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Abstract

In interventional cardiology (IC) the radiation dose variation is very sig-

nificant, and its estimation has been difficult due to the complexity of the

treatments. In order to tackle this problem, the aim of this study was to

identify the most important demographic and clinical features to estimate

Kerma-Area Product (KAP) radiation dose in coronary angiographies (CA)

and percutaneous coronary interventions (PCI). The study was retrospective

using clinical patient data from 838 CA and PCI procedures. A total of 59

features were extracted from the patient data and 9 different filter-based fea-

ture selection methods were used to select the most informative features in

terms of the KAP radiation dose from the treatments. The selected features

were then used in a support vector regression (SVR) model to evaluate their
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performance in estimating the radiation dose. The ten highest-ranking fea-

tures were: 1) FN1AC (CA), 2) FN2BA (PCI), 3) weight, 4) post-stenosis

0%, 5) multi-vessel disease, 6) number of procedures 3, 7) pre-stenosis 100%,

8) American Heart Association (AHA) score C, 9) pre-stenosis 85% and 10)

gender. The performance of the SVR model increased (mean squared error

≈ 450) with the number of features approximately up to 30 features. The

identification of the most informative features for CA and PCI KAP is an

important step in determining suitable complexity models for clinical prac-

tice. The highest-ranking features can be used as individual predictors of IC

procedure KAP or can be incorporated into combined complexity score or

different estimation models in the future.

Keywords: machine learning, feature selection, radiation dose, coronary

angiography, percutaneous coronary intervention
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Introduction

Angiographic imaging is a traditional and important part of radiation

usage in medicine. In interventional cardiology (IC), angiographic imaging

enables many life-saving and minimally invasive diagnostic and therapeu-

tic procedures, and therefore, its usage has been growing fast and steadily

over the recent years (Kiviniemi et al., 2016; Blackledge and Squire, 2009;

Fokkema et al., 2013). In addition to the obvious positive sides of the trend,

there have also been concerns over the radiation dose levels in patients and

staff members, which have potentially serious risks on both individual and

population levels (ICRP, 2013). In Finland roughly 29,000 coronary an-

giographies (CA) and 13,000 percutaneous coronary interventions (PCI) are

conducted annually with the average Kerma-Area Product (KAP) dose levels

being around 22 and 64 Gy·cm2 (Järvinen et al., 2018), respectively. On a

wider scale, approximately 1.8 million CA and 0.9 million PCI procedures

were performed in Europe in 2015 according to the European Association of

Percutaneous Cardiovascular Interventions (EAPCI) registry (Barbato et al.,

2017).

The level of radiation exposure is traditionally monitored using diagnostic

reference levels (DRLs) (ICRP, 2017), which are indicators for the typical

dose levels for radiologic procedures. However, the application of DRLs in

IC is somewhat challenging, because multiple factors affect the patient KAP

dose significantly. Therefore, the utilisation of an estimate for procedure

complexity to predict interventional use of radiation has been proposed by

the International Commission on Radiological Protection (ICRP) (ICRP,

2017). With accurate prediction, patients at risk of high radiation dose
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can be identified and their dose can be better optimised. However, the set

of features that should be combined into such estimate remains an open

question. In 2001 Padovani et al. (2001) and in 2005 Peterzol et al. (2005)

published their pioneering works on the topic, but the only recent publication

on features that predict high radiation dose is by Crowhurst et al. (2019) who

utilised a more conventional methodology.

Elsewhere in IC, various difficulty or risk scores have been in use for a long

time. For example, various scores are used to predict coronary disease risk

or procedure outcome. These include American Heart Association/American

College of Cardiology (AHA/ACC) lesion complexity (Task Force on Assess-

ment of Diagnostic and Therapeutic Cardiovascular Procedures, 1988; Ellis

et al., 1988, 1990) (aka AHA score), SYNTAX coronary disease complex-

ity score (Kappetein et al., 2006) and European HeartScore for risk predic-

tion (Conroy et al., 2003), but none of these parameters focus specifically

on the use of radiation. As contemporary practice is to begin the procedure

with a diagnostic CA and, if needed, to directly continue with a therapeutic

PCI, these scores can be considered to relate to both procedures.

