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Abstract  

Non-alcoholic fatty liver disease (NAFLD) is a disease with multidimensional complexities.  

Many attempts have been made over the years to treat this disease but its incidence is rising.  

For this reason, the need to identify and study new candidate proteins that may be associated 

with NAFLD is of utmost importance.  Systems-based approaches such as the analysis of 

protein-protein interaction (PPI) network could lead to the discovery of new proteins associated 

with a disease that can then be translated into clinical practice.  The aim of this study is to 

analyze the interaction network of human proteins associated with NAFLD as well as their 

experimentally verified interactors and to identify novel associations with other human proteins 

that may be involved in this disease.  Computational analysis made it feasible to detect 77 

candidate proteins associated with NAFLD, having high network scores.  Furthemore, 

clustering analysis was performed to identify densely connected regions with biological 

significance in this network.  Additionally, gene expression analysis was conducted to validate 

part of the findings of this research work.  We believe that our research will be helpful in 

extending experimental efforts to address the pathogenesis and progression of NAFLD.  

Keywords: Non-alcoholic fatty liver disease; nonalcoholic steatohepatitis; protein-protein 

interaction (PPI); protein-disease association; bioinformatics 
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1. Introduction  

The liver is a vital digestive organ which performs many essential body’s metabolic functions 

involving metabolism of lipids, bile acids, glucose and cholesterol [1].  Metabolic pathways do 

not operate independently within the liver; one pathway can heavily affect other pathways.  

The dysfunctional crosstalk of the hepatic pathways is a widespread health problem, 

responsible for about 2 million deaths worldwide each year [2].  The most common chronic 

liver disease worldwide is known as non-alcoholic fatty liver disease (NAFLD). It is an 

umbrella term which encompasses a spectrum of pathological conditions ranging from simple 

hepatic steatosis (SS) or non-alcoholic fatty liver (NAFL) to a more severe form nonalcoholic 

steatohepatitis (NASH), and NASH cirrhosis [3].  Although in the last decade, research 

advances demonstrate that NAFLD is a multisystem disease in which many complex processes 

are involved in its manifestation and development.  In addition, growing number of studies 

demonstrates that NAFLD affects a variety of extrahepatic organs and regulatory pathways [4]. 

With the passage of time, NAFLD’s health and socio-economic influence is rising, and the 

annual health costs in the United States are greater than $103 billion [5].  Henceforth, its timely 

and precise diagnosis is very significant, considering that its prevalence has rapidly reached 

global epidemic proportions in both adults and children [6].  Most patients are asymptomatic 

and the diagnosis of the disease is random in most cases [7]. 

The medical community has centered on the causes of the disease over the past few decades, 

and the identification of new diagnostic markers (biomarkers).  Nonetheless, the gold standard 

for NAFLD diagnosis remains the liver biopsy but this procedure is inefficient as a diagnostic 

tool due to its invasive, expensive and sometimes serious complications [8].  In the foreseeable 

future, the key to NAFLD diagnosis and treatment could be the "molecular signature" of each 

NAFLD patient [9]. 

The data that derived from omics technologies which feed precision medicine have a major 

contribution to this effort.  An increasing number of technical advancements have, to date, 
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produced a collection of many unused data as a whole.  Therefore, it is necessary to move from 

single omics to multi-omics analysis, providing a broader window of its pathophysiology that 

scans different perspectives [9].  Network-based approaches integrate omics data such as 

protein-protein interaction (PPI) networks which are gaining ground in the scientific 

community as they provide valuable, quick and inexpensive tools for clarifying disease 

mechanisms and detecting new candidate disease-related proteins (or genes) [10]. 

Disease is rarely the result of an abnormality in a single gene but represents disruptions in the 

complex interaction network.  Key biological factors that control the pathobiology of the 

disease are almost always the result of several pathobiological pathways interacting through an 

interconnected network [11].  Conventional methods which evaluate one gene or factor at a 

time have become less effective in tackling NAFLD's multidimensional complexities [1].  

Given the fact that NAFLD research mostly includes studies on human clinical and animal 

model trials [9], the analysis of PPI network could be an ally to uncover candidate biomarkers 

and pathological pathways, as well as potential therapeutic targets, contributing to the 

development of noninvasive diagnosis. 

In the present study, a PPI network analysis was conducted to identify new candidate proteins 

that may be involved in NAFLD through performing topological analyses.  Besides, clustering 

analysis of the PPI network was achieved to identify densely connected regions.  In order to 

reveal insights into the molecular mechanisms of the network’s proteins, an enrichment 

analysis was performed.  Moreover, an analysis of gene expression microarray data set was 

achieved to detect differential expressed genes (DEGs) between NAFLD samples and controls, 

as well as a pathway analysis of DEGs.   
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2. Methods 

The research methodology used in this study includes the stages stated below.  Fig. 1 outlines 

the basic steps involved in the methodology. 

Fig. 1:  The schematic diagram of the research methodology. 

2.1 Detection of genes associated with NAFLD 

NAFLD and its subtype NASH have been queried using “Non-alcoholic Fatty Liver Disease” 

and “NASH - Nonalcoholic steatohepatitis” terms in a DisGeNET search panel which is a 

discovery platform containing one of the largest collections of genes and variants associated 

with human diseases [12].  All the NAFLD-related genes are either genetic associations or 

under/over expressed in the gene transcription levels or are present at low/high protein levels 

in patient’s plasma/serum.  Eventually, the disease-related genes were manually confirmed for 

their association with NAFLD. 
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2.2 Collection of protein-protein interactions (PPI)  

The NAFLD-related genes were then converted to proteins using UniProt Accession Numbers 

(ACs) via UniProt database [13].  A query was then conducted in IntAct [14], a molecular 

interaction database with highly curated data, using the ACs of the proteins, to retrieve all 

experimentally confirmed interactions of these proteins and their first neighbors.  Interaction 

data were obtained in a MI-TAB 2.7 format file [15] in which any non-human interactions and 

interactions with chemical compounds were removed. 

