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A B S T R A C T   

The rapid spread of the coronavirus disease (COVID-19) has become a global threat affecting almost all countries 
in the world. As countries reach the infection peak, it is planned to return to a new normal under different 
coexistence conditions in order to reduce the economic effects produced by the total or partial closure of 
companies, universities, shops, etc. Under such circumstances, the use of mathematical models to evaluate the 
transmission risk of COVID-19 in various facilities represents an important tool in assisting authorities to make 
informed decisions. On the other hand, agent-based modeling is a relatively new approach to model complex 
systems composed of agents whose behavior is described using simple rules. Different from classical mathe
matical models (which consider a homogenous population), agent-based approaches model individuals with 
distinct characteristics and provide more realistic results. In this paper, an agent-based model to evaluate the 
COVID-19 transmission risks in facilities is presented. The proposed scheme has been designed to simulate the 
spatiotemporal transmission process. In the model, simulated agents make decisions depending on the pro
grammed rules. Such rules correspond to spatial patterns and infection conditions under which agents interact to 
characterize the transmission process. The model also includes an individual profile for each agent, which defines 
its main social characteristics and health conditions used during its interactions. In general, this profile partially 
determines the behavior of the agent during its interactions with other individuals. Several hypothetical sce
narios have been considered to show the performance of the proposed model. Experimental results have 
demonstrated that the simulations provide useful information to produce strategies for reducing the transmission 
risks of COVID-19 within the facilities.   

1. Introduction 

On January 30, 2020, the World Health Organization declared the 
coronavirus disease 2019 (COVID-19) outbreak as a Public Health 
Emergency of International Concern. As of April 10, 2020, there are 
1,684,833 laboratory-confirmed cases of the virus and 102,136 deaths 
reported globally. 

COVID-19 is considered a very infectious disease [1] transmitted 
from one host to another through different modes of transmission, such 
as airborne droplets disseminated by sneezing or coughing, direct 
physical contact, etc. In its transmission, an agent or set of agents are 
introduced into a population of susceptible elements. Then, the infection 
is transferred to other agents through its forms of transportation, 
consequently spreading in the population. An infected element can 
persist without typical symptoms at the early phase of the infection [2]; 
only later, the patient can develop clinical symptoms and be diagnosed 
as a disease case. When the amount of cases increases above the normal 

average of events within a brief period, a disease outbreak happens. 
Several mathematical tools are used to characterize, predict, or 

analyze the transmission process of an infectious disease [3]. Traditional 
explorative methods use experimental and statistical data for obtaining 
information on the disease transmission process. However, such ap
proaches are not appropriate [4] for several reasons: a) For human in
fectious diseases, large-scale tests may be impractical or unethical and b) 
available data sets pertinent to the disease include only partial infor
mation not accurate enough for reliable statistical studies. 

Mathematical modeling is recognized as an important tool for 
emulating the transmission of infectious diseases computationally. 
Mathematical models have been widely used for evaluating the effec
tiveness of control strategies and for reducing their associated risks [5]. 
Through mathematical modeling, it is possible to obtain critical infor
mation about the mechanisms of transmission and spread. It helps to 
highlight important factors in the disease transmission process. From its 
results, it is also possible to suggest preventive measures or effective 
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control strategies. Another important function of mathematical models 
is hypothesis testing [6]. Under this role, it is possible to test different 
scenarios considering distinct hypothetical conditions that are impos
sible to analyze in the real circumstances. Compared to experimental 
methods, the modeling schemes have the convenience of saving time 
and economic resources. In the last decades, the design of mathematical 
models for disease transmission has attracted the attention of the sci
entific community. Some examples include the classical 
Susceptible-Infect- Susceptible (SIS) epidemic model established by 
Kermack and McKendrick [7], the Susceptible-Infect-Recovered (SIR) 
epidemic model proposed by Bailey [8], the 
Susceptible-Infect-Vaccination-Susceptible (SIVS) epidemic system 
introduced by Arion et al. [9] and the stochastic 
Susceptible-Infect-Quarantine-Susceptible (SIQS) epidemic model stud
ied by Zhang et al. [10]. All these models are proper for explaining the 
global behavior of an epidemic on larger scales considering general 
variables. They are not able to provide accurate predictions at a finer 
resolution. There exist many scenarios in which it is important to 
analyze the transmission dynamics in a more microscopic way, espe
cially in small populations or in facilities where the infection process can 
be identified by the interactions among their members [11]. 

In order to obtain better conclusions from processes, simple models 
are no longer enough to analyze them. The wide availability of fast 
computing resources has allowed the construction and analysis of more 
complex models. Under such conditions, it has emerged a new field of 
knowledge known as complex systems [12]. In complex systems, it is 
studied how systems affect individual behaviors, especially when such 
individuals have the capacity to influence these systems. In these sys
tems, complex behaviors of higher-level organizations appear as a 
consequence of the collective interaction of individuals that participate 
in a self-organizing process [13]. 