In recent studies (Siiskonen et al., 2018; Järvinen et al., 2019) the ra-

diation dose levels of various IC procedures have been reported. Based on

the results, the variation in PCI doses between different countries and hos-

pitals as well as within hospitals makes the interpretation and application

of the DRLs relatively complicated. In addition, AHA/ACC score has only

modest association with the induced radiation dose, which suggests that it

is not a sufficient measure of PCI complexity in terms of KAP radiation

dose (Järvinen et al., 2019).
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To address the need for a reliable indicator for contemporary IC procedure

complexity, this study utilises multiple filter-based feature selection methods

to identify the most informative patient demographic and clinical features

for estimating the KAP radiation dose in CA and PCI procedures. Features

related to performing cardiologist and use of the angiographic system were

not included since these were not available in the dataset. The features cho-

sen by the feature selection methods were then used in a supervised machine

learning model to evaluate their performance in estimating the induced radi-

ation dose. Beyond the benefits to scientific work on procedure complexity,

the results of this study can be utilised to establish more accurate difficulty

level-based DRLs and personalised dosimetry measures for patients at risk

of high dose.

Methods

Data collection

Anonymised patient data from CA and PCI procedures were collected ret-

rospectively from the electronic dose records (DoseWatch, GEMS, Milwau-

kee, USA), PCI procedure registry (BCB, Turku, Finland) and electronic

health records (Uranus, CGI, Montreal, Canada) at the Turku University

Hospital, Finland. The data collection timeframe was two years from Jan-

uary 2016 to December 2017. The only patient inclusion criterion was the

availability of information on both dose records and PCI procedure registry

for each CA or PCI. The dose records collect IC procedure data automatically

from the DICOM-file headers and image data whereas in PCI registry some

of the data are manually entered by the practising cardiologist. Ethical per-

5



mission for the usage of the patient data was received (T72/2016) from the

Ethics Committee of Hospital District of Southwest Finland and the request

for patient consent was waived due to the observational and anonymised na-

ture of the study. A total of 838 procedures were included in the study of

which 433 were CA and 405 were PCI. All the IC procedures were performed

using the same angiography system (Artis Zee Ceiling, Siemens Healthineers,

Erlangen, Germany) in the hospital.

Feature types

The collected data included features relevant to patient demographics,

disease status and the conducted angiographic procedure. Features that oc-

curred in less than 1% of the procedures were discarded to avoid misinterpre-

tation of their importance. In total, 59 features were included in the analysis.

Of the included features, 12 were considered PCI specific and 47 related to

both CA and PCI. The features were not separated based on the procedure

(i.e., CA or PCI) and calculations were thus performed with all of them. In

order to avoid making a future complexity model overly complicated, the

number of subgroups in the data was kept to as low as reasonably possible.

To describe radiation dose to patient, KAP was chosen for its general applica-

tion as an indicator of radiation dose, including its suitability for estimation

of skin dose (Jarvinen et al., 2018).

Overviews of the collected features are presented in Tables 1 and 2. The

last column in the tables indicates the ratio of missing values in the data. The

missing manual inputs in binary features (yes/no) were interpreted as ‘no’

and thus were not counted as missing. The radiation dose levels in patients

ranged from 0.6 to 215.2 Gy·cm2 with the mean and standard deviation (SD)
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Table 1: Numerical features from the interventions.

Feature Unit Mean SD Min Max % missing

Age (years) 69.8 11.7 33.0 97.0 0.0

Weight (kg) 82.3 16.8 44.0 176.0 0.0

Height (cm) 171.3 9.3 142.5 194.0 27.1

BSAa (m2) 1.9 0.2 1.4 2.8 27.1

BMIb (kg/m2) 28.2 4.9 18.3 50.0 27.1

Stent dimension (mm) 3.3 0.6 2.3 5.6 74.9

Ball dimension (mm) 3.2 0.8 1.0 5.2 84.1

a Body surface area

b Body mass index

of 28.0 and 26.0 Gy·cm2, respectively.

The procedure-specific features were FN1AC denoting coronary angiog-

raphy (CA) and FN2BA denoting PCI with stent. The diagnoses were non-

rheumatic aortic (valve) stenosis (I35.0), angina pectoris (I20.81), ST ele-

vation myocardial infarction (STEMI) involving left main coronary artery

(I21.01), STEMI involving right coronary artery (I21.11) and myocardial in-

farction without ST elevation (I21.41).