2.3 Visualization and analysis of the PPI network 

Cytoscape (version) 3.7.2 software, a popular open source bioinformatics platform for the data 

integration and network analysis [16], was used to visualize and analyze the PPI network.  In 

this network, every node corresponds to a protein and the edges represent interactions, where 

the latter were treated as undirected for this analysis.  Additionally, browser-based web 

application was generated to visualize interactive networks via the CyNetShare tool 

(http://idekerlab.github.io/cy-net-share/).  Links are provided in the legends of the respective 

figures.  

Afterwards a topological analysis was conducted using the NetworkAnalyzer [17], a handy 

Cytoscape plugin, to estimate simple and complex topology parameters.  The three important 

metrics – degree, betweenness and closeness centrality – were utilized to evaluate the 

importance of nodes in a network [10, 18].  Hub proteins were identified by their very high 

degree of connectivity.  Proteins with high betweenness centrality, namely bottlenecks, are key 

connectors in the PPI network, controlling the flow of information within a network [19].  For 

the identification of proteins - from which the flow of information passes faster to other 

network’s proteins - are those with high closeness centrality, hereby referred to as PHC 

(proteins with high closeness centrality) [10].  The top scoring proteins corresponding to about 

the 5% of the network’s proteins were then selected for each of the three aforementioned 

network centralities.  A Venn diagram was subsequently applied to identify candidate 
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NAFLD-related proteins that were on the three high scoring protein lists but did not belong 

to the list of the NAFLD-related proteins. 

Given the heterogeneous nature behind biological networks, it is advisable to use more than 

one approach to capture essential proteins.  Therefore, a newly proposed method Maximal 

Clique Centrality (MCC) was estimated using the cytoHybba software [20], that has been 

proven for its great performance in predicting important proteins from the PPI network.  The 

10 top ranked proteins based on MCC algorithm were also identified as candidate NAFLD-

related proteins. 

Subsequently, Molecular Complex Detection (MCODE) algorithm was utilized to perform a 

clustering analysis [21].  The selection parameters were set as follows: MCODE scores>5, 

degree cut-off=2, node-score cut-off=0.2 and k-core=2.   

Afterwards, an enrichment analysis was performed with the use of two bioinformatics tools, 

DAVID [22] and WebGestalt [23].  DAVID was used for functional enrichment analysis, 

disease association as well as pathway analysis and WebGestalt was utilized for human 

phenotype ontology (HPO) analysis.  Functional enrichment analysis was applied to detect 

statistically significant overrepresented Gene Ontology (GO) [24] terms in the network.  Disease 

association analysis was used to uncover the association of network’s proteins with disease 

terms from Gene Association Database (GAD) [25].  Pathway analysis was applied to detect 

the KEGG pathways from KEGG PATHWAY Database [26] and HPO analysis [27] used to 

detect the phenotype of network proteins’.  P-value<0.05 was defined as statistical significance. 

2.4 Gene expression data and pathway analyses of candidate NAFLD-related 

proteins 

To detect differentially expressed genes (DEGs) in NAFLD compared to normal condition, the 

human gene expression data set GSE151158 [28] was downloaded from the Gene Expression 

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) [29], including 21 control liver samples, 

40 NAFLD samples – 23 of which have NAFLD Activity Score (NAS) ≤ 3 and 17 have NAS 
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≥ 5.  The analysis was performed through GEO2R [30] tool which applies limma (Linear 

Models for Microarray Analysis) [31] and GEOquery [32] R packages from the Bioconductor 

project.  The data were log-transformed, and P-values were adjusted based on the Benjamini 

& Hochberg (False discovery rate, FDR) method for multiple testing.  The significantly DEGs 

were defined with an adjusted P-value<0.05 and were then subjected to discover whether it 

contains any of the candidate NAFLD-related proteins resulting from the topological network 

analysis.  The list of significantly DEGs were further analyzed against the WikiPathways [33] 

database by using the Enrichr [34] tool.  P-value cutoff of 0.05 was selected to identify 

significantly enriched terms as well.    
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3. Results 

3.1 Construction and analysis of NAFLD Interactome 

The data set of NAFLD-related proteins is comprised of 254 proteins (Supplementary Table 

1).  They were then inserted into IntAct to collect their PPI, 226 of which have stored PPI data 

(Supplementary Table 2).  Subsequently, the collected PPI data (Supplementary Table 3) 

were imported into Cytoscape 3.7.2 to construct a PPI network, refer to as ‘NAFLD 

Interactome’, comprising of 2624 proteins (nodes) and 20259 interactions (edges) (Fig. 2). 

After conducting a topological analysis with the utilization of NetworkAnalyzer in NAFLD 

Interactome, important information regarding the network’s topology and the biological value 

of its proteins was revealed.  The network’s density (show how sparse/dense is a network) is 

estimated as 0.006, a value lower than 0.1, which denotes that the NAFLD Interactome is a 

sparsely connected network, as other biological networks [35].  The clustering coefficient, the 

propensity of the network to grouped into clusters, is measured as 0.110 and the characteristic 

path length (CPL) [36] is 3.285. 

The node degree distribution P(k) [37], follows the power-law P(k) = 𝐴𝑘−𝛾, where A is 

constant and γ is the degree exponent.  In our case, the distribution is of the following form: 

P(k) = 2485.86𝑘−1.597 (1) 

PPI networks are scale-free and its main feature is that they follow the power law node degree 

distribution [38].  Since this network also follows the power law distribution; it is characterized 

by a small number of highly connected proteins, while the majority of the other proteins have 

few interactions with others [37]. 

