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Abstract

Multi-atlas based segmentation is an effective technique that transforms a representative set of 

atlas images and labels into a target image for structural segmentation. However, a significant 

limitation of this approach relates to the fact that the atlas and the target images need to be similar 

in volume orientation, coverage, or acquisition protocols in order to prevent image misregistration 

and avoid segmentation fault. In this study, we aim to evaluate the impact of using a heterogeneous 

Computed Tomography Angiography (CTA) dataset on the performance of a multi-atlas cardiac 

structure segmentation framework. We propose a generalized technique based upon using the 

Simple Linear Iterative Clustering (SLIC) supervoxel method to detect a bounding box region 

enclosing the heart before subsequent cardiac structure segmentation. This technique facilitates 

our framework to process CTA datasets acquired from distinct imaging protocols and to improve 

its segmentation accuracy and speed. In a four-way cross comparison based on 60 CTA studies 

from our institution and 60 CTA datasets from the Multi-Modality Whole Heart Segmentation 

MICCAI challenge, we show that the proposed framework performs well in segmenting seven 

different cardiac structures based upon interchangeable atlas and target datasets acquired from 

different imaging settings. For the overall results, our automated segmentation framework attains a 

median Dice, mean distance, and Hausdorff distance of 0.88, 1.5 mm, and 9.69 mm over the entire 

datasets. The average processing time was 1.55 minutes for both datasets. Furthermore, this study 

shows that it is feasible to exploit heterogenous datasets from different imaging protocols and 

institutions for accurate multi-atlas cardiac structure segmentation.
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1. Introduction

Cardiac computed tomography angiography (CTA) is an important imaging modality for 

assessing the morphology of the heart and coronary arteries for diagnosing cardiovascular 

disease. Accurate heart segmentation in cardiac CTA images is an important task for 

quantitative assessment of different cardiovascular structures. The quantification usually 

involves volumetric measurement of the ventricles, atria, and left ventricular myocardium, as 

well as the great vessels from the CTA images. Conventionally, these 3D volume sizes are 

measured by manual delineation on 2D images, which is tedious and subject to user 

variability, and the process requires domain expertise to perform such a task. Automatic 

segmentation is desirable but challenging due to large shape variations of the cardiac 

anatomy among different subjects, changes of the heart shape as it contracts and relaxes, and 

indistinct boundaries between different cardiac substructures (e.g. right ventricle and right 

atrium) or between the heart and surrounding tissues (e.g. liver, ribs, sternum). In addition, 

the image quality and tissue appearance may be influenced by imaging protocol variations 

such as different contrast enhancement timing and concentration, radiation exposure dose, 

acquisition field-of-view, matrix size, and slice thickness. Different scanner detector arrays 

and vendors may further affect the robustness of automated image segmentation tasks.
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Several automatic methods have been developed for cardiac CTA image segmentation. We 

refer the reader to a comprehensive review of existing works presented by Bui et al. and 

Zhuang et al. [1,2] which includes several deep learning-based methods [3–7] as well as 

multi-atlas segmentation methods [8–16] that are widely used for multi-structure cardiac 

image segmentation. In the multi-atlas based approach, a set of atlases, called an atlas 

library, are created which include pre-segmented labels of various cardiac structures from 

the images of different subjects. These atlases are used as templates to segment a target 

image by registering each image in the atlas library with the target. The corresponding labels 

in the atlas library are then transformed after the image registration, and then combined to 

obtain the final segmentation of the target image.

It is known that the segmentation accuracy of multi-atlas based approaches relies heavily on 

the registration algorithm and the label fusion strategy of multiple atlases to obtain an 

optimal segmentation result. In addition, the performance of multi-atlas based segmentation 

can be affected by the similarity of the images in the atlas library versus the target image. 

Different acquisition protocols that possess large discrepancies in image quality, volume 

coverage and orientation, or tissue contrast appearance between the atlas and target image 

dataset may potentially lead to image misregistration and segmentation errors.

In this paper, we investigate the impact of using a heterogeneous atlas versus a target image 

dataset in multi-atlas cardiac structure CTA image segmentation. Our work is the first to 

systemically study the interplay between atlas and target image datasets acquired from 

distinct imaging protocols. In a four-way cross comparison using different atlas and target 

datasets collected from two independent institutions, we evaluate the robustness of using a 

generalized multi-atlas segmentation framework that is based on different image and label 

configurations.

This current work contributes to and extends our previous CTA segmentation framework [1] 

by introducing a novel bounding box detection technique to localize the whole heart before 

performing multi-atlas based segmentation. This technique addresses the often encountered 

differences in image field-of-view and volume coverage among different clinical sites and 

improves the overall segmentation accuracy. Our technique is based upon a supervoxel 

algorithm [18] combined with a generalized rule-based analysis to detect a bounding box 

around the whole heart region. Furthermore, we also augment the label fusion strategy in our 

previous work [1] to select optimal atlas labels based on a structural similarity index which 

leads to an improvement of overall segmentation accuracy.