Within the indication-specific features, UAP denotes unstable angina pec-

toris. Segment refers to location of the disease and multi-vessel disease to

multiple diseased segments. Previous CABG refers to previous coronary

artery bypass grafting. The number (N) of procedures denotes number of

billed procedures performed. Pre-stenosis refers to stenosis before PCI and

post-stenosis to residual stenosis after PCI. CTO refers to chronic total oc-
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Table 2: Categorical features from the interventions.

Feature Categories % missing

Gender male/female 0.0

Procedure FN1ACa/FN2BAb 0.0

Indication PCI in STEMI, Flap failure, NSTEMI, Diagnostic, 19.9

UAP, Heart failure, STEMI other, Stable AP or

Arrhythmia settlement

Coronary segment LADa, LADb, LADc, LCXa, LCXb, LCXc, LD1, 35.7

LM, LOM1, RCAa, RCAb, RCAc, RPD

Diagnosis I35.0c, I20.81d, I21.01e, I21.11for I21.41g 0.0

Multi-vessel disease yes/no 0.0

Previous CABGh yes/no 0.0

AHA/ACC scorei A, B1, B2 or C 50.2

CTOj yes/no 0.0

Restenosis yes/no 0.0

LM unprotected yes/no 0.0

Pre-stenosis 60%, 85% or 100% 51.7

Post-stenosis 0%, 25%, 60%, 85% or 100% 51.7

Additional stenting 1/over 1 0.0

N of procedures 1, 2 or 3 0.0

a Coronary Angiography (CA)

b Percutaneous Coronary Intervention (PCI) with stent

c Nonrheumatic aortic (valve) stenosis

d Angina pectoris

e ST elevation myocardial infarction (STEMI) involving left main coronary artery

f STEMI involving right coronary artery

g Myocardial infarction without ST elevation

h Coronary artery bypass grafting

i American Heart Association/American College of Cardiology

j Chronic total occlusion
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clusion of coronaries and LM unprotected to unprotected left main coronary

in the procedure. AHA score refers to AHA/ACC lesion classification. Addi-

tional stenting 1 and over 1 refer to the usage of two or more stents, respec-

tively. In addition, two synthetic parameters were created for body surface

area (BSA) calculated with Du Bois formula (DuBois, 1916) and body mass

index (BMI) using the standard formula. Ball and stent dimensions refer to

the diameters of the equipment used in PCI.

Feature selection methods

A total of 9 different filter-based (i.e., independent of the regression

model) feature selection methods were used in the analysis: F-value regres-

sion (FREG), mutual information regression (MIR), SURF (SURF), SURF-

star (SURFS), MultiSURF (MSURF), MultiSURFstar (MSURFS), Pearson

correlation coefficient (PEAR), Spearman’s correlation coefficient (SPEA)

and ReliefF (RELF). In addition, the aggregate rankings from all feature se-

lection methods are referred to as TOPN. All the feature selection methods

are publicly available from scikit-learn and scikit-rebate open access reposito-

ries (Pedregosa et al., 2011; Urbanowicz et al., 2018). These feature selection

methods were chosen because of their popularity in literature, computational

efficiency and applicability for regression targets. Furthermore, the chosen

methods have the advance of outputting individual feature weights which

can be used for ordering features according to their importance for the spe-

cific target. More detailed descriptions about the feature selection methods

used in this study can be found from the references (Pedregosa et al., 2011;

Urbanowicz et al., 2018).
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Regression model and hyperparameter search

An overview of the data processing pipeline is presented in Figure 1. The

methodology is similar to the previous study (Suomi et al., 2019) but with

the difference that the target is continuous in this case rather than a class.

The dataset of 838 patients was first read into a dataframe and was randomly

split with 80% for training and 20% for testing. The features with missing

values were imputed using their mean for numerical and a constant value (0)

for categorical features. The mean imputation values were based only on the

training data in order to avoid any information leakage from the test data.

The numerical features were discretised (ordinal) into ten equal width bins

and the categorical features were one-hot encoded. All features were then

logarithmically scaled in order to optimise the regression model performance.

Once the data were pre-processed, the feature selection methods (k = 1-9)

were used on the training set to rank the n best features (n = 5, 10,...,

40). These n features from the training set were then used as inputs for the

regression model.