Agent-based modeling [14] represents a new paradigm to model 
complex systems using agents or elements. Agents maintain behaviors 
that are described by simple rules and influenced by the collective 
interaction with other agents. Under this paradigm, global behavioral 
patterns that have not been directly programmed emerge through the 
collective interaction among agents. Agent-based models attempt to 
relate how global regularities may emerge through processes of collec
tive cooperation. Under this scheme, a population of agents maintains a 
behavior characterized by a set of simple rules. The objective of such 
rules is to emulate the individual movements of real actors when they 
interact with their local environment. Although the system is modeled 
from the individual point of view, its main properties are visualized from 
a global perspective. The powerful modeling characteristics of the 
Agent-based models have motivated their use in several applications 
which include the behavior in supply chains [15] and the stock market 
[16], the characterization of the immune system [17], the understand
ing about the fall of ancient civilizations [18], the consumer purchasing 
behavior [19], to name a few. Agent-based models have also been used 
as an alternative to classical mathematical tools to describe the behavior 
of diseases. These approaches produce better results in conditions where 
it is required to determine the dynamics of a disease in a more 
fine-context way, particularly when it is necessary to characterize the 
transmission process person-to-person [20]. As a result, several 
agent-based schemes have been proposed to model how the un
certainties in disease transmission change according to different char
acteristics of the population and affects the overall behavior of 
epidemics [20,21]. Some examples include studies such as [22] where it 
is used historical information to produce contact patterns in agent-based 
approaches with the objective to characterize the behavior of previous 
critical epidemics. In contrast, in Ref. [23], historical data are consid
ered to evaluate the possibilities of future disease outbreaks. In 
Ref. [24], it is integrated empirical mobility data models to emulate the 
diffusion dynamics of global disease without considering the trans
mission at the level of individuals. More recently, in Ref. [25,26], it is 
proposed two agent-based schemes which model individual contact to 

capture the nationwide spread of influenza in Australia and Switzerland, 
respectively. Both models generate an artificial population considering 
census data. Then, agents are influenced by some operators that simu
late the transmission of influenza through the interaction of agent 
groups. 

Several important measurements have been emitted as a general way 
of limiting COVID-19 infection. Inside facilities, it is presented a high 
probability of infection. Within these spaces, it is maintained a high 
contact rate between people sharing the same common surfaces of 
interaction. However, rarely there are no specific countermeasures 
related to these facilities nor conducted studies that analyze possible 
coexistent strategies. The public health consequences of acquiring 
COVID-19 have led many governments to impose a set of control mea
sures. As the countries reach the infection peak, it is planned to return to 
the normality under new coexistence conditions in order to reduce the 
economic effects produced by the total or partial closure of companies, 
universities, shops, etc. Under such circumstances, the use of mathe
matical models to evaluate the transmission risk of COVID-19 in this 
type of facility represents an important tool in assisting authorities to 
make informed decisions. In this paper, an agent-based model to eval
uate the COVID-19 transmission risks in facilities is presented. In the 
model, the behavior of each individual is characterized by a set of simple 
rules that considers its basic interactions inside the facility. In its itera
tions, each agent maintains different mobility requirements and conta
gion susceptibility. From these models, several possible scenarios can be 
tested to obtain the coexistence conditions that need to be imposed 
among the members or the habits that have to be avoided for reducing 
the transmission risks. Different from classical mathematical models, 
agent-based approaches model individuals with distinct characteristics 
such as mobility needs, grouping requirements, or a variety of health 
conditions providing more realistic results. 

This paper is organized as follows: In Section 2, the basic concepts of 
agent-based modeling are introduced. In Section 3, the proposed model 
is explained. In Section 4, the experimental results are exposed. In 
Section 5, the results and characteristics of the proposed method are 
discussed. Finally, in Section 6, conclusions are drawn. 

2. Agent-based modeling 

Agent-based modeling corresponds to a new scheme for simulating 
systems with interacting autonomous elements. Agents are artificial 
individuals programmed to perform pre-defined operations [27]. While 
they operate based on their own behavior, collaborate, or compete with 
each other agents. The complexity of the actions conducted by an agent 
is quite simple. They range from elementary decisions (yes or no) to 
stochastic behaviors. 

Agents interact in an environment (virtual map) in the form of a 
lattice or a multi-dimensional space. Agents can move freely within the 
environment. With this characteristic, it is possible to visualize the agent 
behaviors as a physical system, such as simulations of evacuations, 
traffic, biological systems, infections, etc. 

Agent-based models are simple. They do not use sophisticated ar
chitectures or difficult behavioral rules. In spite of these simple behav
iors, they are capable of generating several complex global patterns 
(behaviors) as a consequence of the modeling characteristics produced 
by the interactions of a set of simple agents. Global behavioral patterns 
refer to consistent microscopic regularities, such as coherent temporal, 
spatial and behavioral structures, or identifiable distributions. 

A general agent-based modeling scheme consists of the following 
steps. First, a set of A agents fa1;…; aAg are initialized. Under this stage, 
agents are configurated in a determined position or in a specific state. 
Then, each agent ai (i 2 1;…;A) is selected randomly or considering a 
particular order. For this agent ai, a set of rules are applied in order to 
change its position, state or relationship with other agents. These rules 
consider a relation of conditions imposed by other agents (specific 
agents) or local influences (neighbor agents). This process is repeated 
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until a determined stop criterion has been reached. 
Under the agent-based methodology, several interesting basic global 

patterns have been proposed to simulate complex phenomena such as 
diffusion, concentration and insolating, fire spreading, segregation and 
others. These behavioral patterns have been analyzed in terms of the 
simple rules that provoke them. In order to illustrate this methodology, 
two simple examples are considered: Fire spreading and segregation. 

2.1. Fire spreading 

In fire spreading [12], the objective is to emulate the way in which 
fire moves through a zone of trees distributed with different densities. 
Fire, in the real world, does not spread under deterministic principles. 
From one tree to another tree, fire is transmitted based on a variety of 
elements such as the type of wood, wind, and how close the branches are 
to each other. Agent-based modeling allows emulating systems with 
many interconnected factors that affect a process. Under agent-based 
modeling, the fire spreading phenomenon is simulated by considering 
the following procedure. First, a lattice of M� N agents fa1;…; aM�Ng is 
randomly initialized. Each agent represents a tree or an empty space. 
One random agent aR of the lattice is considered the location in which 
starts the fire. Considering this agent aR, the next rule is applied. In the 
neighborhood of aR; a new agent aS is randomly selected. Then, with a 
probability p it is assumed that the fire is transmitted to aS. Otherwise, 
the tree remains unburned. This process is repeated until all possible 
trees become burned. Fig. 1 shows the visual results produced by the fire 
spreading agent-based model obtained in three different stages. 