To quantify the importance of network’s proteins, metrics for the degree, betweenness and 

closeness centrality were applied for all NAFLD interactome’s proteins.  Specifically, the 

proteins were ranked based on the three afore mentioned centrality measures and then the top 

5% of the network’s proteins with the highest values were chosen.  Considering the overlapping 
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proteins among the protein lists of each network centrality, a total of 208 proteins were finally 

selected (Supplementary Table 4).  Particularly, in the NAFLD Interactome, 25 proteins are 

hubs (Fig. 2, triangles), 22 proteins are bottlenecks (Fig. 2, rectangles), 17 proteins are hubs 

and bottlenecks (Fig. 2, diamonds), 40 proteins are PHCs (Fig. 2, V-shaped nodes), 11 proteins 

are hubs and PHCs (Fig. 2, hexagons), 14 proteins are bottlenecks and PHCs (Fig. 2, octagons), 

and 79 proteins are hubs, bottlenecks and PHCs (Fig. 2, parallelograms).  It is noteworthy that 

30 NAFLD-related proteins play an essential role in the NAFLD Interactome. 

Fig. 2:  The NAFLD Interactome. A web visualization of this network is available at 

/NAFLDInteractome.    

The enrichment analysis in NAFLD Interactome (2624 proteins) was performed to uncover 

the role of the network’s proteins (more details are given in Supplementary Tables 5-8).  

Among of the most statistically significant over-represented GO terms are the following: 

negative (GO:0043066) (P-value: 5.22E-37) and positive regulation of apoptotic process 

(GO:0043065) (P-value: 3.78E-34), positive regulation of transcription from RNA polymerase 
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II promoter (GO:0045944) (P-value: 4.19E-34) and inflammatory response (GO:0006954) (P-

value: 9.55E-28).   

The KEGG pathways terms in which most proteins were found to be involved are pathways 

in cancer (hsa05200) (P-value: 4.11E-41), PI3K-Akt signaling pathway (hsa04151) (P-value: 

1.15E-25), proteoglycans in cancer (hsa05205) (P-value: 1.11E-29), MAPK signaling pathway 

(hsa04010) (P-value: 5.67E-18) and focal adhesion (hsa04510) (P-value: 3.89E-24).  The 

disease association analysis shows that type 2 diabetes (P-value: 1.91E-52), chronic kidney 

failure (P-value: 3.90E-38), Alzheimer’s disease (P-value: 9.41E-23), lung (P-value: 5.84E-

53), bladder (P-value: 1.12E-48) and breast (P-value: 9.83E-54) cancer, as well as multiple 

sclerosis (P-value: 8.62E-27) and schizophrenia (P-value: 4.56E-17) are among of the 

numerous identified disease terms.  Moreover, several phenotypic abnormalities were 

identified from HPO analysis including abnormality of the digestive system (HP: 0025031) 

(P-value: 5.23E-08), metabolism/homeostasis (HP: 0001939) (P-value: 2.26E-07), 

cardiovascular system (HP: 0001626) (P-value: 2.53E-04), skin morphology (HP: 0011121) 

(P-value: 1.96E-07) and immune system (HP: 0002715) (P-value: 6.89E-10). 

Two different approaches were applied to identify candidate NAFLD-related proteins, as 

previously described in the Methods section.  In the first approach, in order to find which 

proteins are present in the list of 79 high scoring proteins (hubs, bottlenecks and PHCs) and 

already associated with NAFLD, the list of  high scoring proteins was combined with the list 

of 226 NAFLD-related proteins using Venn diagram.  Thusly, 68 proteins were recognized as 

belonging only to the list of high scoring proteins, called candidate NAFLD-related proteins 

(Table 1a).  In the second approach, the 10 top-ranked proteins were found applying MCC  

algorithm, which are given in Table 1b.  While CLOCK belongs to the list of 226 NAFLD-

related proteins, the remaining 9 proteins were identified as candidate NAFLD-related proteins.  
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Table 1a:  Identification of candidate NAFLD-related proteins.  The column “Centrality measures” 

shows the proteins’ ranking in Degree-D, Betweenness-B and Closeness-C network centrality measures.  

The rank of each protein is given inside the parenthesis of the corresponding centrality measure in the 

top 140 rankings (approximately the top 5% of the network's proteins). 

UniProt 

AC 
Gene Protein name 

Centrality measures 

(Ranking) 

P62993 GRB2 
Growth factor receptor-bound 

protein 2 
D (1), B(2), C(3) 

P00533 EGFR 
Epidermal growth factor 

receptor 
D (3), B(4), C(1) 

P63104 YWHAZ 14-3-3 protein zeta/delta D (5), B(7), C(2) 

Q9Y4K3 TRAF6 
TNF receptor-associated 

factor 6 
D (8), B(12), C(12) 

Q9NRI5 DISC1 
Disrupted in schizophrenia 1 

protein 
D (9), B(8), C(13) 

P08238 HSP90AB1 
Heat shock protein HSP 90-

beta 
D (10), B(9), C(5) 

Q04206 RELA Transcription factor p65 D (12), B(18), C(15) 

Q9Y6K9 IKBKG 
NF-kappa-B essential 

modulator 
D (11), B(15), C(9) 

P04637 TP53 Cellular tumor antigen p53 D (13), B(11), C(7) 

P16333 NCK1 Cytoplasmic protein NCK1 D (14), B(69), C(134) 

P06241 FYN Tyrosine-protein kinase Fyn D (15), B(38), C(35) 

P12931 SRC 
Proto-oncogene tyrosine-

protein kinase Src 
D (16), B(25), C(14) 

P46108 CRK Adapter molecule crk D (18), B(40), C(42) 

Q14164 IKBKE 

Inhibitor of nuclear factor 

kappa-B kinase subunit 

epsilon 

D (17), B(17), C(17) 

Q12933 TRAF2 
TNF receptor-associated 

factor 2 
D (20), B(21), C(8) 

P04626 ERBB2 
Receptor tyrosine-protein 

kinase erbB-2 
D (21), B(20), C(10) 

Q08379 GOLGA2 Golgin subfamily A member 2 D (23), B(42), C(33) 

A8MQ03 CYSRT1 Cysteine-rich tail protein 1 D (24), B(65), C(102) 

Q8TBB1 LNX1 
E3 ubiquitin-protein ligase 

LNX 
D (25), B(29), C(18) 

O60341 KDM1A 
Lysine-specific histone 

demethylase 1A 
D (28), B(32), C(41) 

