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Abstract Alzheimer’s disease (AD) is the leading cause of age-related dementia, affecting over 5 million 

people in the United States. Unfortunately, current therapies are largely palliative and several potential 

drug candidates have failed in late-stage clinical trials. Studies suggest that microglia-mediated 

neuroinflammation might be responsible for the failures of various therapies. Microglia contribute to Aβ 

clearance in the early stage of neurodegeneration and may contribute to AD development at the late 

stage by releasing pro-inflammatory cytokines. However, the activation profile and phenotypic changes 

of microglia during the development of AD are poorly understood. To systematically understand the key 

role of microglia in AD progression and predict the optimal therapeutic strategy in silico, we developed a 

3D multi-scale model of AD (MSMAD) by integrating multi-level experimental data, to manipulate the 

neurodegeneration in a simulated system. Based on our analysis, we revealed how TREM2-related signal 

transduction leads to an imbalance in the activation of different microglia phenotypes, thereby promoting 

AD development. Our MSMAD model also provides an optimal treatment strategy for improving the 

outcome of AD treatment. 
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Introduction 

Alzheimer's disease (AD) is one of the most significant public health problems of the 21st century. It is 

estimated that the number of AD patients in the USA will increase from 5 million to 15 million by 2050, 

and the annual cost of care is projected to reach $1.1 trillion [1-3]. Unfortunately, current treatments of 

AD can only serve to alleviate symptoms in a short period, and there is no cure for this disease or a way 

to stop or slow its progression [4-6]. It is due to an incomplete understanding of the biological mechanisms 

underlying its pathogenesis on the molecular, cellular, and tissue levels [7]. Hence, there is an urgent need 

to improve our understanding of the molecular mechanisms that drive the development of late-onset AD. 

The classical hallmarks of AD pathology are the accumulation of extracellular amyloid plaques and 

intracellular neurofibrillary tangles [8, 9]. Dysregulated amyloid beta metabolism has also been shown to 

promote insulin resistance in AD [10, 11]. One of the most striking hallmarks of AD is microglia-mediated 

neuroinflammation [12]. Microglia, the tissue-resident macrophages in the brain, are damage sensors of 

neurodegeneration in the AD progression [13]. Microglial activation can be categorized into two opposite 

types: pro-inflammatory M1 phenotype (neurodegenerative) and anti-inflammatory M2 phenotype 

(neuroprotective) [14, 15]. It is nowadays accepted that there is a dynamic microglia turnover in the brain 

and that microglia phenotype may change depending on aging or the stage of the disease [14]. However, 

the activation profile and phenotypic changes of microglia during the development of AD are poorly 

understood. Therefore, understanding the sequential and timing-associated changes in M1/M2 activation 

and the potential factors/pathways that control microglia activation may provide better therapeutic 

benefit.  

Currently, genome-wide association studies (GWAS) in AD have uncovered the enriched genes in 

microglia, such as CD33, CR1, EPHA1 and TREM2 (triggering receptor expressed on myeloid cells 2) [16]. 

Recent studies found that TREM2 increased AD risk by about 3-times [17, 18]. TREM2 and its adaptor 

DAP12 exert neuroprotective effect in microglia by mediating microglial survival and Aβ clearance [19]. 

However, sTREM2, the soluble fragment of TREM2, is strongly correlated with amyloidosis and microglial 

activation, suggesting that sTREM2 serves as a biomarker for triggering inflammation response via M2/M1 

switch [20]. The definitive mechanism of TREM2 and sTREM2 in AD remains largely unknown [21]. 

Integrating large-scale genomics data from public databases (e.g. ADNI [22], GEO, etc) will be helpful in 

understanding how TREM2 and sTREM2 differentially modulate microglia phenotype activation during AD 

progression. 