2. Material and methods

We have previously developed a fully automatic method based upon a multi-atlas approach 

to segment various cardiac structures from CTA images [1,17]. The performance of the 

method was evaluated on datasets acquired under the same imaging protocol from our 

institution. In this current study, we extend our method and evaluate its performance on 

heterogeneous datasets acquired from two independent institutions with different scanner 

vendors and imaging settings.
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2.1. Clinical dataset

The first dataset consisted of 60 clinical CTA scans of patients with suspected coronary 

artery disease referred to the National Heart, Lung, and Blood Institute (NHLBI). All CTA 

exams were performed under procedures and protocols approved by the Institutional Review 

Board of the National Institutes of Health. Written informed consent was obtained from all 

subjects prior to participating in the study. All CTA studies were performed on a 320-

detector row scanner (Aquilion One Genesis, Canon Medical Systems, Japan) with 0.5 mm 

detector collimation, 275 msec gantry rotation time, 100–120 kVp tube voltage, 200–850 

mA tube current adjusted according to the patient’s attenuation profile determined by the 

scout image. Contrast material dose was 50–70 mL administered at a flow rate of 5.0–5.5 

mL/sec and adjusted for body habitus. Prospective ECG-triggered image acquisition was 

initiated by a target threshold of 350–400 HU in the descending aorta. For each dataset, 

images were reconstructed at a 75% phase window around diastole in the cardiac cycle with 

a matrix size of 512×512 and an average pixel size 0.36×0.36 (from 0.26×0.26 to 0.43×0.43) 

mm2. Each study contained 240 to 520 images with an average slice thickness of 0.33 (from 

0.25 to 0.5) mm.

For each of these 60 cases, 12 cardiovascular structures were manually labeled by two 

trained observers using a custom developed interactive image analysis software and 

reviewed by experienced cardiologists. These labels included the whole heart (WH) region 

and seven cardiac structures: left ventricular cavity (LV), left atrial cavity (LA), left 

ventricular myocardium (LVM), left atrial appendage (LAA), right ventricular cavity (RV), 

right atrial cavity (RA), ascending aorta (AA); as well as four associated vascular structures 

including the superior vena cava (SVC), inferior vena cava (IVC), pulmonary artery (PA), 

and pulmonary vein (PV), all of which carry blood to or from the heart.

The second dataset was provided by the Multi-Modality Whole Heart Segmentation 

(MMWHS) challenge [2] which included 60 cardiac CTA datasets acquired using two 64-

slice CT scanners (Philips Medical Systems, Netherlands) utilizing a standard coronary CT 

angiography protocol at two sites in Shanghai, China. All of the data covered the whole 

heart from the upper abdomen to the aortic arch. The slices were acquired in the axial view 

with a matrix size of 512×512 and an average pixel size of 0.43×0.43 (from 0.28×0.28 to 

0.59×0.59) mm2. Each study contained 177 to 363 images with an average slice thickness of 

0.60 (from 0.45 to 0.63) mm.

For the MMWHS dataset, CTA studies were split into 20 training and 40 test datasets for the 

performance evaluation. For the training datasets, image data and manual segmentation of 

seven whole heart substructures LV, RV, LA, RA, LVM, AA, and PA were made available 

online [19]. For the test datasets, only the image data were available, but the segmentation 

results could be self-evaluated by an executable tool and encrypted label data that were 

available at the MMWHS data website [19].

2.2. Multi-atlas segmentation

Fig. 1. shows the flow diagram of our automated processing pipeline for multi-structure 

CTA image segmentation. This framework adds an automated bounding box detection 
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scheme to our previous combined multi-atlas and corrective segmentation method [1] to 

localize a volume of interest encompassing the whole heart. This bounding box detection 

feature, which is based on the supervoxel technique, is an important addition to our previous 

method to construct a standardized and confined processing volume from the CTA images 

before applying the subsequent multi-structure heart segmentation. The following sections 

will describe each processing step in more details.

2.2.1. Bounding box detection—Fig. 2. shows a series of image processing steps to 

identify the six faces of a 3D bounding box containing the whole heart in a CTA image 

volume. This bounding box detection feature improves the registration accuracy for the 

subsequent multi-atlas segmentation. It also reduces the processing data size and thus 

increases the multi-atlas segmentation speed.

As a preprocessing step, the CTA image volume is first enhanced by mapping pixels that 

have greater than −30 Hounsfield Unit (HU) intensity values into an 8-bit dynamic range. 

This threshold is chosen based on tissue intensity statistics of the whole heart found in our 

previous study [1]. For the first step (SLIC Supervoxel) in Figure 2, the SLIC algorithm 

[18], which adapts a k-means clustering approach, is applied to create a supervoxel image 

from the 3D grayscale image volume. Under this supervoxel image representation, each 

supervoxel assembles a group of voxels that share similar intensity and are within a close 

spatial proximity. In our implementation, the compactness parameter is set to 20 to increase 

the weighting toward the spatial proximity [20].

The second step (Supervoxel Segmentation) is to detect extremum intensity structures from 

the grayscale images which include low intensity structures such as lung and air regions, as 

well as high intensity structures such as left-sided cardiac chambers, aorta, and spine and rib 

bone regions within the image volume. A sliding thin-slab minimum intensity projection of 

the grayscale image is created to remove small bright vessel regions in the lung, and then a 

HU threshold window between −400 and −90 is used to generate a low intensity structure 

mask. Similarly, a sliding thin-slab maximum intensity projection image is created, and then 

a HU threshold value of 150 is used to generate a high intensity structure mask. Within the 

high intensity structure mask, the most inferior point of the left ventricular and atrial 

chambers blood pool region, which is the closest position to the chest wall, is located, and 

any supervoxel residing above this point is removed. All supervoxels located within the low 

intensity structure mask are also removed. These procedures effectively separate the 

remaining supervoxels in the liver region from the lung, chest wall, spine, aorta, and heart 

regions. The bottom face of the bounding box is then computed from the averaged z-

coordinate values of the liver region, or is defaulted to the bottom slice of the image volume 

if no liver region detected.