P00519 ABL1 Tyrosine-protein kinase ABL1 D (26), B(58), C(28) 

Q6FHY5 MEOX2 MEOX2 protein D (29), B(13), C(45) 

Q99759 MAP3K3 
Mitogen-activated protein 

kinase 3 
D (27), B(67), C(38) 

P01889 HLA-B 

HLA class I 

histocompatibility antigen, B 

alpha chain 

D (30), B(43), C(78) 

Q96HA8 WDYHV1 
Protein N-terminal glutamine 

amidohydrolase 
D (31), B(23), C(46) 

Q5S007 LRRK2 

Leucine-rich repeat 

serine/threonine-protein 

kinase 2 

D (32), B(22), C(36) 

P12004 PCNA 
Proliferating cell nuclear 

antigen 
D (34), B(19), C(32) 

P35222 CTNNB1 Catenin beta-1 D (35), B(36), C(31) 

P61981 YWHAG 14-3-3 protein gamma D (36), B(46), C(24) 
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P38936 CDKN1A 
Cyclin-dependent kinase 

inhibitor 1 
D (38), B(28), C(25) 

Q16543 CDC37 Hsp90 co-chaperone Cdc37 D (39), B(33), C(11) 

P08670 VIM Vimentin D (43), B(31), C(23) 

P19438 TNFRSF1A 

Tumor necrosis factor 

receptor superfamily member 

1A 

D (42), B(75), C(93) 

P23508 MCC 
Colorectal mutant cancer 

protein 
D (44), B(48), C(39) 

P0CG48 UBC Polyubiquitin-C D (47), B(53), C(20) 

P49639 HOXA1 Homeobox protein Hox-A1 D (49), B(97), C(75) 

Q15323 KRT31 Keratin, type I cuticular Ha1 D (48), B(68), C(90) 

Q00987 MDM2 
E3 ubiquitin-protein ligase 

Mdm2 
D (51), B(72), C(27) 

Q13526 PIN1 
Peptidyl-prolyl cis-trans 

isomerase NIMA-interacting 1 
D (50), B(39), C(19) 

Q13077 TRAF1 
TNF receptor-associated 

factor 1 
D (53), B(95), C(53) 

P04792 HSPB1 Heat shock protein beta-1 D (55), B(49), C(29) 

P14373 TRIM27 Zinc finger protein RFP D (58), B(74), C(48) 

Q9BYV2 TRIM54 
Tripartite motif-containing 

protein 54 
D (57), B(59), C(83) 

O00560 SDCBP Syntenin-1 D (60), B(47), C(71) 

P42858 HTT Huntingtin D (59), B(73), C(58) 

P84022 SMAD3 
Mothers against 

decapentaplegic homolog 3 
D (61), B(34), C(30) 

P63279 UBE2I 
SUMO-conjugating enzyme 

UBC9 
D (62), B(63), C(51) 

P54253 ATXN1 Ataxin-1 D (64), B(45), C(54) 

P31946 YWHAB 14-3-3 protein beta/alpha D (67), B(111), C(49) 

Q15796 SMAD2 
Mothers against 

decapentaplegic homolog 2 
D (66), B(70), C(70) 

P40337 VHL 
von Hippel-Lindau disease 

tumor suppressor 

D (69), B(114), 

C(141) 

P49841 GSK3B 
Glycogen synthase kinase-3 

beta 
D (70), B(57), C(37) 

Q9NRD5 PICK1 PRKCA-binding protein D (77), B(82), C(88) 

P0DP25 CALM3 Calmodulin-3 D (84), B(66), C(40) 

P25054 APC 
Adenomatous polyposis coli 

protein 
D (82), B(90), C(85) 

Q09472 EP300 Histone acetyltransferase p300 D (83), B(54), C(26) 

Q9UKE5 TNIK 
TRAF2 and NCK-interacting 

protein kinase 
D (81), B(115), C(73) 

P67870 CSNK2B Casein kinase II subunit beta D (92), B(77), C(80) 

O14964 HGS 

Hepatocyte growth factor-

regulated tyrosine kinase 

substrate 

D (97), B(125), C(92) 

P62136 PPP1CA 

Serine/threonine-protein 

phosphatase PP1-alpha 

catalytic subunit 

D (94), B(56), C(100) 

Q13485 SMAD4 
Mothers against 

decapentaplegic homolog 4 

D (103), B(106), 

C(126) 

Q92569 PIK3R3 
Phosphatidylinositol 3-kinase 

regulatory subunit gamma 

D (100), B(121), 

C(115) 

P11021 HSPA5 
Endoplasmic reticulum 

chaperone BiP 
D (106), B(79), C(34) 

P68104 EEF1A1 Elongation factor 1-alpha 1 
D (111), B(86), 

C(124) 

P62258 YWHAE 14-3-3 protein epsilon 
D (123), B(132), 

C(98) 
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Q96GM5 SMARCD1 

SWI/SNF-related matrix-

associated actin-dependent 

regulator of chromatin 

subfamily D member 1 

D (122), B(119), 

C(62) 

Q9NRR5 UBQLN4 Ubiquilin-4 
D (125), B(64), 

C(122) 

intact:EBI-

4399559 
- - D (45), B(27), C(22) 

 

Table 1b:  Identification of candidate NAFLD-related proteins. The 10 top-ranked proteins based 

on MCC method in NAFLD Interactome.  CLOCK protein, highlighted in bold, is already in the list of 

NAFLD-related proteins.  

UniProt AC Gene Protein name 

O15516 CLOCK Circadian locomoter output cycles protein kaput  

Q9UKL0 RCOR1 REST corepressor 1  

Q9NNX1 TUFT1 Tuftelin 

Q96BD5 PHF21A PHD finger protein 21A  

O43482 OIP5 Opa-interacting protein 5 

Q86Y13 DZIP3 E3 ubiquitin-protein ligase DZIP3 

Q9NP66 HMG20A High mobility group protein 20A  

O95619 YEATS4 YEATS domain-containing protein 4  

Q96JG6 VPS50 Syndetin 

Q567U6 CCDC93 Coiled-coil domain-containing protein 93 

The results of the enrichment analysis of candidate NAFLD-related proteins are shown in 

Supplementary Table 9.   