   In the present study, we integrated a set of large-scale genomics data and identified the genes and 

pathways associated with the phenotypic heterogeneity of microglia cells. Our analysis showed the 

transcriptional programs in microglial cells over time. At the early AD stage, the major changes in microglia 

were characterized by up-regulation of TREM2/DAP12, phagocytosis-related genes, and anti-

inflammatory genes. Elevated expression of sTREM2/NFKB and pro-inflammatory genes were observed 

at the late stage. To systematically understand TREM2-regulated imbalanced activation of M1/M2 

microglia leading to AD progression and predict the optimal therapeutic strategy, we further developed a 

predictive Multi-scale Model of AD (MSMAD) by integrating multi-level experimental data. After 

parameter tuning, the outcomes of our model under different contexts fit the experimental observations 

well. Finally, we used the MSMAD model to predict the effect of single or combined treatments. Our 

simulation indicates that switching microglia activation toward the M2 phenotypes and activating insulin 

metabolism appear to impair AD development. In summary, this study revealed the key 

cytokines/pathways-induced microglia activation during AD progression and also provide an optimal 

therapeutic strategy for improving the outcomes of AD treatment.   
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Results 

Identifying temporal changes of intracellular pathways in microglia in AD 

To explore the phenotypic heterogeneity of microglia in response to neurodegeneration, we selected 

three datasets from GEO to identify the transcriptional programs in microglia cells over times. Firstly, we 

analyzed the dataset GSE103334 generated from microglia isolated from hippocampus tissues in healthy 

(CK control) and AD mouse (CK-p25 transgenic [23]). At 2 weeks after p25 induction, CK-p25 mice exhibit 

DNA damage and increased amyloid-β level, followed by progressive neuronal and synaptic loss with 

cognitive impairment, which is more severe by 6 weeks. The genes in hippocampal microglia were profiled 

before p25 induction and 1, 2, and 6 weeks after p25 induction. Mathys, et al., demonstrated that the CK-

p25 mouse model displays key pathological hallmarks of AD in a temporally predictable manner, to study 

the response of microglia at temporal- and single-cell resolution [24]. In our study, we screened out three 

clusters of cells to represent control (cluster 2), early response (cluster 3), and late response (cluster 6) of 

microglia, respectively. SCDE was used to determine the differential expression of genes between 

different groups [25]. Fig 1A presents the relative expression of Lgals3, CD68, B-catenin, and IGF1 in 

microglia, indicating the up-regulation of phagocytosis, anti-inflammatory effects, and cell survival in early 

stage of AD. Fig 1B shows that NFKB, TNF-α, IL-1 β in microglia are up-regulated in the late stage relative 

to normal control. CD68 level was reduced in late response group relative to early response one. 

Particularly, the expression of SYK in late stage was down-regulated. Moreover, we will validate the above 

molecular factors of CK-p25 mice with the experimental data from 5xFAD mice because previous study 

reported that the transcriptional profiles from these two types of mice show similar concordance with 

human AD brain signatures [23]. 5xFAD mouse model harbors five early-onset familial AD mutations and 

allows a comprehensive understanding of molecular events occurring in 6-9 months old 5xFAD mice 

during the early stage of AD [26-28]. Therefore, we further selected GSE65067 dataset to examine the 

role of Trem2 on the early response of microglia to Aβ deposition. Microglia were purified from 8.5-

month-old WT and 5xFAD mice. Differentially expressed genes (DEGs) were screened with R limma 

package [29]. Here, we analyzed 83 representative genes (Supplementary Data File 1), including 67 DAM 

(disease-associated microglia [30]) genes [31], and 16 microglia-associated factors [31-33]. Fig 1C shows 

that Trem2, AKT, phagocytosis-related genes (Lgals3, and CD8), and anti-inflammatory factor IGF-1 are 

significantly up-regulated microglial cells. Finally, we used dataset GSE104775 to study the temporal 

changes of gene expression in microglia in the early stage of AD in 5xFAD mice (Supplementary Data File 

2). As shown in [31], the gene expressions in 5xFAD have no significant changes at 2-month-old mice and  

Trem2, Tyrobp, SYK, CD68, Lgals3, and TGFB1 are markedly increased at 4- and 7-month-old 5xFAD mice 

(Fig 1D). The findings shown in Fig 1C-D are close to Fig 1A-B. Taken above together, our analysis indicated 

that TREM2/DAP2 signaling was activated in the early response, which may facilitate phagocytosis and 

induce microglia proliferation. As the downstream of Trem2 signaling, Wnt/β-catenin pathway further 

promote microglia cell survival (Fig 1E). However, the neuroprotective effects of microglia is lost in late-

term AD due to the down-regulation of Trem2 signaling and activation of NFKB-mediated pro-

inflammatory effects (Fig 1F). The accelerated neurodegeneration might be caused by the elevated 

sTREM2 concentration, which is released from Trem2 proteolytic cleavage [21]. 