2.2. Segregation 

Schelling proposed an agent-based model to emulate the segregation 
phenomenon [28,29] with the objective of providing an explanation for 
why people that maintain different ethnic origins tend to segregate 
geographically. In the model, two different types of agents A ¼ fa1;…;

aA=2g and B ¼ fb1;…;bA=2g are randomly distributed in a finite 
two-dimensional space. In each step, the following rule is considered. A 
random agent from A or B is selected. Then, it is counted the number of 
agents of the same type around its neighborhood. If the fraction of 
agents of the same type is below a threshold Th, it moves to another 
position randomly chosen in the space. 

The rule for this model is quite simple. Schelling discovered with this 
model how high the Th value had to be in order to occur segregation. It 
seems reasonable to assume that segregation requires high homophilic 
characteristics (high Th values). However, Schelling demonstrated that 
segregation phenomenon could happen with much lower Th values. 
Fig. 2 shows the visual results produced by the segregation agent-based 
model obtained in three different stages. Fig. 2 was used from [29] with 
permission. It represents a reconstruction from the original figure, which 
appeared in [28]. 

3. The proposed agent-based model 

In this section, the proposed agent-based model to evaluate the 
COVID-19 transmission risks in facilities is explained. The agent-based 
model has been developed to emulate the transmission process from 
an agent perspective. The approach allows highlighting the importance 
of individual contact patterns in the modeling. Therefore, this scheme 
makes it also possible to analyze strategies at a micro-scale. 

The disease of COVID-19 is transmitted through different mecha
nisms, which include hand contamination followed by mucosal inocu
lation [30], and droplets or aerosols disseminated by coughing and 
sneezing [31]. The measures considered to avoid the transmission of 
COVID-19 involve simple habits such as washing one’s hands continu
ously, sneezing into one’s hand or elbow, using a face mask and main
taining low mobility. The section is divided into two parts: (3.1) model 
description and (4.2) the computational procedure. 

3.1. Model description 

The probability of a person being infected depends on several factors 
that range from his health condition to his discipline in following the 
prevention measurements. In our approach, the probability of infection 
is modeled through the use of a probability term Pri. This term is 
different for each individual and summarizes all possible factors that 
affect positively or negatively to his infection. 

The infection maintains a high relationship with the contact and 
mobility rate among the people in the facility. In the proposed scheme, 
the contact and mobility rate among elements is modeled with a prob
ability factor Prcm. This parameter involves several factors that deter
mine the movement of an individual within the facility, such as jobs 
assigned, number of classrooms for a student, etc. This parameter can be 
the same for groups of individuals, such as workers with the same area, 
students with the same schedule, etc. However, elements difficult to 
describe, such as personal intentions, visiting friends of different areas 
or others, modify this parameter, making it unique for each individual. 

3.1.1. Initialization 
In the proposed model, two different types of agents AðkÞ ¼ fa1ðkÞ;

…; aAðkÞg and BðkÞ ¼ fb1ðkÞ;…; bBðkÞg are defined. The characteristic of 
the agents A and B can change in each iteration k of the simulation. The 
agents from A represent the population of A susceptible elements in the 
facility while the agents from B correspond to the B infected individuals. 
In each, iteration the number of agents in B determines the number of 
infected individuals inside the facility. In the first iteration (k ¼ 1), the 
model starts generating the positions of each agent ai and ​ bj 

ði2 1;…;A; j¼ 1;…;BÞ which are initialized with random positions in a 
two-dimensional space ð ​ aiðkÞ ¼ fai;xðkÞ; ai;yðkÞg; ​ bj ¼ fbj;xðkÞ;
bj;yðkÞg Þ. In this process, each coordinate of ai;d and bj;d ðd2 ½x; y�Þ is set 
with a numerical value uniformly determined between the defined 
lower ðLx; LyÞ and upper ðUx;UyÞ limits, so that 

Fig. 1. Visual results produced by fire spreading agent-based model obtained in three different stages.  
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ai;d; ð1Þ ¼ Ld þ randð0; 1Þ⋅ðUd � LdÞ

bj;dð1Þ ¼ Ld þ randð0; 1Þ⋅ðUd � LdÞ
(1)  

where randð0;1Þ is a function that delivers a random number within a 
uniform distribution U[0,1] between 0 and 1. Ud and Ldsymbolize the 
lower and upper bounds, respectively (where d 2 ½x;y�). 

To each agent ai(i 2 ½1; A�) from A, it is assigned a probability of 
infection Prii which ranges from zero to one. With the value of Prii, it is 
possible to emulate different scenarios for the agent ai such as its im
munity (values near to zero), a normal transmission rate (around 0.2) or 
a high susceptibility (values near to one). In order to provide a realistic 
effect in the simulation, it is important that the population A presents 
heterogeneity. For this propose, the values of Priiare randomly set with 
numbers uniformly distributed within the pre-specified lower (lin) and 
upper (uin) limits. Values close to the limit lin represents agents with 
good immunity health conditions or people that are accustomed to being 
disciplined with the prevention measurements. Values close to the limit 
uin corresponds to agents with a high susceptibility to be infected. 