3.2 Clustering and enrichment analysis  

Clustering analysis.  The base of this study is the NAFLD Interactome, a large interconnected 

network with interactive embedded subnetworks.  Hence, with a valuable applying of 

clustering analysis via MCODE algorithm, the detection of 6 clusters with MCODE score>5 

was achieved (Fig. 3).  The first cluster (MCODE score=29.655) consists of 30 proteins, 

including 1 NAFLD-related protein: CLOCK (Fig. 3, 1st Cluster-red node).  It is of utmost 

importance for our analysis to note that 9 of which are candidate NAFLD-related proteins: 

RCOR1, TUFT1, PHF21A, OIP5, DZIP3, HMG20A, YEATS4, VPS50 and CCDC93 (Fig. 

3, 1st Cluster-magenta nodes).  Also, the second cluster (MCODE score=15.412) integrates 

18 proteins 2 of which are candidate NAFLD-related proteins: HOXA1 and CYSRT1 (Fig. 3, 

2nd Cluster-magenta nodes). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.01.406215doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406215


15 
 

Subsequently, the third (MCODE score=12.500) and fourth (MCODE score=10.273) cluster 

comprise of 13 and 23 proteins, respectively, containing 1 NAFLD-related protein: PDIA3 

(Fig. 3, 3rd Cluster-red node) and 2 NAFLD-related proteins: CXCL10 and PF4 (Fig. 3, 4th 

Cluster-red nodes), correspondingly.  The fifth cluster (MCODE score=6.200) integrates 11 

proteins, 2 of which are NAFLD-related proteins: CHUK and PLCG1 (Fig. 3, 5th Cluster-red 

nodes) and 3 are candidate NAFLD-related proteins: RELA, IKBKG and EGFR (Fig. 3, 5th 

Cluster-magenta nodes).  Finally, the sixth cluster (MCODE score=5.125) encompasses 17 

proteins, involving 2 NAFLD-related proteins: LUM and TGFB1 (Fig. 3, 6th Cluster-red 

nodes) and 3 candidate NAFLD-related proteins: MEOX2, LNX1 and PIN1 (Fig. 3, 6th 

Cluster-magenta nodes).  

Fig. 3: Clustering analysis of the NAFLD Interactome.  A web visualization of this network is 

available at /ClusteringAnalysisNAFLDInteractome. 

Functional enrichment analysis.  GO terms were detected for each cluster.  Specifically, BP 

terms could be extracted for the 1st, 2nd, 4th, 5th and 6th clusters (Supplementary Table 10), 

while the MF and CC terms are identified for all clusters (Supplementary Table 11-12). 

Pathway analysis.  The pathway analysis brings to light information regarding the common 

pathways in which each cluster’s proteins partake.  Results were detected for all clusters except 

for the 2nd cluster.  Circadian rhythm (hsa04710) (P-value: 0.0223) was found present in the 1st 
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cluster. Chemokine signaling pathway (hsa04062) (P-value: 2.72E-21) and cytokine-cytokine 

receptor interaction (hsa04060) (P-value: 9.73E-20) dominated in the 4th cluster.  Moreover, 

the majority of 5th cluster’s proteins were found to be involved in epithelial cell signaling in 

Helicobacter pylori infection (hsa05120) (P-value: 5.58E-11) and NF-kappa B signaling 

pathway (hsa04064) (P-value: 2.80E-10).  Finally, only RNA degradation (hsa03018) (P-value: 

4.57E-05) was detected in 6th cluster.  No results were returned for the 2nd cluster.  More details 

of pathway analysis are given in Supplementary Table 13. 

Disease association analysis.  Statistically significant disease terms were retrieved for each 

cluster, although no results were detected for the 2nd cluster (Supplementary Table 14).  

Interestingly, depression (P-value: 0.0193) and sleep disorders (P-value: 0.0368) are associated 

with the 1st cluster’s proteins.  Acquired immunodeficiency syndrome (P-value: 0.0147) is the 

only statistically significant term of the 3rd cluster and respiratory syncytial virus bronchiolitis 

(P-value: 3.77E-11) is highly related to the 4th cluster’s proteins.  Also, rheumatoid arthritis (P-

value: 1.86E-09) and benzene haematotoxicity (P-value: 3.82E-07) are among the highly 

statistical terms associated with proteins of the 5th cluster.  Lastly, vesico-ureteral reflux (P-

value: 0.0055) was found to be the most statistically significant term of the 6th cluster’s 

proteins.  

HPO analysis.  Phenotypic abnormality terms are detected for all clusters apart from 4th 

cluster.  Please refer to Supplementary Table 15 for more details.  

3.3 Gene expression data and pathway analyses of candidate NAFLD-related 

proteins 

Identification of DEGs.  A gene expression analysis was performed to detect DEGs that were 

differentially expressed between 23 NAFLD-NAS ≤ 3 samples and 21 controls (NAFLD-NAS 

≤ 3 vs. Controls), between 17 NAFLD-NAS ≥ 5 samples and 21 controls (NAFLD-NAS ≥ 5 

vs. Controls), and between 40 NAFLD samples and 21 controls (NAFLD-all vs. Controls).  A 

total of 55 DEGs, 249 DEGs and 223 DEGs were identified between NAFLD-NAS ≤ 3 vs. 
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Controls, NAFLD-NAS ≥ 5 vs. Controls and NAFLD-all vs. Controls, respectively.  In 

accordance with our results, TRAF1, HLA-B, IKBKE and SRC are the genes that previously 

were identified as candidate NAFLD-related proteins and were also found as differentially 

expressed between NAFLD-NAS ≤ 3, NAFLD-NAS ≥ 5, NAFLD-all and Controls.  Likewise, 

TRAF2, CDKN1A and TP53 were found common between NAFLD-NAS ≥ 5, NAFLD-all 

and Controls.  Please refer to the Supplementary Table 17 for further details. 