The third step (Region Segmentation) is to detect the top face of the bounding box. The 

eigenvalues of the inertia tensor are calculated from each high contrast structure region 

including the left ventricular and atrial chambers and ascending aorta. This process is 

performed on a slice-by-slice basis from the superior to the inferior direction. Since the 

appearance of the ascending aorta in each axial image slice has a circular disc-like shape and 

a diameter normally less than 30 mm, such a circular region can be detected by measuring 
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its major and minor axes length derived from the inertia tensor. As an inertia tensor 

measures covariance of a region along its axes, the circularity of the region can be readily 

quantified by the relative magnitude of the tensor’s eigenvalues. Here we selected the first 

slice that has a circular region with a major axis length less than 30 mm, and a minor axis 

length less than 5 mm difference with the major axis length, as the top face of the bounding 

box. After allocating the top and bottom faces, the front face of the bounding box is 

computed from the anterior high intensity chest wall structure region from its average x-

coordinate values. Similarly, the back face of the bounding box is computed from the 

posterior high intensity spine and descending aorta structures by their x-coordinate average.

Finally, the two lateral faces of the bounding box are detected by thresholding the grayscale 

image with a −30 HU intensity value to create a binary mask within the top, bottom, front, 

and back boundaries. The largest connected region in this binary mask will encapsulate the 

whole heart and can then subsequently be used to define the left and right faces of the 

bounding box.

2.2.2. Combined multi-atlas and corrective segmentation—After the bounding 

box detection, the confined region that contains the whole heart is processed by an automatic 

combined multi-atlas and corrective segmentation (CMACS) pipeline that we introduced 

previously [1]. In summary, this automated framework consists of two core processing 

blocks, 1) multi-atlas segmentation and 2) corrective segmentation, to perform simultaneous 

multi-structure heart and peripheral tissue segmentation. Our methods are implemented in a 

multi-threading architecture to increase computational efficiency of all processing blocks. 

We have evaluated the CMACS framework on a homogeneous clinical dataset with the same 

acquisition settings and have shown that the results matched closely with manual reference 

segmentation [1].

For a brief description of the methods, the multi-atlas segmentation in the first block begins 

with a fast strategy to select an optimal set of atlases from an atlas library. The structural 

similarity index (SSI) performs a structural similarities assessment [21], comparing the 

given target image to all images in the atlas library in order to select an optimal set of seven 

atlas images. A pairwise atlas-to-target deformable image registration is then performed on 

each selected atlas to obtain a non-linear transformation to warp the associated atlas label 

into the target image space [22]. After the multi-atlas registration, an improved label fusion 

scheme is implemented by comparing the structural similarities between all warped images 

and the target image. Those warped labels with structural similarity values above 0.3 are 

preserved and merged into a target label for the next processing block.

The corrective segmentation block is designed to refine the cardiovascular labels obtained 

from the previous block and to separate the intrathoracic tissue structures surrounding the 

heart. It begins with automated image processing steps to extract representative seed voxels 

from non-cardiac structures that include lung, chest wall, liver, spine, and descending aorta. 

Together with the previously obtained cardiac structures, a random walk algorithm [23] is 

then performed on each seed region in a multiple-pass fashion to improve the segmentation 

result for each structure. The final segmentation is obtained by additional post-processing 

steps for further refinement.
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2.3. Evaluation methods

To evaluate the interplay of different configurations of atlas versus target datasets based on 

our proposed framework, the two previously mentioned datasets, namely NHLBI and 

MMWHS, were used. Each dataset consisted of 60 pairs of image studies and reference 

labels obtained by manual segmentation, in which 20 cases were used for training and 40 

cases were preserved for testing. In our multi-atlas image segmentation framework, the 20 

training cases were retained as the atlas library and the 40 testing cases were used as the 

target images for independent assessment. We performed a four-way cross comparison by 

using the atlases from each dataset to segment the target images on both datasets. 

Additionally, we compared our results with 10 independent methods as evaluated in the 

MMWHS challenge study [2].

All algorithms were implemented in Python (www.python.org) and Interactive Data 

Language (Harris Geospatial Solutions). The registration method was developed in C++ by 

Heinrich et al. [22] and compiled to a dynamic link library under Microsoft Visual Studio in 

our framework. All studies were processed with the same parameter settings on a computer 

with an Intel Core i9–7980XE 2.6GHz CPU and 128GB RAM.

For the performance evaluation of the automated segmentation, three quantitative metrics 

that measure the differences between the automatic results versus the corresponding manual 

labels were computed which include the Dice coefficient (Dice), mean surface distance 

(MSD), and Hausdorff distance (HD). Summary statistics of the results were expressed as 

the median and 95% confidence interval for non-normally distributed data and as the mean 

and standard deviation for normally distributed data. The processing image volume size (in 

Liter) and quantitative metrics from different dataset configurations were compared using a 

nonparametric Mann-Whitney rank test. The SSI values of selected atlases with and without 

the bounding box detection were compared using a paired Student’s T-test. A p-value >0.05 

indicated a statistically nonsignificant (NS) difference.

3. Results

For the 60 NHLBI CTA studies, the 3D imaging volume for the entire dataset comprised an 

average in-plane field-of-view of 181 × 181 mm2 (from 131 × 131 to 221 × 221) and an 

average through-plane depth of 120 mm (from 100 to 140) for an average volumetric 

coverage of 4.13 L (from 2.22 to 6.33). For the 60 MMWHS dataset, the 3D imaging 

volume comprised an average in-plane field-of-view of 222 × 222 mm2 (from 144 × 144 to 

300 × 300) and an average through-plane depth of 153 mm (from 110 to 188) for an average 

volumetric coverage of 8.07 L (from 2.76 to 15.92). On average, the 3D volume size of 

MMWHS dataset was 95% larger than the NHLBI size (p<0.01).