To each agent ai and bj (j 2 ½1; B�) from A and B, respectively, it is 
assigned a contact or mobility probability PrcmA

i and PrcmB
j which ranges 

from zero to one. With the values of PrcmA
i and PrcmB

j , it is possible to 
simulate distinct classes of contact or mobility for susceptible (A) and 
infected (B) elements. Values of PrcmA

i and PrcmB
j near to zero corre

sponds to susceptible and infected agents with poor contact and mobility 
within the facility. On the contrary, values near one imply agents with 
high mobility. For realistic results, the values of PrcmA

i and PrcmB
j can be 

randomly set with numbers uniformly distributed within the pre- 
specified lower (lcm) and upper (ucm) limits according to the mobility 
characteristics of the facility to be emulated. Values close to the limit lcm 
represents agents with poor contact and mobility. On the contrary, 
values close to the limit ucm corresponds to agents with high mobility. 

3.1.2. Behavioral rules 
In order to simulate the COVID-19 transmission, agents of A and B 

maintain behaviors that are characterized by simple rules and influ
enced by the collective interaction among them. In their behavior, ele
ments from A consider a contagious rule or Rule I to define if a certain 
agent ai is infected or not. On the other hand, agents from A and B are 
subject to a rule of contact and mobility identified as Rule II. 

3.1.2.1. Rule I. In the contagious rule or Rule I, for each agent ai from A 
it is analyzed the existence of an infected agent bj (bj 2 B) inside a 
determined neighborhood R. If this existence is verified, a probabilistic 
decision process is considered to know if the agent ai has been infected 
or not. Under this process, a random number r is generated within a 
uniform distribution U[0,1]. If the value of r is less than or equal to Prii, 

the agent aiis considered infected, otherwise, aiis not contaminated in 
spite of its contact. The value of R can be used to emulate the permissible 
contact level under contagious risk. In our scheme, R ¼ 1mt; however, 
this value can be enlarged to allow the possibility of infection with 
surfaces close to the infected agent. When an agent ai is recognized as 
infected, ai is deleted from A and added as a new agent bnew within the 
infected agents in B. On the other hand, if none infected agent is 
detected in the neighborhood R around ai, then, no action is performed. 

Fig. 3 illustrates the operation process of Rule I. In the figure; it is 
considered a set of 10 (A) susceptible agents and 2 (B) infected elements 
A ¼ fa1;…; a10g and B ¼ fb1;b2g. The agents are located as it is indi
cated in Fig. 3(a). From this figure, it is clear that the agents a3 and a5 
maintain a relationship of closeness (less than the distance R) with b1 
and b2, respectively. Assuming that the probabilities of infection are 
Pri3 ¼ 0:1 and Pri5 ¼ 0:8 (an exaggerated value for transmission), it 
might be that the agent a5 gets infected since its susceptibility (proba
bility) is really high. On the contrary, as Pri3 is quite low, the agent 
a3remains without the contagious. Fig. 3(b) shows the new configura
tion of both populations A and B. 

3.1.2.2. Rule II. In Rule II, the contact and mobility of each agent from 
A and B are determined. Under this rule, firstly, through a probabilistic 
test, it is decided if the agent ai or bj is displaced or if it remains in the 
same position. For this process, a random number r is generated within a 
uniform distribution U[0,1]. If the value of r is less than or equal to 
PrcmA

i or PrcmB
j the new position of the agent ai ðk þ 1Þor bjðkþ1Þ is 

modified, otherwise, ai or ​ bjkeeps its location (ai ðk þ 1Þ ¼

Fig. 2. Visual results produced by the segregation agent-based model obtained in three different stages. This graph is republished from the work of Professor Hiroki 
Sayama [29], with permission. The figure has been slightly modified in that the iterations have been added to show the evolution of the simulation process. These 
iterations have been incorporated only for illustration proposes. 

Fig. 3. Operation of Rule I. (a) initial configuration and (b) final configuration.  
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ai ðkÞ or bjðk þ 1Þ¼ bjðkÞÞ. 
Once decided on its movement, the model includes two different 

movement types: local and long-distance displacement. Both move
ments emulate the basic displacements performed by individuals inside 
the facilities. Local displacements represent the most frequent move
ments when individuals interact in their workspace. On the other hand, 
long-distance displacements refer to movements carried out by the in
dividuals far from their previous position. These movements stimulate 
actions such as changes in the area, visiting a certain laboratory, cafe 
break, etc. In order to decide, the movement type performed by the 
agent aior bj, a probabilistic rule is conducted. The local displacement is 
executed with a probability of α while a long-distance is applied with a 
probability of 1 � α. Since local displacements are more frequent than 
long-distance movements, α 2 ½0:6;08�. 

A local movement is achieved over an agent aiðkÞor bjðkÞ under a 
probability of α: Local displacements correspond to small displacements 
achieved around the original positions of an agent aiðkÞor bjðkÞ ð ​ aiðkÞ ¼
fai;xðkÞ;ai;yðkÞg; ​ bj ¼ fbj;xðkÞ;bj;yðkÞg Þ. These movements are modeled, 
adding to the original positions a random number within [ � S;S] where 
S represents the maximal permissible perturbation. The value of S cor
responds to the movement performed by the individuals when they 
interact with their workspace. They are emulated under the following 
formulation 

ai;dðk þ 1Þ ¼ ai;d; ðkÞ þ randð � 1; 1Þ⋅S
bj;dðk þ 1Þ ¼ bj;dðkÞ þ randð � 1; 1Þ⋅S (2)  

where d 2 ½x; y� and randð � 1; 1Þ is a function that delivers a value be
tween � 1 and 1, d 2 ½x;y�. In our model, the value of S is set to 2 mts. 