Pathway analysis of DEGs.  In NAFLD-NAS ≤ 3 vs. Controls, NAFLD-NAS ≥ 5 vs. Controls 

and NAFLD-all vs. Controls contrast groups, DEGs were significantly enriched in 93, 186 and 

185 pathways, respectively (Supplementary Tables 18 A-C).  The top 10 enriched pathways 

of DEGs that were most statistically significant between NAFLD-NAS ≤ 3, NAFLD-NAS ≥ 5 

and Controls are shown in Table 2.  Interestingly, IKBKE is involved in several pathways 

such as regulation of toll-like receptor signaling pathway and RIG-I-like Receptor Signaling; 

SRC is implicated in Fibrin Complement Receptor 3 Signaling Pathway and Viral Acute 

Myocarditis; HLA-B is enriched in Allograft Rejection and Type II interferon signaling; 

TRAF1, TRAF2 and TP53 are associated with apoptosis; CDKN1A, SRC and TP53 are 

implicated in Senescence and Autophagy in Cancer. 
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Table 2:  The top 10 most significantly enriched pathways of DEGs between NAFLD-NAS ≤ 3, 

NAFLD-NAS ≥ 5 and Controls.  The genes that previously identified as candidate NAFLD-related 

proteins are highlighted in bold. 

Term P-value Count Genes 

NAFLD-NAS ≤ 3   

Regulation of toll-like receptor 

signaling pathway (WP1449) 
4.25E-12 10 

CXCL10, CXCL9, CASP8, SYK,  

IRF7, SPP1, LY96, CD14, TNF, 

IKBKE 

Fibrin Complement Receptor 3 

Signaling Pathway (WP4136) 
7.73E-12 7 

CXCL10, SYK, SRC, ITGB2, 

 LY96, CD14, TNF 

Toll-like Receptor Signaling 

Pathway (WP75) 
9.32E-12 9 

CXCL10, CXCL9, CASP8, IRF7, 

SPP1, LY96, CD14, TNF, IKBKE 

Apoptosis (WP254) 7.14E-11 8 
CASP8, CASP3, CASP1, IRF7, BAX, 

FAS, TRAF1, TNF 

Viral Acute Myocarditis 

(WP4298) 
7.14E-11 8 

CASP8, SRC, CASP3, ITGB2, 

CASP1, BAX, NOD2, TNF 

Allograft Rejection (WP2328) 1.59E-07 6 
CXCL9, CASP8, CASP3, HLA-B, 

FAS, TNF 

Nanomaterial induced apoptosis 

(WP2507) 
2.40E-07 4 CASP8, CASP3, FAS, BAX 

RIG-I-like Receptor Signaling 

(WP3865) 
6.36E-07 5 

CXCL10, CASP8, IRF7, TNF, 

IKBKE 

Type II interferon signaling 

(IFNG) (WP619) 
3.16E-06 4 CXCL10, CXCL9, HLA-B, PSMB9 

Amyotrophic lateral sclerosis 

(ALS) (WP2447) 
3.52E-06 4 CASP3, CASP1, BAX, TNF 

NAFLD-NAS ≥ 5   

Allograft Rejection (WP2328) 
1.05E-38 

32 
CD86, CXCL9, ABCB1, CD80, PRF1, 

CXCL13, HLA-DMB, HLA-B… 

Regulation of toll-like receptor 

signaling pathway (WP1449) 
4.69E-26 

28 

CD86, CXCL9, CD80, LY96, 

TNFAIP3, TNF, CASP8, CCL5, 

CCL4, IKBKE… 

Viral Acute Myocarditis 

(WP4298) 6.47E-25 
23 

TGFB1, SRC, STAT1, CD80, ITGB2, 

CXCR4, NOD2… 

Toll-like Receptor Signaling 

Pathway (WP75) 4.24E-24 
24 

CD86, CXCL9, STAT1, CD80, LY96, 

TNF, IKBKE, TLR3… 

Ebola Virus Pathway on Host 

(WP4217) 
4.95E-19 

22 

HLA-B, ICAM3, HLA-C, HLA-A, 

NFKB2, HLA-DMA, HLA-DMB, 

IRF7, HLA-DPB1, IKBKE… 

Chemokine signaling pathway 

(WP3929) 1.02E-16 
22 

CCR1, CX3CR1, CXCL9, CCL22, 

CCL20, STAT1… 

Human Complement System 

(WP2806) 3.49E-15 
17 

SELPLG, C1R, ITGB2, PLAUR, 

C8A, C2, C5… 

Apoptosis (WP254) 
5.80E-15 

16 
TRAF2, TRAF1, TNF, CASP8, 

CASP10, TP53… 

Senescence and Autophagy in 

Cancer (WP615) 1.39E-14 
17 

CDKN1A, TGFB1, SRC, ATG10, 

IFI16, IL1B, TP53… 

T-Cell antigen Receptor (TCR) 

Signaling Pathway (WP69) 1.82E-14 
16 

MAP4K1, CD83, TGFB1, PRKCD, 

NFATC1… 
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4. Discussion 

PPI networks are widely accepted for their valuable contribution to the identification of 

candidate disease-related proteins in several diseases such as hepatocellular carcinoma, blood-

cell targeting autoimmune diseases, breast cancer, etc [10, 39, 40].  In the present study, a 

topological analysis of the NAFLD Interactome was conducted by applying two different 

approaches (as presented throughout the Methods section), thusly a total of 77 candidate 

NAFLD-related proteins were identified.  Surprisingly, about 50% of these proteins are 

previously verified in human and animal studies, as well as in other bioinformatics studies 

regarding their implication in NAFLD and in liver-related manifestations.  The validation of 

our results through literature, which are described bellow, shows that the approach followed in 

this study is effective in identifying candidate NAFLD-related proteins.  Therefore, the 

remaining unconfirmed proteins should be further investigated for their possible association 

with NAFLD.  