After applying the proposed bounding box detection, the cropped NHLBI 3D volumes 

comprised an average in-plane field-of-view of 144 × 158 mm2 (from 114 × 123 to 169 × 

193) and an average through-plane depth of 108 mm (from 90 to 126) for an average 

volumetric coverage of 2.46 L (from 1.66 to 3.32). Likewise, the cropped MMWHS 3D 

volumes had an average in-plane field-of-view of 152 × 154 mm2 (from 115 × 120 to 186 × 

233) and an average through-plane depth of 130 mm (from 95 to 168) for an average 
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volumetric coverage of 3.08 L (from 1.76 to 6.25). The average 3D volume size of MMWHS 

dataset was 25% larger than the NHLBI size (p<0.01).

Qualitative examples of the 3D image volume before and after the bounding box detection 

are shown in Fig. 3a. and Fig. 3b. for NHLBI and MMWHS datasets respectively. For the 

group data overall, the bounding box detection significantly reduced the volume size of the 

NHLBI dataset by 39% (p<0.01) and the MMWHS dataset by 56% (p<0.01). There was a 

more significant size reduction in MMWHS volumes than the NHLBI dataset (p<0.01).

In our CMACS framework for automated CTA image segmentation, an important step to 

reduce the computation time and improve the segmentation results is the proposed optimal 

atlas selection strategy based upon a structural similarity index (SSI) score. Fig. 4 shows the 

effectiveness of this SSI score to measure the similarity between target and atlas images. 

Pixelwise measurements of SSI maps are computed from a target and two different atlas 

images and displayed in a calibrated color scale, where red corresponds to higher SSI values 

and blue indicates lower SSI values. The atlas image in Fig. 4a clearly shows more similar 

anatomical structures to the target image than the one in Fig. 4b. The corresponding SSI map 

in Fig. 4c also displays more red and yellow pixels, while the one in Fig. 4d shows more 

blue and cyan pixels.

Another important feature in our automated segmentation framework is the inclusion of the 

bounding box detection step as described in the Methods section. Restricting the processing 

image volume size not only reduces the overall segmentation time but also improves the 

performance of both optimal atlas selection and non-rigid image registration steps in the 

framework as demonstrated in Fig. 5. and Fig. 6. For the group data overall, the average SSI 

value calculated among the selected optimal atlases was increased significantly from 

0.13±0.03 to 0.16±0.04 after the bounding box detection (p<0.01). Fig. 7. shows a 

qualitative comparison of the transformed atlas labels with and without using the bounding 

box detection. The transformed atlas label in Fig. 7b. based on the bounding box show a 

better match to the target image cardiac structure than the one in Fig. 7c. without using it.

A comparison of the runtime performance between our original CMACS method [1] versus 

the new framework with bounding box detection is shown in Table I. There was a significant 

increase of the computational speed by 24% for the NHLBI dataset (p<0.01) and 26% for 

the MMWHS dataset (p<0.01) based upon the new framework. A longer computational time 

in segmenting the MMWHS dataset was due to its larger volume size compared to the 

NHLBI dataset. Overall, the computational time averaged 1.55±0.32 minutes for the new 

CMACS framework to segment seven cardiac structures from a CTA study.

For a qualitative evaluation of the proposed automated segmentation versus the manual 

reference labels, Fig. 8. displays three cases with the maximum, median, and minimum 

averaged Dice indices obtained from the 40 NHLBI test dataset. Overall, our automatic 

segmentation shows well-maintained results on all cases, even on the one with the lowest 

Dice index.

Table II and III summarize the segmentation performance using the Dice index with and 

without using the bounding box detection (BBD) method. For a four-way cross comparison 
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of interchanging the atlas and the target images between NHLBI and MMWHS datasets, 

Table IV and V summarize the quantitative results of our automated framework against the 

manual references in segmenting seven cardiac structures. These comparisons are based 

upon using an atlas library consisting of either 20 NHLBI or 20 MMWHS datasets to 

segment the independent test datasets of 40 NHLBI (Table IV) and 40 MMWHS (Table V) 

CTA studies. Finally, for a comparison of our results with other published methods in the 

MMWHS challenge [2], Table VI summarizes the overall quantitative scores of segmenting 

seven heart substructures from the 40 MMWHS test dataset.

4. Discussion

To our best knowledge, this is the first study to investigate the interplay between different 

atlas and target image datasets acquired from distinct imaging protocols in multi-atlas based 

cardiac CTA image segmentation. We present a generalized automated segmentation 

framework that can process intermixed datasets with distinct image volume coverage. In a 

four-way cross comparison based on our institutional NHLBI and publicly available 

MMWHS datasets, the proposed CMACS framework successfully processed the entire 

group of CTA studies without exclusion. Our quantitative evaluation of the proposed method 

shows excellent results among different target and atlas data combinations.

In routine contrast enhanced cardiac CTA examinations, the image field-of-view and volume 

coverage sizes may vary significantly among different sites depending on the image 

acquisition protocols and scanner parameter settings. For example, the MMWHS image 

shown in Fig. 3a. has a volume size of 15.8 L which is almost 3 times bigger than the 

NHLBI image volume of 5.3 L. This discrepancy between volumes is due to a radiation 

reduction protocol that was used in our institution to minimize the body x-ray exposure 

during the CTA scan. The volume coverage in our dataset generally starts from the 

pulmonary trunk to a small extent beyond the apex of the heart. In contrast, the volume 

coverage in MMWHS datasets often starts from the aortic arch above the pulmonary trunk 

into a large portion of the liver well-below the heart. Furthermore, our institutional dataset is 

reconstructed with a restricted field-of-view to avoid inclusion of the lung, whereas the 

MMWHS dataset covers the whole transverse chest including most of the lung.