Support vector regression (SVR) model was selected as the regression

method for the problem since it does not have any built-in feature selection

methods (i.e., embedded or wrapper). SVR is a supervised machine learning

model whose basic idea is to predict continuous output values (i.e., real num-

bers) by minimising the pre-defined loss (error) function. In this study mean

squared error (MSE) was selected as the loss function. A margin of tolerance

ε is also determined and no penalty is associated in the loss function with

points predicted within a distance ε from the actual value. In addition, since

SVR does a linear prediction on the data, a kernel function was used to trans-
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Repeat for n features
Repeat for k 

feature selection 

methods

Test set (n features)

Training set

7) Select n 

best features

Training set (n features)

Repeat for each hyper-

parameter combination

8) Train model using

5-fold cross-validation

9) Obtain the best 

model based on 

validation error

for prediction

10) Save final test 

error for feature 

selection method k 

using n features

6) Use feature 

selection method k

Repeat 100 times with new randomisation seed

Training set
1) Read data

2) Split into training and test sets

3) Impute missing values

4) Discretise numerical features

5) Scale features

Test set

Figure 1: Overview of the data processing pipeline: 1) The data was read into a dataframe;

2) split into training and test sets; 3) imputed based on the training set; 4) numerical

features were discretised; 5) all features were log-scaled; 6) feature selection method (k =

1-9) was used on the training set; 7) the highest-ranking features (n = 5, 10,..., 40) were

obtained; 8) the n features from the method k were used to train a support vector regression

(SVR) model using hyperparameter grid search with inner 5-fold cross-validation; 9) the

SVR model was refit on the whole training set using the combination of hyperparameters

based on the lowest cross-validation error (mean squared error, MSE); 10) the fitted SVR

model was used to predict the radiation dose in the test set with the same n features

and the test error (MSE) was saved. Steps 1-10) were repeated 100 times with a new

randomisation seed.

11



form the data into a higher dimensional feature space to make it possible to

perform the linear separation. In this study, nonlinear radial basis function

(RBF) kernel was used because it was found to perform better with the given

dataset compared to linear and polynomial kernel models. The SVR model

was implemented using scikit-learn (v0.20.3) in Python (3.5.3) (Pedregosa

et al., 2011).

Before starting the SVR model fitting process with the selected n features

from the training data, a set of hyperparameters were determined for grid

search (see Table 3). The aim of the grid search was to find the optimal

combination of hyperparameters for each set of features by iterating over

all the possible combinations of the given grid. The performance of each

hyperparameter combination was evaluated using 5-fold cross-validation on

the training data and calculating a validation error (MSE) for each fold. Us-

ing 5-folds was found sufficient so that both sets represented the underlining

distribution of the data. The mean error over all 5 folds was then selected

as the performance metric of the given hyperparameter combination and the

process was repeated for the next set of hyperparameters. Once all possible

hyperparameter combinations had been evaluated, the lowest mean error was

selected as the optimal set of hyperparameters for the given n features. The

SVR model was then refitted on the whole training set using these hyperpa-

rameters. Finally, the fitted model was used to make predictions on the test

set with the same n features and the test error (MSE) was calculated based

on the test predictions as the final performance metric.

The whole process above was repeated 100 times using a new randomi-

sation seed in every iteration, which was found to ensure the stability and
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Table 3: Hyperparameters for grid search in

support vector regression (SVR) model fitting.

Parameter Values

Kernel RBFa

ε 0.1

C 1, 1e1, 1e2, 1e3, 1e4, 1e5

Gamma 1e-1, 1, 1e1, 1e2, 1e3

a Radial Basis Function

repeatability of the results. All the results are therefore average values over

100 iterations. The total computation time was approximately 18 hours using

24 CPU units (Intel Xeon E5-2670 @ 2.60 GHz) on a computing cluster.

Results

Feature importances and correlation

A heatmap of the median feature rankings (range 0-58 from the best to

worst) in estimating the procedure radiation dose is shown in Figure 2. The

rankings are shown for all 59 features from the 9 different feature selection

methods. Each feature had 100 rankings per method and their corresponding

median value is presented in the map. In addition, the aggregate median

rankings from all methods (9 methods × 100 repetitions = 900 rankings per

feature) are shown at the bottom (TOPN).