The findings of our literature survey confirmed the implication of the following:  HSP90AB1 

has been suggested as a possible biomarker in overweight and obese children with NAFLD 

[41];  HLA-B [42], CTNNB1 [43] and HSPA5 [44] are found to be abnormally expressed in 

NAFLD patients;  CDKN1A polymorphism is associated with the development of human 

NAFLD [45];  TRAF1 has been also detected in NAFLD patients [46];  HSPB1 

phosphorylation site has been differed between NAFLD cohorts [47];  SMAD4 was 

overexpresed in NASH patients [48];  SMAD2/3 phosphorylation and nuclear translocation 

documented in the liver of NASH patients[49];  RELA is well-known to cause inflammatory 

responses in NAFLD [50];  PIK3R3 has been proposed as an effective candidate target for the 

development of NAFLD [51];  GSK3B inhibition has been proposed as a possible therapeutic 

target to manipulate the NAFLD [52].   

Remarkably, our findings are in aggreement with previous animal studies as mentioned below:  

EGFR inhibition has been proved to attenuate NAFLD in obese mice model, playing an 
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essential role in NAFLD as a possible therapeutic target [53];  TP53 inhibition in a NAFLD 

mice model resulting in decreased steatosis and liver injury [54];  PIN1 was essentially 

involved in NASH development in a rodent model [55];  SMAD3 overexpression was 

identified in the liver of monkeys with simple steatosis (SS) and fibrosing NASH [56];  

KDM1A elevated expression was found in NASH-related hepatocarcinogenesis in a mice 

model [57];  EEF1A1 inhibition has been shown to reduce lipotoxicity in obese mice with 

NAFLD [58];  TNFRSF1A has been identified as a potentially effective target factor to prevent 

the attenuation of SS progression to a more complex phenotype with many NASH features in 

a mice model [59];  IKBKE has been found to specifically expressed in hepatic stellate cells 

(HSCs) in which inhibition by amlexanox in a NAFLD mice model resulted in improved 

insulin signal pathway in hepatocytes [60];  FYN is implicated in fatty acid oxidation and 

hepatic steatosis development under chronic ethanol intake in mice model [61];  the increased 

expression of VIM has been found during hepatic steatosis development to NASH in mice, 

suggesting it as a valuable prognostic factor of  liver disease severity [62];  VIM and MAP3K3 

were identified upregulated by decreased liver miR-122, possibly contributing in NASH-

induced hepatic fibrosis in mice [63];  ABL1 is implicated in axis which regulates a murine 

hepatic steatosis, serving as candidate anti-steatosis target [64];  EP300 inhibition could be 

effective in hepatic steatosis in mice [65]. 

In light of the literature review, our results seem to be promising regarding their possible 

implication in NAFLD development and progression.  Recently, YWHAZ has been defined as 

a new regulator of several genes which are dysregulated in NAFLD development [66].  

Remarkably, the genetic dysfunction of MDM2 in adipocytes activates apoptotic and senescent 

TP53-mediated programs causing lipodystrophy and its related several metabolic diseases such 

as NAFLD [67].  Also, VHL disruption resulted in significant lipid accumulation, hepatic 

inflammation and fibrosis in the liver [68].  Lately, SRC has been found upregulated during 

the hepatic HSCs activation and liver fibrosis [69].  Also, IKBKG (or NEMO) deletion in liver 

parenchymal cells results in steatohepatitis and hepatocellular carcinoma [70].  Furthermore, 
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GRB2 suppression has been shown to improve hepatic steatosis, glucose metabolism, 

apoptosis and oxidative stress [71].  Moreover, the decreased expression of SMARCD1 

activates lipid accumulation and cellular senescence, denoting its preventative role regarding 

lifestyle-related diseases [72].  The phospho-UBE2I has been suggested to potentially enhance 

NF-kB signaling, revealing a possible new mechanism that deregulates inflammatory signaling 

of the liver [73].  The GOLGA2 inhibition is found to induce fibrosis with autophagy in the 

liver and lung of mice [74].  ERBB2 (also known as HER2) is closely linked to many enzymes, 

e.g. fatty acid synthase, which play essential regulatory roles in lipid metabolism or lipogenic 

pathways [75] and its hepatic expression has been identified in liver diseases [76, 77].  

Remarkably, the hepatic gene expression of SDCBP has been found differentially expressed 

in steatotic liver [78].  Also, CDC37 was defined with a modulatory role of INK4A activity in 

rat hepatic carcinogenesis and human hepatic cancer [79]. 

Interestingly, several studies applying bioinformatics analyses are in consistensy with our 

findings, revealing the possible implication of UBQLN4 [80], UBC [81] and PCNA [82] in 

NAFLD development as potential biomarkers.  Likewise, a bioinformatics analysis in a PPI 

network of steatosis highlights CRK and MDM2 among of the top 10 important genes [83].  

It is a well-known fact that disease-related proteins are clustered together and are also centrally 

located within a network [84].  As demonstrated from our results, the identified candidate 

NAFLD-related proteins: RCOR1, TUFT1, PHF21A, OIP5, DZIP3, HMG20A, YEATS4, 

VPS50, CCDC93 (Fig. 3, 1st Cluster-magenta nodes), RELA, IKBKG, EGFR (Fig. 3, 5th 

Cluster-magenta nodes), MEOX2, LNX1 and PIN1 (Fig. 3, 6th Cluster-magenta nodes), 

are found in the same clusters with already known NAFLD-related proteins, enhancing their 

potential implication in NAFLD.  Notably, RELA, IKBKG, EGFR and PIN1, as already 

mentioned, are literally confirmed for their possible association with NAFLD. 