These differences in image field-of-view and volume coverage introduce large 

inconsistencies in captured anatomical structures between the two datasets and highlight the 

importance of incorporating a volume of interest, such as a bounding box, detection to 

improve anatomical similarity for both atlas selection and image registration in multi-atlas 

based segmentation methods. Instead of warping a large volume to a small volume, or vice 

versa, with inconsistent anatomical structures, the bounding box detection localizes a similar 

whole heart region among different datasets before applying the non-rigid image 

registration, thus improving its accuracy. As shown in Fig. 5 to Fig. 7, the bounding box 

detection improves the segmentation labels as both the optimal atlas selection and the 

images’ registration procedures do not have to consider most of the non-cardiovascular 

structures outside the whole heart. This is also evident from SSI values improved by 

incorporating the bounding box detection step for optimal atlas matching.
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In the image volume size comparison, we showed that the bounding box detection 

effectively reduced the NHLBI volume by 39% and the MMWHS volume by 56%. 

However, we also observed that the cropped MMWHS volumes were still on average 

20~25% larger than the cropped NHLBI volumes. This difference was due to a more 

disparate body volume coverage in some of the MMWHS cases that included a large air 

space above the chest or included a large portion of the liver. This disparity leads to a 

relatively small whole heart region compared to the entire 3D image and results in a larger 

cropped volume due to incomplete separation of the surrounding non-cardiac structures after 

the bounding box detection.

In the previously published work for cardiac CTA segmentation, Payer et al. [4] used a U-net 

framework and Yang et al. [14] used a registration approach to locate the heart region before 

performing structural segmentation. Our proposed bounding box detection technique 

performs in an unsupervised fashion that requires no training set [4] nor pre-registration [14] 

and only takes an average of 10~15 seconds to run.

In the survey of other medical image processing applications, automated bounding box or 

region of interest (ROI) extraction techniques have also been widely used to improve the 

segmentation or registration accuracy, and to reduce the amount of data to be processed. For 

example, Foruzan et al. used maximum intensity projection (MIP) images for pre-alignment 

and liver ROI extraction before applying CT and MR image registration [24]. Liu et al. 
proposed an ROI extraction method based on anatomical knowledge to segment the sternum 

from low-dose chest CT images [25]. Wu et al. also used MIP images and thresholding 

methods to extract a liver ROI, and then used the SLIC supervoxel method to partition the 

ROI before applying a graph cuts algorithm to segment the liver from abdominal CT images 

[26]. Commandeur et al. extracted image features such as intensities, gradient vectors, and 

Haar-like features, and then applied a random forest classifier to estimate a prostate ROI 

from CT images [27].

Quantitatively comparing our segmentation results with and without using the bounding box 

detection, Table II and III show a higher Dice index was obtained in most of the structures 

when segmenting cross-institutional datasets with the bounding box detection. For the 

segmentation of NHLBI target images based upon the MMWHS atlas, Table II shows an 

average of 2.9% improvement in the Dice index by applying the bounding box. Similarly, an 

average of 5.2% improvement in the Dice index was observed in Table III for segmenting 

the MMWHS target images based upon the NHLBI atlas with the bounding box detection. 

Furthermore, there was an average of 2.8% Dice improvement in LV, LA, LVM, and RA 

regions when segmenting the intra-institutional dataset of MMWHS target images based 

upon the MMWHS atlas with the bounding box detection (see Table III). This result may be 

explained by the fact that the registration can perform better with a more precise field-of-

view containing the whole heart as it does not need to account for optimizing the 

deformation field outsides of the heart. In contrast, segmenting the intra-institutional dataset 

of NHLBI target images based upon the NHLBI atlas did not show much improvement (see 

Table II) as the NHLBI dataset was already acquired in a more focused field-of-view around 

the whole heart; thus the additional bounding box detection did not further improve the 

segmentation results.
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In our four-way cross comparison to evaluate the segmentation performance among different 

configurations of atlas and target image datasets, both Table IV and Table V showed a better 

segmentation accuracy by using comparable atlas and target images from the same dataset. 

For the NHLBI test dataset, Table IV showed a slightly higher overall Dice index of 0.91 by 

using the comparable NHLBI atlas versus 0.88 from the MMWHS atlases (p<0.01). Five of 

the seven cardiac structures also showed slightly better Dice or distance scores based upon 

the NHLBI atlas (p<0.01). Similarly, for the MMWHS CTA test dataset, Table V showed a 

slightly higher overall Dice index of 0.86 by using the comparable MMWHS atlases versus 

0.85 from the NHLBI atlases (p=NS). Four of the seven cardiac structures also showed 

slightly better Dice or distance scores based upon the MMWHS atlases (p<0.01).

These results demonstrate that the consistency of atlas versus target datasets can affect the 

segmentation accuracy in our multi-atlas based approach. As the image quality, tissue HU 

intensity, in-plane and through-plane volume coverages may be influenced by differing 

clinical imaging protocols, including changes in variables such as contrast enhancement 

timing and concentration, radiation exposure dose, acquisition field-of-view, volume 

coverage, slice thickness, and matrix size settings, etc., a change of these imaging 

parameters may inevitably alter the intrinsic signal intensity across different tissues as well 

as the image volume coverage, and subsequently affect the robustness of an automated 

image segmentation method. The proposed bounding box detection addresses the field of 

view and volume coverage differences between multi-institutional datasets. Another factor 

that may also impact the segmentation performance is the quality of manual annotation 

which may be subjective and dependent upon the experience and attention of human 

observers.