The statistical distributions of the aggregate rankings are visualised in

the boxplot in Figure 3 which shows the features ordered by their median

rankings (i.e., TOPN in Figure 2). The boxes display the interquartile ranges
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(IQR) and the median values are marked with a notch inside each box. The

whiskers show 1.5 IQR from the lower and upper quartiles and outliers are

plotted as individual points beyond the ends of the whiskers. In addition, the

pairwise Spearman’s correlation coefficients between numerical features and

Kendall’s tau rank correlation coefficients between different feature selection

methods are shown in Figures 4(a) and (b), respectively.

The ten highest-ranking features organised by their aggregate median

values were: 1) FN1AC, 2) FN2BA, 3) weight, 4) post-stenosis 0%, 5) multi-

vessel disease, 6) N of procedures 3, 7) pre-stenosis 100%, 8) AHA score C, 9)

pre-stenosis 85% and 10) gender. Some of the features have relatively large

IQRs and whiskers, which indicates a certain degree of disagreement between

the methods. There are also visible outliers outside the whiskers in some of

the features.
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Figure 2: Heatmap showing the median feature rankings (range 0-58 from the best to

worst) from 9 different filter-based feature selection methods (100 rankings per feature) in

estimating the procedure radiation dose. In addition, the median ranking from all methods

(9 methods × 100 repetitions = 900 rankings per feature) for each feature is shown at the

bottom (TOPN).
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The rankings shown in Figures 2 and 3 illustrate the significance of diag-

nostic vs. therapeutic as FN1CA was ranked the most important and FN2BA

the second. This result is due to the significant additional dose from the in-

tervention compared to the diagnostic CA (STUK, 2016). Patient weight is

a traditional radiation dose predictor and its high rank was also expected.

Post-stenosis 0% is associated with higher KAP (mean 36.7 Gy·cm2 com-

pared to mean 28.0 Gy·cm2 for the whole data) and was ranked fourth. This

association can be interpreted to be due to required finesse and subsequent

imaging to achieve said result. Multi-vessel disease and the high number

of performed procedures (3) ranked fifth and sixth, respectively. They are
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Figure 3: Boxplot showing the feature rankings (range 0-58 from best to worst) from

9 different filter-based feature selection methods (9 methods × 100 repetitions = 900

rankings per feature) in estimating the procedure radiation dose. The features are ordered

by their median value based on the rankings. Boxes show the interquartile ranges (IQR)

with median values (notch) and whiskers show 1.5 IQR from the lower and upper quartiles.

Outliers are plotted as individual points beyond the ends of the whiskers.
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associated with higher radiation dose as they directly increase the extent

and urgency of the procedure. High number of procedures is strongly as-

sociated with PCI, which likely influences and artificially increases its rank.

Pre-stenosis 100%, AHA score C and pre-stenosis 85% were ranked seventh,

eighth and ninth, respectively. They all imply difficult procedure with high

pre-stenosis and tortuous or degenerated vein grafts.

Patient gender was ranked tenth with men induced to 32.5 Gy·cm2 dose

on average compared to 18.8 Gy·cm2 in women. This difference is partly

attributable to associations with patient weight, additional stenting over 1,

multivessel disease, number of procedures 3 and PCI, which were all more

common with men. These results point to men in the study seeking treatment

at a later stage of disease.
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Figure 4: Diagonal correlation matrices showing (a) the pairwise Spearman’s correlation

coefficients between numerical features and (b) Kendall’s tau rank correlation coefficient

showing the similarity between different feature selection methods in ranking the features.
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AHA score B1 ranked 11th but B2 and A ranked significantly lower.

The AHA score takes into account the lesion location, bifurcation, size and

shape and coronary tortuosity and angulation. These factors describe PCI

complexity in terms of outcome and the result indicates that its applicability

to procedure difficulty in terms of use of radiation is not straightforward.

BSA ranked 12th most likely affected by its high correlation to weight.

CTO ranked 13th, which is lower than expected. The result is likely affected

by the low number of CTOs in the data (32 samples) and huge dose variation

among them (mean dose 69.4 Gy·cm2 and standard deviation 56.3 Gy·cm2.