A long-distance movement is achieved over an agent aiðkÞor bjðkÞ
under a probability of ð1 � αÞ: Long-distance displacements refer to 
movements carried out by the individuals far from their previous posi
tion. These displacements are emulated through a random change of 
position for aiðkÞ ¼ fai;xðkÞ; ai;yðkÞg or bj ¼ fbj;xðkÞ;bj;yðkÞg; so that 

ai;d; ðk þ 1Þ ¼ Ld þ randð0; 1Þ⋅ðUd � LdÞ

bj;dðk þ 1Þ ¼ Ld þ randð0; 1Þ⋅ðUd � LdÞ
(3) 

Fig. 4 illustrates the operation process of Rule II. In the Figure, it is 
considered a set of 2 (A) susceptible agents and 1 (B) infected element 

A ¼ fa1; a2g and B ¼ fb1g. The agents are located as it is indicated in 
Fig. 4. It is considered that the agents present the following contact and 
mobility probabilities PrcmA

1 ¼ 0:9, PrcmA
2 ¼ 0:1 and PrcmB

1 ¼ 0:9. Due 
to its low probability (PrcmA

2 ¼ 0:1), the agent a2 is not affected by Rule 
II. For this reason, a2 ðk þ 1Þ ¼ a2 ðkÞ. Since the contact and mobility 
probabilities of a1 and b1 are high, they will be operated by Rule II. It is 
assumed that according to the decision probability of α the agent a1 is 
applied a local displacement and the agent b1 a long-distance move
ment. Under such conditions, the new position a1 ðkþ1Þ is located 
around its original position a1 ðkÞwithin a neighborhood S. On the other 
hand, the new position b1ðkþ1Þ is determined by a random position 
inside the facility. 

3.2. Computational procedure 

The model to evaluate the COVID-19 transmission risks in facilities 
has been implemented as an iterative scheme that considers some pro
cesses in its operation. In the form of pseudo-code, Algorithm 1 sum
marizes the operations of the whole process. The model is quite simple 
and can be coded by using a few lines. 

The approach requires as input data the number of susceptible agents 
A, infected agents B, the pre-specified lower (lin) and upper (uin) infec
tion probability limits, the pre-specified lower (lcm) and upper (ucm) 
contact and mobility probability limits, the size of the facility [Lx, Ux Ly, 
Uy], the probability of local or long-distance movement α, the maximal 
permissible perturbation S, and the maximum number of iterations 
maxiter. 

The model starts with an initialization stage (Lines 2–4). During this 
phase, it is configurated the probabilities of infection (Prii) for each 
agent aiðkÞ from A (line 2) and the contact or mobility probabilities 
(PrcmA

i ; PrcmB
j ) for agents from A and B (line 3). The probabilities of 

infection are randomly obtained from the value lin to uin while the 
contact or mobility probabilities are random numbers uniformly 
distributed from lcm to ucm. Then, all agents from A and B are located in 
random positions (line 4) inside the facility. 

Algorithm 1. Summarized processes of the proposed model.   

After initialization, the model executes the Rule I or infection rule. In 
rule I (lines 6–14), for each agent aiðkÞ of A, it is analyzed the existence 
of an infected agent bj (bj 2 B) inside a neighborhood R (line 7). If this 
existence is verified (F¼1, line 8), a probabilistic decision process is 
considered to know if the agent ai has been infected or not (line 9). 
Under this process, a random number rand is generated within a uniform 
distribution U[0,1]. If the value of rand is less than or equal to Prii, the 
agent aiis considered infected, otherwise, aiis not contaminated in spite 
of its contact. When an agent ai is recognized as infected, ai is deleted 
from A (line 10) and added as a new agent bnew within the infected 
agents in B (line 11). On the other hand, if none infected agent is 
detected in the neighborhood R around ai, then, no action is performed. 

After Rule I, the rule of contact and mobility or Rule II is executed. 
Rule I (15–36) is independently applied to agents from A (lines 15–25) 
and B (lines 26–36). For the agents from A, firstly, through a probabi
listic test (line 16), it is decided if the agent ai is displaced or if it remains 
in the same position. For this process, a random number rand is gener
ated within a uniform distribution U[0,1]. If the value of rand is less than 
or equal to PrcmA

i the new position of the agent ai ðk þ 1Þor bjðkþ1Þ is 
modified, otherwise, ai or ​ bjkeeps its location (line 23) (ai ðk þ 1Þ ¼
ai ðkÞ or bjðk þ 1Þ¼ bjðkÞÞ. Then, another probabilistic test is conducted 
to know which type of movement will be executed (line 17). Under this 
test, a random number rand is generated within a uniform distribution 
U[0,1]. If the value of rand is less than or equal to α a local displacement 
is applied (line 18); otherwise, a long-distance movement (line 20) is 
considered. The same set of operations (lines 26–36) is also applied to Fig. 4. Operation of rule II.  
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agents from B. 
The complete process is conducted until the maximal number of 

generations maxiter has been reached. In each, the number of infected 
agentsjBðkÞj in each iteration determines the number of infected in
dividuals inside the facility. 

4. Experimental results 

In this section, the proposed model is tested under some basic sce
narios. The model is flexible and enables testing of several hypotheses. 
Under this role, it is possible to test different scenarios considering 
distinct hypothetical conditions that are impossible to analyze in the real 
circumstances. Compared to experimental methods, the use of this 
agent-based model has the convenience of saving time and economic 
resources. The experiments discussed in this section have as objective to 
show the characteristics of the model and the results that it can provide. 
Assuming the current unprecedented situation, extensive analysis has 
not been possible in order to put available the modeling tool for eval
uating the risk for COVID-19. 