Furthermore, the label generation protocol for manual segmentation is another factor that 

could influence the segmentation accuracy. In the NHLBI dataset, the manual segmentation 

of LV, LA, RV, RA, and LVM regions was performed in a similar way as the MMWHS 

dataset [2] except for the AA and PA structures. Due to a more restricted field of view in our 

acquisition protocol used to minimize patient radiation exposure, the volume coverage in the 

NHLBI dataset generally starts from the pulmonary trunk, rather than from the aortic arch 

above the pulmonary trunk as seen in the MMWHS dataset. Therefore, the AA and PA 

labels in the NHLBI atlas only cover these two regions up to the pulmonary trunk and below 

the aortic arch, as opposed to the more extensive coverage seen in the MMWHS atlas. 

Moreover, our NHLBI dataset also includes an additional four vascular structures, the LAA, 

SVC, IVC, and PV, which are not labeled in the MMWHS dataset. These additional labels 

may help to improve the localization of other adjacent structures in a multi-atlas based 

segmentation.

In comparing our CMACS framework with other published methods based upon the 40 

MMWHS CTA test dataset, Table VI shows our results are within the range of other 

methods. There is a slightly lower Dice index (0.86 vs. 0.87) but better MSD (1.56 vs. 2.12 

mm) and HD (9.46 mm vs. 37.68 mm) scores comparing ours versus the average results. 

Nevertheless, using 40 NHLBI test datasets, our framework obtained a higher segmentation 

accuracy, with an overall Dice index of 0.91, MSD of 1.25 mm and HD 7.81 mm.
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For the computational speed comparison in Table I, our improved CMACS framework with 

the bounding box detection averages about 1.55 minutes for segmenting seven cardiac 

structures from a CTA study which is about 25% faster than our original framework [1]. This 

processing speed is comparable to deep learning-based methods as presented in the 

MMWHS Challenge [2] and is significantly faster than other multi-atlas based methods 

which have been reported to take around 21 minutes [2].

5. Conclusion

In summary, we evaluated the impact of using a heterogeneous atlas versus a target image 

dataset in multi-atlas cardiac structure CTA image segmentation. We present an improved 

version of our combined multi-atlas and corrective segmentation framework [1] for 

segmenting different cardiac structures from contrast enhanced CTA studies. This new 

framework expands our previous method by including a bounding box detection step to 

improve the speed and robustness for segmenting multi-institutional datasets. We showed 

that the proposed framework can reliably segment two institutions’ differently-acquired 

datasets with interchangeable atlas libraries. Our quantitative comparisons also showed 

strong agreements between automated segmentation and manual reference standards for all 

cardiac structures assessed. These results demonstrate that the proposed CMACS framework 

may be readily generalized for processing large-scale datasets from other institutions, and 

for a more comprehensive clinical evaluation.
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• Evaluate the impact of using a heterogeneous dataset on the performance of 

multi-atlas segmentation of cardiac CTA images.

• Develop a fully automatic framework to segment CTA datasets acquired from 

distinct imaging protocols.

• Introduce a generalized technique to detect a bounding box enclosing the 

heart to improve segmentation speed and accuracy.
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FIGURE 1. 
Flow diagram of the proposed new bounding box detection function added to a combined 

multi-atlas and corrective segmentation (CMACS) framework for fully automatic multi-

structure cardiac CTA image segmentation. For a more detailed description of the CMACS 

framework, we refer the readers to our previous work [1].
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FIGURE 2. 
Flow chart of the proposed bounding box detection algorithm based on Simple Linear 

Iterative Clustering (SLIC) supervoxel whole heart segmentation.

Bui et al. Page 19

Comput Biol Med. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Comparison of 3D image volume size between NHLBI and MMWHS datasets. The original 

volume is shown in row (a). The volume after the bounding box detection is shown in row 

(b) in green.
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FIGURE 4. 
Comparison of structural similarity index (SSI) measurement between a target and two 

different atlas images. The atlas image in (a) shows more similar anatomical structures with 

the target image than the atlas image in (b). The corresponding SSI map in (c) also shows 

higher pixelwise SSI values than the SSI map in (d) with more mixed red and yellow colors.
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FIGURE 5. 
Comparison of optimal atlas selection with and without using the bounding box detection 

(BBD). The selected seven atlas images based on the BBD (left panel) show a better visual 

match and increased structural similarity index (SSI) score with the target images (top row) 

than the atlases without using the BBD (right panel).

Bui et al. Page 22

Comput Biol Med. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
Comparison of atlas-to-target image registration with and with using the bounding box 

detection (BBD). The warped atlas image based on the BBD (left bottom) show a better 

visual match to the target images (top row) than the atlas image that does not use the BBD 

(right bottom).
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FIGURE 7. 
Comparison of the transformed atlas labels (before corrective segmentation) with and 

without using the bounding box detection. Three orthogonal and 3D rendering views of a 

target image volume are shown in (a). The transformed atlas labels in (b) based upon the 

bounding box show a better match to the target image cardiac structures compared to the 

labels in (c) created without using the bounding box. This improved match is due to 

improved multi-atlas selection and atlas-to-target image registration that are based upon a 

more restricted 3D region after the bounding box detection (see Fig. 5 and Fig. 6). 

Transformed labels of different cardiac structures are presented in different colors ― LV: 

left ventricular cavity, LA: left atrial cavity, LVM: left ventricular myocardium, RV: right 

ventricular cavity, RA: right atrial cavity, AA: ascending aorta, PA: pulmonary artery.
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FIGURE 8. 
Comparison of automatic vs. manual segmentation results in three orthogonal and 3D views. 