Worthwhille to mention that the 7 candidate NAFLD-related proteins: TRAF1, TRAF2, HLA-

B, IKBKE, SRC, CDKN1A and TP53 are validated through the gene expression analysis.  At 

first glance, this will probably not seem very prominent but it does show that the network 
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approach followed in this study is complementary to gene expression analysis by identifying 

more candidates associated with NAFLD that would otherwise not be detected.  After 

performing pathway analysis of DEGs, IKBKE was found to be involved in toll-like receptor 

signaling pathway that play an important role in the NAFLD development [85].  Moreover, 

TRAF1, TRAF2 and TP53 are implicated in apoptosis which seems to be important in 

NAFLD and NASH progression [86].  Reportedly, CDKN1A, SRC and TP53 are participated 

in senescence and autophagy in cancer.  Interestingly, considerable associations have been 

established between regulation of autophagy and obesity-related liver complications, NAFLD 

[87].  It is important to mention that human clinical studies revealed the association of 

senescence with NAFLD [88].  Thereby, the aforementioned genes might play pivotal roles in 

the development and progression of NAFLD via regulating the pathways involved in this 

disease. 

The enrichment analysis of the NAFLD Interactome was performed to examine the functional 

and biological interactions among the proteins, as well as to uncover their associations with 

diseases and several phenotypic abnormalities in human.  Pathway analysis revealed that 

proteins are significantly enriched among others in pathways in cancer, PI3K-Akt signaling 

pathway, proteoglycans in cancer, MAPK signaling pathway and focal adhesion.  It has been 

demonstated that PI3K-Akt and MAPK signaling pathways have been shown to be involved in 

NAFLD [89, 90].  Moreover, focal adhestion kinase regulates the activation of HSCs and liver 

fibrosis [91].  Interestingly, in the wound healing response, focal adhesion and proteoglycans 

in cancer pathways are implicated.  As stated by other research works, these wound healing 

and cell migration pathways have been shown to be dysregulated in NASH leading to fibrosis 

[92].  Disease association analysis showed that proteins are associated with a number of 

diseases such as type 2 diabetes [93], chronic kidney failure [94], Alzheimer’s disease [95], 

multiple sclerosis, schizophrenia [96], lung, bladder [97] and breast cancer [98], most of which 

are associated with NAFLD.  Also, the phenotypic abnormalities of proteins such as those of 
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digestive system, metabolism/homeostasis, cardiovascular system, skin morphology and 

immune system are linked with NAFLD [99-102].  

In conclusion, applying a systemic approach to this study, we were able to identify 77 

candidate NAFLD-related proteins, out of which 41 (HSP90AB1, HLA-B, CTNNB1, HSPA5, 

CDKN1A, SMAD4, SMAD2, SMAD3, TRAF1, HSPB1, RELA, PIK3R3, GSK3B, VHL, SRC, 

EGFR, TP53, PIN1, KDM1A, EEF1A1, UBQLN4, UBC, PCNA, CRK, MDM2, VIM, MAP3K3, 

TNFRSF1A, YWHAZ, IKBKG, FYN, ABL1, GRB2, SMARCD1, UBE2I, GOLGA2, IKBKE, 

EP300, ERBB2, SDCBP,CDC37) are confirmed through literature searches.  The novelty of 

our findings lies in the remaining 36 proteins (TRAF6, DISC1, NCK1, TRAF2, CYSRT1, LNX1, 

MEOX2, WDYHV1, LRRK2, YWHAG, MCC, HOXA1, KRT31, TRIM27, TRIM54, HTT, 

ATXN1, YWHAB, PICK1, CALM3, APC, TNIK, CSNK2B, HGS, PPP1CA, YWHAE, RCOR1, 

TUFT1, PHF21A, OIP5, DZIP3, HMG20A, YEATS4, VPS50, CCDC93, intact:EBI-4399559) 

that could may be involved in NAFLD.  It should be pointed out that the implementation of 

clustering analysis revealed the importance of 15 candidate NAFLD-related proteins in 

NAFLD (RCOR1, TUFT1, PHF21A, OIP5, DZIP3, HMG20A, YEATS4, VPS50, CCDC93, 

RELA, IKBKG, EGFR, MEOX2, LNX1 and PIN1) in light of the fact that are clustered together 

with known NAFLD-related proteins.  Also, 9 of which (RCOR1, TUFT1, PHF21A, OIP5, 

DZIP3, HMG20A, YEATS4, VPS50 and CCDC93) had not been published before in other 

research works.  Noteworthy, we subsequently achieved via gene expression analysis the 

verification of 7 candidate NAFLD-related proteins: TRAF1, TRAF2, HLA-B, IKBKE, SRC, 

CDKN1A and TP53, while TRAF2 is one of the proteins that has not been found previously in 

the literature.  Several of the results obtained in the present study are also reported by many 

other studies, as outlined in the Discussion section of this manuscript.  We hope that our 

research will serve as a base for further experimental works. 
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isomerase NIMA-interacting 1, SMAD3: Mothers against decapentaplegic homolog 3, 

KDM1A: Lysine-specific histone demethylase 1A, EEF1A1: Elongation factor 1-alpha 1, 

UBQLN4: Ubiquilin-4, UBC: Polyubiquitin-C, PCNA: Proliferating cell nuclear antigen, 

CRK: Adapter molecule crk, MDM2: E3 ubiquitin-protein ligase Mdm2, TP53: Cellular tumor 

antigen p53, VIM: Vimentin, MAP3K3: Mitogen-activated protein kinase 3, TNFRSF1A: 

Tumor necrosis factor receptor superfamily member 1A, YWHAZ: 14-3-3 protein zeta/delta, 

IKBKG: NF-kappa-B essential modulator, FYN: Tyrosine-protein kinase Fyn, ABL1: 

Tyrosine-protein kinase ABL1, GRB2: Growth factor receptor-bound protein 2, SMARCD1: 

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D 

member 1, UBE2I: SUMO-conjugating enzyme UBC9, GOLGA2: Golgin subfamily A 

member 2, IKBKE: Inhibitor of nuclear factor kappa-B kinase subunit epsilon, EP300: Histone 

acetyltransferase p300, ERBB2: Receptor tyrosine-protein kinase erbB-2, SDCBP: Syntenin-

1, CDC37: Hsp90 co-chaperone Cdc37, HSCs: hepatic stellate cells  
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