4.1. First experiment. Basic performance 

In the first experiment, the model is tested considering a population 
of 500 (A) susceptible agents with only one infected individual (B). In 
the test, it is considered a facility with the following dimensions 300�

300 (Lx ¼ 0; ​ Ux ¼ 300; Ly ¼ 0; ​ Uy ¼ 300). The pre-specified lower 
(lin) and upper (uin) infection probability limits are configured so that 
lin ¼ 0:1 and uin ¼ 0:3; which corresponds to a realistic interval 
considering that the average infection probability is 0.2 [32–34]. The 
pre-specified lower (lcm) and upper (ucm) contact and mobility proba
bility limits are set so that lcm ¼ 0:2 and ucm ¼ 0:4; which represent the 
most frequent levels of mobility in companies or universities [35,36]. 
The probability of local or long-distance movement α is considered as 
0.8, while the permissible perturbation is set to S ¼ 2mts. The value of 
R ¼ 1 emulates the average permissible contact level under contagious 
risk considered by the World Health Organization [37]. The complete 
simulation is executed during 500 iterations (maxiter). 

Fig. 5 shows the agent interaction results in different iterations of the 
simulation process. For the sake of visualization, the size of each agent in 
the Figures has been exaggerated. From the Figure, it is clear how the 
infection is transmitted agent by agent as the number of iterations in
crements. In the beginning, the number of infected is low. However, the 
contagious is accelerated from the 100 iterations. Fig. 6 exhibits the 
number of infected agentsjBðkÞj in each iteration, while Fig. 7 shows the 
rate of infected. Fig. 6 also shows that all agents from A get infected from 
the 350 iterations. A close inspection of Fig. 7 indicates that the peak of 
contagious is around 150 iterations with approximately 11 infected. 
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4.2. Outbreak endpoint 

In the next experiments, it has tested the model under different 
scenarios that involve the number of susceptible agents A (determining 
the maximal capacity of individuals in a facility maintaining a low risk) 
low probabilities of infection (evaluating the risk when individuals 
follow correct prevention practices) and the change of probabilities of 
contact and mobility (the influence of restricting the mobility among the 
individuals inside the facility). In order to evaluate the results, the 
iteration in which all susceptible agents A have been infected cannot be 
used as an informative index under the perspective that several agents 
could have a very low probability of infection. Therefore, the number of 
iterations necessary to infect most of the agents could be higher than 
necessary to assess the outbreak endpoint. 

The problem of determining the outbreak endpoint P; which char
acterizes the representative outbreak size, is similar to detect the knee 
point in system engineering. The knee location represents the “right 
decision point” [38] at which the relative value of a variable is no longer 
significant in terms of its final contribution. There exist a few ap
proaches for detecting knee points reported in the literature [38,39]. 
From them, in this paper, we use the method introduced in Refs. [38] 
due to its simplicity. Under this scheme, the information of the number 
of infected agentsjBðkÞj and iterations k produced by the simulation are 

Fig. 5. Results in different iterations of the simulation process. Blue circles correspond to susceptible individuals, whereas red circles represent infected agents. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Evolution of the simulation in terms of the number of infected agents.  
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normalized so that their values range from 0 to 1. This normalization 
process generates new sequences denoted by jBNðkÞj and kN transformed 
as follows: 

jBNðkÞj¼
jBðkÞj
Aþ B 

kN ¼
k

maxiter
(4) 

Considering these normalized data, a new cost function J is formu
lated, which relates the number of infected agents jBNðkÞjwith regard to 
its significance in the evolution process (iteration kN). This function is 
computed such as 

J¼ jBNðkÞj � kN (5) 

One important characteristic of the function J is that it possesses only 
one global maximum M. This value β corresponds to the knee point. The 
cost function J is a sequence of size maxiter. Therefore, the maximal 
value can be obtained as follows: 

M¼ arg ​ max
1�h�maxiter

JðhÞ (6) 

Fig. 8 illustrates an example of the determination of the knee point. 
Fig. 8(a) shows the number of infected agents jBNðkÞj produced by the 
agent-based model. Fig. 8(b) exhibits the cost function J produced from 
jBNðkÞj. As is denoted by Eq. (6), the maximal value of J corresponds to 
the outbreak endpoint P. 

4.3. Second experiment. Size of susceptible agents 

In the second experiment, the model is tested considering different 
population sizes of susceptible agents (A). In the test, a certain popula
tion size A is simulated while the outbreak endpoint P is registered. The 
main idea is to determine the maximal capacity of individuals that the 
facility can maintain without presenting a high risk considering its low 

transmission rates. In the test, it is considered a facility with the 
following dimensions 300� 300 (Lx ¼ 0; ​ Ux ¼ 300; Ly ¼ 0; ​ Uy ¼

300). For the simulations, it is considered the same configuration of 
experiment 1. In each simulation, a different value of A within 
[10,1000] is considered. Since agent-based models are stochastic 
schemes, each simulation is executed repeatedly 30 times. Fig. 9 shows 
the average results of this experiment. After analyzing Fig. 9, it can be 

Fig. 7. Rate of infected.  

Fig. 8. Illustration of an example for the determination of the knee point (a) data produced by the simulation (b) cost function J.  

Fig. 9. Averaged results for the experiment to determine the capacity of 
the facility. 
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seen that less than 100 individuals produce a high number of iterations, 
which means low transmission rates. Under such conditions, the facility 
is able to maintain less than 100 individuals with very low risk. On the 
other hand, when the number of individuals is higher than 300, the rates 
of transmission are practically the same. 