The cases with (a) maximum, (b) median, and (c) minimum Dice scores from the NHLBI 

test dataset are shown. Cyan represents automatic segmentation, Magenta represents manual 

segmentation, and Yellow indicates the agreement areas.
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Table I.

Runtime comparison of the automated CMACS framework with and without the bounding box detection 

(BBD). Results are expressed as mean and standard deviation of segmenting 40 NHLBI and 40 MMWHS 

CTA datasets.

(minutes) CMACS (with BBD) CMACS (without BBD) p-value

NHLBI 1.43±0.21 1.87±0.31 p<0.001

MMWHS 1.68±0.36 2.28±0.78 p<0.001
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Table II.

Performance evaluation of the CMACS framework on the NHLBI CTA dataset using two different atlas 

libraries. The quantitative Dice index is calculated between the automatic and manual segmentation using two 

different atlas libraries. Results are expressed as the median and 95% confidence interval.

Atlas BBD LV LA LVM PA RA RV AA All

MMWHS

With BBD 0.88 [0.80, 
0.93]

0.85 [0.74, 
0.91]

0.71
†
 [0.54, 

0.81]
0.66 [0.38, 

0.80]
0.84 [0.75, 

0.88]
0.85 [0.79, 

0.90]
0.86 [0.74, 

0.91]
0.83 [0.56, 

0.90]

Without 
BBD

0.87 [0.75, 
0.93]

0.85 [0.72, 
0.89]

0.66 [0.46, 
0.77]

0.61 [0.43, 
0.79]

0.83 [0.66, 
0.88]

0.85 [0.76, 
0.89]

0.84 [0.64, 
0.91]

0.81 [0.49, 
0.90]

NHLBI

With BBD 0.89 [0.84, 
0.93]

0.91 [0.86, 
0.94]

0.80 [0.70, 
0.85]

0.60 [0.38, 
0.77]

0.89 [0.83, 
0.91]

0.90 [0.85, 
0.93]

0.89 [0.84, 
0.93]

0.89 [0.56, 
0.94]

Without 
BBD

0.93 [0.90, 
0.95]

0.91 [0.88, 
0.94]

0.80 [0.67, 
0.85]

0.63 [0.46, 
0.74]

0.88 [0.83, 
0.92]

0.89 [0.83, 
0.93]

0.89 [0.83, 
0.92]

0.88 [0.57, 
0.94]

†
indicates significantly better performance in a higher Dice score (p<0.05).

Comput Biol Med. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bui et al. Page 28

Table III.

Performance evaluation of the CMACS framework on the MMWHS CTA dataset using two different atlas 

libraries. The quantitative Dice index is calculated between the automatic and manual segmentation using two 

atlas libraries. Results are expressed as the median and 95% confidence interval.

Atlas BBD LV LA LVM PA RA RV AA All

MMWHS

With BBD 0.87 [0.74, 
0.91]

0.90 [0.77, 
0.94]

0.80 [0.56, 
0.89]

0.76 [0.54, 
0.91]

0.84 [0.61, 
0.89]

0.84 [0.69, 
0.90]

0.89 [0.78, 
0.92]

0.84 [0.60, 
0.92]

Without 
BBD

0.85 [0.72, 
0.91]

0.89 [0.78, 
0.93]

0.75 [0.59, 
0.88]

0.81 [0.52, 
0.90]

0.83 [0.65, 
0.89]

0.86 [0.72, 
0.91]

0.90 [0.83, 
0.92]

0.84 [0.64, 
0.92]

NHLBI

With BBD 0.86 [0.61, 
0.94]

0.86
† 

[0.68, 0.92]
0.70

† 

[0.48, 0.82]
0.58 [0.29, 

0.77]
0.82

† 

[0.62, 0.88]
0.82 [0.62, 

0.89]
0.86 [0.75, 

0.90]
0.80

† 

[0.50, 0.90]

Without 
BBD

0.81 [0.41, 
0.93]

0.81 [0.58, 
0.90]

0.64 [0.30, 
0.82]

0.54 [0.36, 
0.69]

0.79 [0.61, 
0.87]

0.80 [0.59, 
0.88]

0.85 [0.77, 
0.91]

0.76 [0.43, 
0.88]

†
indicates significantly better performance in a higher Dice (p<0.05).
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Table IV.

Performance evaluation of the CMACS framework on the NHLBI CTA dataset using two different atlas 

libraries. Quantitative Dice index, 3D Hausdorff distance (HD) and mean surface distance (MSD) are 

calculated between the automatic and manual segmentation using two different atlas libraries. Results are 

expressed as the median and 95% confidence interval.

n=40 Atlas LV LA LVM PA RA RV AA All

Dice

NHLBI 0.92 [0.91, 
0.94]

0.95
†
 [0.91, 

0.97]
0.83

† 

[0.77, 0.87]
0.74 [0.53, 

0.85]
0.91

†
 [0.85, 

0.93]
0.89

† 

[0.85, 0.93]
0.96

†
 [0.90, 

0.97]
0.91

† 

[0.66, 0.97]

MMWHS 0.92 [0.88, 
0.94]

0.92 [0.80, 
0.95]

0.79 [0.71, 
0.85]

0.78 [0.48, 
0.89]

0.88 [0.79, 
0.92]

0.88 [0.83, 
0.91]

0.95 [0.88, 
0.97]

0.88 [0.65, 
0.96]

MSD 
(mm)

NHLBI 1.33
† 

[1.04, 1.68]
0.74

†
 [0.50, 

1.12]
1.15

† 

[0.97, 1.60]
1.73 [1.09, 

7.68]
1.33

†
 [1.05, 

2.15]
1.69

† 

[1.35, 2.49]
0.51

†
 [0.33, 

0.93]
1.25

† 

[0.46, 2.49]