Additional stenting 1 and over 1 ranked 14th and 20th, respectively. Addi-

tional stenting implies difficulty in performing the procedure and need for

additional imaging.

The relatively high number of missing values in AHA scores (50.2% miss-

ing), pre-stenosis and post-stenosis (51.7% missing) values indicates that

these results might not be as accurate as for the rest of the features. Post-

stenosis 0% (fourth), pre-stenosis 100% (seventh), AHA score C (eighth) and

pre-stenosis 85% (ninth) all ranked in the top ten despite of the missing data

which could indicate that there is still a strong correlation between these

features and the KAP radiation dose despite of some of the values missing.

Prediction performance

Once the most important features were determined using all the feature

selection methods, their performance in estimating the radiation dose was

evaluated with the SVR model. For this purpose, the number of input fea-

tures for the model was varied between 5 and 40 using the highest-ranking

features from each method. The maximum number of features included in
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the prediction was stopped at 40 because the prediction performance did not

improve considerably after this point.

Figure 5(a) shows a heatmap of the average test errors over 100 itera-

tions using the specified number of highest-ranking features from each fea-

ture selection method. In addition, the mean test errors using the highest-

ranking features from aggregate votes (see Figure 3) are shown at the bottom

(TOPN). Figure 5(b) shows the mean and dispersion of the validation and

test errors as a function of highest-ranking features from all feature selection

methods. The faded areas show the 95% confidence intervals.

Both the mean validation and test errors were reduced when the number

of input features for the SVR model was increased. However, there are dif-

ferences in the performance of different feature selection methods. FREG,

MIR, MSURF, PEAR, RELF and SPEA appear to have approximately sim-

ilar test errors (MSE range 427-442) with the maximum number of features

(40). SURF and SURFS perform slightly worse (MSE range 456-462) com-

pared to the former methods while MSURFS has the worst performance

(MSE 483). This indicates that the features selected by the methods with

high test errors are not as informative in estimating the treatment radiation

dose as the ones chosen by methods with lower test errors. However, this

does not mean that the worse performing methods are inferior per se, but

rather tells about their suitability for the given problem.

The second-best dose estimation performance (after RELF) was achieved

using the top features from the aggregate rankings (MSE 431). This indi-

cates that these features are indeed informative in estimating the treatment

radiation dose and should be included as input features for the prediction
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model. However, the optimal number of input features still has to be de-

termined. In Figure 5(b) the mean validation and test errors are rapidly

decreased when the number of features is increased. The decrease flattens
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Figure 5: (a) Heatmap showing the mean test errors from support vector regression (SVR)

model in estimating the procedure radiation dose. The values show the mean test error

from 100 repetitions using the stated number of highest-ranking features from each feature

selection method. In addition, the mean test errors using the highest-ranking features from

aggregate votes are shown at the bottom (TOPN). (b) Lineplot showing the mean and

dispersion of validation and test errors with the number of highest-ranking features from

all feature selection methods. The faded areas show the 95% confidence intervals.
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at around 30 features and only slight performance increases are seen when

the feature set is grown beyond this number. Therefore, using the first 30

features from the aggregate rankings (see Figure 3) are enough to yield good

balance between the number of features and dose estimation performance.

The accuracy of the SVR model can be estimated by examining the square

root of the MSE in the results in Figure 5. Therefore, the best accuracy with

the given features was around MSE 427 (Gy·cm2)2 (i.e. using RELF fea-

ture selection method and 40 features) whose square root is approximately

20.7 Gy·cm2. This gives an estimate of the mean error when the model is

making predictions about the radiation dose. The error might seem large

compared to the mean radiation dose of 28.0 Gy·cm2 in the data, but it is

also affected by the large spread in KAP values from 0.6 to 215.0 Gy·cm2

all of which contribute to the mean error. Furthermore, the main aim of the

study was not to obtain the best possible dose estimation accuracy from the

model but to identify the features which are the most relevant in estimat-

ing the radiation dose. Therefore, the features identified in this study can

be incorporated in future studies for developing a more accurate prediction

model.

Discussion

The results of this study show that the accuracy in estimating the ra-

diation dose during CA and PCI procedures increases with the number of

features. SVR showed increase in performance (i.e., lower MSE) all the way

up to approximately 30 features, which indicates that these features contain

predictive information about the induced radiation dose and could therefore
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be used as reliable indicators for the radiation dose as well as IC proce-

dure complexity. The features beyond this point most likely do not play an

important role in contributing to the overall radiation dose to the patient.