4.4. Third experiment. Low infection probabilities 

In the third experiment, the model is tested to consider the effect that 
the prevention measurements have for diminishing the COVID-19 
transmission within the facility. The good practices considered to 
avoid the transmission of COVID-19 involve simple habits such as 
washing one’s hands continuously, sneezing into one’s hand or elbow 
and using a face mask. The observance of such simple rules reduces 
significatively infection probability. In the test, it is evaluated the con
sequences that a percentage of the agent population follows the rules 
and thus reduces its infection probabilities. In the experiment, at each 
simulation, a percentage of agents (from 0 to 100%) with low infection 
probability is induced in the population. Under such conditions, each 
agent ai from A belongs to one of two classes: I and II. The infection 
probability (Prii) of agents from class I is generated with random 
numbers between the lower (lin ¼ 0:1) and upper (uin ¼ 0:3) infection 
probability limits. Agents from type II have been configurated consid
ering a low probability (0.05) and deliberately induced inside the pop
ulation. The rest of the model parameters maintain the same values as 
experiment 1. Fig. 10 shows the averaged results of this experiment (30 
different independent executions). After analyzing Fig. 10, it can be seen 
that more than 60% of the individuals produce a high number of iter
ations, which means low transmission rates. Therefore, if more than 
60% of the individuals in the facility are cooperative and follow the 
rules, the risk of transmission is drastically reduced. 

4.5. Fourth experiment. Mobility restriction 

In the fourth experiment, the model is used to evaluate the influence 
of restricting mobility among the individuals inside the facility. As has 
been described, the proposed model includes two different movement 
types: local and long-distance displacement. Both movements emulate 
the basic displacements performed by individuals inside the facilities. In 
order to decide, the movement type performed by the individuals, a 
probabilistic rule is conducted. The local displacement is executed with 
a probability of α while a long-distance is applied with a probability of 
1 � α. 

Individuals that interact within the facility can either stay in their 
workspace only or move to other relatively far positions through the 
facility (such as other departments, library, dining hall, etc.). As a hy
pothesis, it is considered that the restriction of mobility to allow only 
local interactions among individuals can reduce the risk of transmission. 
In order to test this hypothesis, the probabilities of our model are 
modified to eliminate the long-distance movements. Under such con
ditions, the probability α that conditions the local displacement has been 
set to 1. Therefore, the probability of conducting long-distance move
ments is zero (1 � α). 

With the objective to visualize the differences when the mobility is 
restricted, the experiment simulates two different cases (I) and (II). In 
both cases, the simulation is executed by using the same parameter 
values of experiment three. However, in case II, the probability α has 
been set to 1, eliminating the long-distance movements. 

Fig. 11 shows the agent interaction results in different iterations of 
the simulation process for both cases. As can be seen, for the same 
iteration, there are many more infected agents in case I than in case II. It 
is also remarkable that in case II the outbreak has a local aspect. Fig. 12 
illustrates the knee point for the complete simulation process for both 
cases in terms of the number of infected agents BðkÞ. According to 
Fig. 12 the knee points for the case I and case II are about 500 and 5000 
iterations, respectively. Under such conditions is clear that the restric
tion of mobility drastically reduced the transmission rate within the 
facility. 

5. Discussion 

Agent-based models are computational schemes that emulate in
dividuals making decisions depending on a set of programmable rules. 
Such rules are configurated to represent the main properties of the real 
model. They relate the individual behavior with their social and physical 
profile [40]. Agent-based models are particularly important in cases in 
which the agent-agent interaction is an important factor in the system to 
be modeled. These schemes have been of prominent use to understand 
public health problems [41,42] and to formulate and evaluate strategies 
to address them. The transmission process of COVID-19 in facilities is a 
complex formulation whose behavior and evaluation risk depend on the 
interactions among the individuals rather than simply the characteristics 
of the individuals within the system. 

Computational and Mathematical approaches have been broadly 
employed by researchers to model the transmission diffusion of a dis
ease. Most of the existing schemes, such as Susceptible-Infect- 
Susceptible (SIS) [7], Susceptible-Infect-Recovered (SIR) [8], 
Susceptible-Infect-Vaccination-Susceptible (SIVS) [9] and 
Susceptible-Infect-Quarantine-Susceptible (SIQS) [10], consider the 
transmission mechanism alone, assuming a ‘passive’ population of in
dividuals that do not participate in the transmission process with their 
personal social and health profiles. Different from such schemes, in our 
approach, simulated agents make decisions depending on the pro
grammed rules. Such rules correspond to spatial patterns and infection 
conditions under which agents interact to characterize the transmission 
process. Our model also includes a personal profile for each agent 
(modeled in the parameters lin, uin, lcm, ucm and α ), which defines its 
main social (spatial) and physical (health) characteristics. Agents act 
during the transmission process by modifying their decisions as the 
conditions around them change. Heterogeneity is also an essential part 
of our model since different agents in the same circumstances can make 
different decisions and the same agent in different situations can make 
different decisions. Even our proposed model with simple interactions 
(rules) and individual profiles can produce behaviors that cannot be 
captured and analyzed from the perspective of approaches that consider 
independent or passive individuals such as the SIS, SIR, SIVS and SIQS 
models. 