MMWHS 1.47 [1.10, 
2.19]

1.17 [0.77, 
2.39]

1.35 [1.01, 
2.09]

1.91 [1.09, 
13.6]

1.93 [1.33, 
3.08]

1.98 [1.56, 
2.66]

0.60 [0.38, 
1.28]

1.54 [0.54, 
3.29]

HD 
(mm)

NHLBI 5.74
† 

[4.47, 8.82]
6.20

†
 [3.74, 

16.8]
9.19 [5.38, 

17.6]
17.1 [8.46, 

75.3]
8.69

†
 [4.87, 

18.6]
10.3 [7.0, 

18.5]
3.46

†
 [2.24, 

6.18]
7.81 [3.00, 

23.1]

MMWHS 7.84 [5.0, 
13.3]

9.67 [6.52, 
17.1]

9.90 [5.37, 
14.8]

18.9 [8.32, 
77.4]

12.6 [9.16, 
19.3]

11.3 [7.78, 
17.2]

4.24 [2.80, 
7.68]

10.1 [3.61, 
25.8]

†
indicates significantly better performance in a higher Dice, a lower HD, or a lower MSD (p<0.05).
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Table V.

Performance evaluation of the CMACS framework on the MMWHS CTA dataset using two different atlas 

libraries. Quantitative Dice index, 3D Hausdorff distance (HD) and mean surface distance (MSD) are 

calculated between the automatic and manual segmentation using two atlas libraries. Results are expressed as 

the median and 95% confidence interval.

n=40 Atlas LV LA LVM PA RA RV AA All

Dice

NHLBI 0.89 [0.78, 
0.94]

0.91 [0.81, 
0.95]

0.80 [0.68, 
0.86]

0.73 [0.50, 
0.89]

0.85 [0.66, 
0.90]

0.84 [0.61, 
0.89]

0.93 [0.86, 
0.96]

0.85 [0.62, 
0.95]

MMWHS 0.88 [0.77, 
0.93]

0.92 [0.84, 
0.95]

0.83 [0.72, 
0.88]

0.80 [0.53, 
0.90]

0.84 [0.60, 
0.91]

0.86
†
 [0.73, 

0.91]
0.93 [0.84, 

0.96]
0.86 [0.64, 

0.94]

MSD 
(mm)

NHLBI 1.46
† 

[1.01, 2.72]
1.28 [0.80, 

2.63]
1.51 [1.01, 

3.10]
1.67 [0.86, 

4.24]
2.21 [1.51, 

3.84]
2.31 [1.64, 

3.92]
0.71 [0.38, 

1.38]
1.65 [0.62, 

3.59]

MMWHS 1.66 [1.16, 
2.98]

1.15 [0.83, 
2.28]

1.17
† 

[0.73, 2.10]
1.74 [1.01, 

3.47]
2.13 [1.41, 

4.44]
1.68

†
 [1.25, 

3.39]
0.78 [0.43, 

1.54]
1.56 [0.65, 

3.36]

HD 
(mm)

NHLBI 8.88 [5.79, 
12.4]

11.4 [6.93, 
16.8]

11.4 [7.71, 
17.5]

14.0 [5.79, 
25.7]

13.33 
[8.04, 
25.9]

12.0 [7.13, 
27.8]

4.52
† 

[2.80, 8.55]
11.4 [4.0, 

25.6]

MMWHS 8.43 [6.38, 
14.0]

8.91
† 

[5.78, 17.1]
8.92 [5.07, 

19.9]
7.71

† 

[4.10, 14.0]
11.9 [6.93, 

23.6]
11.0 [6.93, 

25.7]
6.67 [4.10, 

11.5]
9.46

† 

[5.00, 22.7]

†
indicates significantly better performance in a higher Dice, a lower HD, or a lower MSD (p<0.05).
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Table VI.

Performance comparison of the proposed CMACS framework and other published methods based on the 

MMWHS CTA test dataset. Quantitative Dice coefficient, 3D Hausdorff distance (HD) and mean surface 

distance (MSD) measurements of 10 automated CTA segmentation methods reported in the MMWHS 

challenge [2] versus our results. The 10 methods in MMWHS challenges are: GUT, KTH, CUHK1, CUHK2, 

UCF, SEU, SIAT, UT, UB1, and UOE.

Methods Dice MD HD

GUT 0.91 ± 0.09 1.12 ± 0.25 25.2 ± 10.8

KTH 0.89 ± 0.03 1.39 ± 0.52 31.2 ± 13.2

CUHK1 0.89 ± 0.05 1.43 ± 0.59 29.0 ± 15.8

CUHK2 0.89 ± 0.05 1.68 ± 0.59 42.0 ± 16.3

UCF 0.88 ± 0.08 1.54 ± 1.01 28.5 ± 11.4

SEU 0.88 ± 0.02 1.71 ± 0.40 34.1 ± 12.5

SIAT 0.85 ± 0.06 1.93 ± 0.92 44.9 ± 16.1

UT 0.84 ± 0.15 4.81 ± 13.6 34.6 ± 12.4

UB1 0.89 ± 0.03 1.44 ± 0.30 55.4 ± 10.9

UOE 0.81 ± 0.16 4.20 ± 7.78 51.9 ± 17.5

CMACS
1 0.86 ± 0.04 1.66 ± 0.88 10.2 ± 4.86

CMACS
2 0.84 ± 0.04 1.82 ± 1.00 11.4 ± 5.36

1
CMACS: our results based on the MMWHS atlas.

2
CMACS: our results based on the NHLBI atlas. All results are expressed as mean ± standard deviation.
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