm

PDoP 16% (n=13) 5% (n=4) 79% (n=64) 2.67

POGPM 12% (n=10) 5% (n=4) 83% (n=67) 2.61

GLM enhanced POGPM 9% (n=7) 5% (n=4) 86% (n=70) 2.79
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Table 4.

The state of the art comparison

Method Motivation Approach Methods Datasets Uncertainty Accuracy

Proposed model 
(POGPM)

prediction of future 
AAA growth

Two-stage 
Bayesian 

calibration

Probabilistic 
programming 106 CT scans associated

83% of scans were 
predicted in 95% CI

Proposed model 
(GLM 

enhanced 
POGPM)

prediction of future 
AAA growth

Two-stage 
Bayesian 

calibration

Probabilistic 
programming 106 CT scans associated 86% of scans were 

predicted in 95% CI

Farsad et al. 
(2015) [18]

trace to alteration of 
future AAA shape G&R model Finite Element 

Analysis
a few cases for 
demonstration not capable

success 
demonstration on a 

few cases

Zeinali-
Davarani et al. 

(2012) [19]

trace to alteration of 
future AAA shape G&R model Finite Element 

Analysis
a few cases for 
demonstration not capable

success 
demonstration on a 

few cases

Zhang et al. 
(2019) [37]

trace to alteration of 
future AAA shape

Bayesian 
calibration 
and G&R 

model

Finite Element 
Analysis

a few cases for 
demonstration associated

success 
demonstration on a 

few cases

Lee et al. 
(2018) [21]

prediction of future 
AAA growth

Machine 
learning

Non-linear 
Kernel support 

vector regression
94 patients not capable 85% and 71% at 12 

and 24 months

Shum et al. 
(2011) [22]

Classification 
(ruptured vs 
unruptured)

Machine 
learning

J48 decision tree 
algorithm 76 AAA patients not capable

classification 
accuracy of 87%

Parikh et al. 
(2018) [23]

Classification 
(elective vs 

emergent AAA 
repair)

Machine 
learning

C5.0 decision 
tree 150 AAA patients not capable classification 

accuracy of 81%
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