Statistical methods and schemes based on regression [3,4] describe 
the transmission process of a disease through the relationship between 

Fig. 10. Averaged results for the experiment to determine the consequences 
that a percentage of the agent population follows the prevention rules. 
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aggregate variables that link the proportion of people in a determined 
condition such as susceptible or infected considering fast counts without 
specifying the causal connections between the variables. In contrast, in 
our approach, the model directly captures causal effects through the 
agent interactions over time. Models such as the SIS, SIR, SIVS and SIQS 

[7–10] based on differential equations are capable of characterizing 
causal relationships. However, they also adopt aggregate variables while 
the causal effects are described on a large scale from a macro perspec
tive. In contrast to these schemes, our approach allows effectively to 
model the transmission process and causal relations with the use of 

Fig. 11. Results in different iterations of the simulation process for the case I and case II. Blue circles correspond to susceptible individuals, whereas red circles 
represent infected agents. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Knee points for the complete simulation process for cases I and II in terms of the number of infected agents BðkÞ.  
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micro-level interactions (agent-to-agent) considering the heterogeneity 
of its agent characteristics. 

Agent-based models have also been used as an alternative to classical 
mathematical tools to describe the behavior of diseases [20–26]. These 
models typically consider a synthetic population divided into different 
sections. Each section represents a particular agent condition such as 
susceptible agents, infected individuals and recovered agents. Since 
these schemes describe the behavior of the disease in a complete 
country, the contact among the agents is modeled sectionally. Therefore, 
the models implemented in these approaches [20–26] emulate the 
behavior of agents with a very low heterogeneity since the character
istics of the agents are not defined individually but in a group. Under 
such conditions, details in the emulation of the transmission process are 
not modeled reliably by these approaches. Different from these models, 
our scheme defines each agent individually with its own personal pro
files of infection and mobility. Therefore, our approach is able to pro
duce detailed spatiotemporal simulations agent by agent. As a 
consequence, our scheme allows potentially a high representation of the 
transmission process being modeled. Thus, conclusions of the model 
behavior can be extrapolated to real-world, which allows insights from 
the model to be used to understand the system and compare different 
hypothetical scenarios. From the simulation of these scenarios, it can be 
obtained coexistence conditions that need to be imposed among the 
members or the habits that have to be avoided for reducing the trans
mission risks. 

In our study, several hypothetical scenarios have been considered to 
show the performance of our proposed model. In Section 4.3, the model 
has been tested considering different population sizes of susceptible 
agents (A). In the test, a certain population size A was simulated while 
the outbreak endpoint P is registered. The main idea has been to 
determine the maximal capacity of individuals that the facility can 
maintain without presenting a high risk considering its low transmission 
rates. In Section 4.4, in the experiment, at each simulation, a percentage 
of agents (from 0 to 100%) with low infection probability is induced in 
the population. This condition can represent a determined number of 
individuals who do not follow good practices to avoid the transmission 
of COVID-19 (the use of a face mask). From the simulations, it can be 
evaluated the risk if a determined number of agents do not use the mask 
due to their work restrictions (the need the face free such as welders) or 
because they simply forget it. Therefore, it can be established penalties 
or strategies that avoid this bad observance. In Section 4.5, In the 
experiment, the model is used to evaluate the influence of restricting 
mobility among the individuals inside the facility. From this scenario, it 
can be evaluated the transmission effects produced for two different 
conditions. First, individuals stay in their workspace only (with local 
movements around this position). Second, the agents can move to other 
relatively far positions through the facility (such as other departments, 
library, dining hall, etc.). From the simulation results, it can be evalu
ated the risk of each mobility type in order to generate strategies that 
promote those mobilities that produce lower risks (eliminate the contact 
between certain departments, to choose only one person to deliver the 
product from one station to another, etc.). 

In the design of an agent-based model, the challenge is typically 
expressed as a question of balance, finding relatively simple rules that 
capture the main characteristics of the system while also produce a 
detailed description of the system to be modeled. Complex rules (too 
much detail) are counter-productive since they obscure the connection 
between the agent interaction and the model behavior. One of the main 
characteristics of our model is simplicity. As a consequence of this 
simplicity, the model maintains some limitations. Since our proposed 
scheme is a model to evaluate the risk of infection, it does not implement 
the behavior of the complete disease, such as the inclusion of recovered 
individuals. Under such conditions, it is not possible to asses the way in 
which the risk decreases when recovered individuals are not able to 
transmit the disease. The rules implemented in our model are very 
simple in order to highlight the relationship between agent interaction 

and model behavior. As a result, several complex interactions among 
agents are not modeled. One case can be the influence of some in
dividuals (skeptics) to others to act contrary to the good habits for 
avoiding disease transmission. Another can be the dynamic modification 
of the infection probability. This fact models the different risks produced 
for distinct health conditions (more susceptibility provoked by bad 
feeding or sleep disorders). 

6. Conclusions 

COVID-19 has become a global threat affecting almost all countries 
in the world. The public health consequences of acquiring COVID-19 
have led many governments to impose a set of control measures. In
side facilities, there is a higher probability of infection. Within these 
spaces, there is maintained a high contact rate between people sharing 
the same common surfaces of interaction. However, rarely are there 
specific countermeasures related to these facilities or conducted studies 
that analyze possible coexistent strategies. 

In this paper, an agent-based model to evaluate the COVID-19 
transmission risks in facilities has been presented. In the model, the 
behavior of each individual is characterized by a set of simple rules that 
considers its basic interactions inside the facility. In its iterations, each 
agent maintains different mobility requirements and contagion suscep
tibility. From these models, several possible scenarios can be tested to 
obtain the coexistence conditions that need to be imposed among the 
members or the habits that have to be avoided for reducing the trans
mission risks. 

The model is flexible and allows testing several hypotheses. Under 
this role, it is possible to test different scenarios considering distinct 
hypothetical conditions that are impossible to analyze under real cir
cumstances. Compared to experimental methods, the use of this agent- 
based model has the convenience of saving time and economic re
sources. In the paper, several experiments with the model are described 
and discussed. The experiments have as objectives to show the charac
teristics of the model and the results that it can provide. 
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