However, it should be noted that the features were ranked according to their

overall correlation with the radiation dose, and therefore, these features act

either as negative or positive indicators for the radiation dose.

In terms of the prediction model accuracy, the ten highest-ranking fea-

tures cannot be interpreted as the absolute truth for the optimal prediction

performance, but rather as a guideline of which features should be considered

in order to build accurate prediction models to estimate KAP radiation dose.

The ranking of these features was based on the dataset used in the study,

and therefore, comparison to multi-centre studies should be made in order

to decide the most informative features for the given problem.

It was also evident from the results that many patient demographic and

clinical features predict usage of radiation in IC and division to CA and

PCI, AHA score or patient weight alone are not enough to estimate it accu-

rately. In addition to its subjectivity and inaccuracy of the scoring (Lloyd

and Ronald, 2008), the relevance of the features in AHA scores for the use of

radiation is relatively complex. The issue with patient weight in IC is quite

well established by the ICRP (ICRP, 2017).

Besides these three features, multi-vessel disease, high pre-stenosis, gen-

der, CTO (Sakano et al., 2017; Siiskonen et al., 2018) or additional stenting

should be considered due to their clear relevance to the use of radiation.

Despite its strong association with PCI, high number of procedures is also

possibly an important feature.

21



Compared to the recent results on factors contributing to high radiation

dose in CA published by Crowhurst et al. (2019), the assessed features were

different but similarities in the results can nonetheless be found. The most

important statistically significant factors reported by Crowhurst et al. were

patient weight, PCI and gender. In addition, statistically significant effect

was also found for coronary artery bypass graft angiography, use of optical

coherence tomography (OCT), intravascular ultrasound (IVUS) or fractional

flow reserve (FFR), right heart catheterisation with or without venography,

operator experience, and the type of the angiography system.

The results also agree reasonably well with the earlier estimations of fea-

tures predicting radiation dose and difficulty levels by Padovani et al. (2001)

and Peterzol et al. (2005). Padovani et al. identified the number of lesions,

bifurcation stents, ostial stents, occlusions of older than three months and

severe coronary tortuosity. Peterzol et al. identified complex lesions, double

wire techniques, double balloon techniques, bifurcation stents and severe tor-

tuosity in their model. Compared to these models, the results presented in

this paper allow for significant updates better corresponding to contemporary

practice.

The highest-ranking features provide guidance into how to set up es-

timates of procedure complexity from the perspective of use of radiation.

However, to account for hospital and cardiologist specific variations a multi-

centre cohort study is required. In addition, the applied methodology can be

utilised for other procedures such as transcatheter aortic valve implantations

and the optimisation of the use of radiation as to which practices increase

radiation dose the most and what patient demographic and clinical features
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affect these practices. Therefore, the results of this study are considered as

an essential part of a roadmap to more accurate difficulty level based DRLs

and personalised dosimetry.

Limitations of the study include the single-centre data, the amount of

missing data in some of the features, and the possibility of human errors

especially in the PCI registry records due to manual input. In addition,

features related to the cardiologist and the use of the angiographic system

can be interpreted as confounders. These include factors such as the time of

the procedure (e.g. morning, night) as well as the fatigue and experience level

of the cardiologist all of which affect the procedure length, and therefore, also

the radiation dose of the patient. These limitations could be corrected with

a multi-centre study with these features included together with enough data

from each hospital. For the purpose of meeting the aims of the present study,

the amount of data can be considered to be sufficient for all the high-ranking

features.

Conclusions

Filter-based feature selection methods together with a supervised machine

learning model were employed to determine the most informative features in

estimating the radiation dose in CA and PCI procedures. The features most

informative of high dose were identified to be PCI, high weight, high AHA

score, multi-vessel disease, high pre-stenosis, male gender, CTO and addi-

tional stenting. The features were evaluated in terms of their ability to esti-

mate the induced radiation dose, and after multi-centre validation and careful

clinical assessment can be used to predict IC coronary procedure complexity
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from the perspective of use of radiation. Furthermore, the identification of

the most informative features will advance the development and adaptation

of similar machine learning models into clinical practice.
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