 

Inferring intracellular pathways of neurons in AD 
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To investigate the intracellular signaling pathways of neurons in the complicated brain microenvironment 

(mE), we selected a representative RNA-seq dataset (GSE75431) from GEO, which was generated from 

brain cortex in PS2APP AD mouse model. Three types of cells (astrocytes, microglia, and neurons) were 

isolated and sequenced. The gene expression profiles were collected from 7 and 13 months old PS2APP 

AD mice. By using limma package, we identified 802 and 1469 DEGs in the neurons from 7 and 13 months 

of mouse model, respectively (P-value<0.05). In the 7 months AD mouse model, the expressions of IGF1, 

Tyrobp, CSF1, and CD68 were up-regulated in microglial cells (FC > 1.5), and the expression of MAPK1 in 

neurons was significantly elevated. We also found the increase of GSK3β and decrease of PKC in neurons 

in 13 months AD mouse model relative to control (FC > 1.5). The details of differential expression analysis 

was shown in Supplementary Data File 3. 

The inferred specific signaling pathways in neurons related with AD were shown in Fig 2, which include 

three pathways induced by three different ligands. IGF-1 signaling regulates neuronal growth, synaptic 

maintenance, neuroprotection via MAPK pathway and PI3K/AKT pathway [34]. Accumulation of Aβ 

oligomer may: 1) induce neurotoxicity by inhibiting the PI3K pathways in neuronal cells [35]; and 2) lead 

to increased TNFR, resulting in inhibitory phosphorylation of IRS-1/PI3K/AKT. The decreased brain insulin 

signaling leads to increased GSK-3β activity, causing increased abnormal tau phosphorylation [36]. The 

inferred pathways were used in the intracellular level of the 3D MSMAD model to stimulate the dynamics 

of signal transduction in response to extracellular microglia-neuron interactions.  

 

3D Hybrid multi-scale modeling of the AD progression  

Hypothesis. Based on the comprehensive analysis of the collected experimental data, we proposed the 

following scheme (Fig 3). Aβ peptides are secreted from neuron cells and accumulated to form Aβ 

oligomer and senile plaque in the early-onset of AD. The toxic effects of Aβ oligomer can induce neuron 

cell death. In another aspect, Aβ oligomer is able to attract and stimulate the resting microglial cell (M0 

microglia) in the initial immune response. Consequently, the alternative activation (M2) of microglia cells 

leads to neuroprotection, because 1) the increased secretion of IGF-1 from M2 promotes neuronal cell 

survival and proliferation via PI3K/AKT and MAPK pathways and 2) activation of TREM2 signaling in M2 

microglia induce Aβ oligomer clearance before formation of senile plaque. In the late-onset, M2 microglia 

gradually switch to M1 microglia via TREM2-related signaling, and then aggravate neurodegeneration. 

NFKB pathway was activated in M1 cells, which cause the generation of inflammatory factors (e.g. TNF-𝛼, 

and IL-1β). Alterations of TREM2 signaling reduced the ability of M1 microglia to clear Aβ. Moreover, as 

the proportion of M1 microglia increases, the concentration of sTREM2 in CSF increases dramatically.  

Systems modeling.  We developed a novel 3D multi-scale model of AD (MSMAD) to study the phenotypic 

heterogeneity of microglia activation during AD progression, as well as to verify the proposed the scheme 

showing in Fig. 3. The MSMAD model combines a 3D multi-scale agent-based model (ABM) for 

neurodegeneration and immune response, and a Hill function system for dynamic signaling transduction. 

Our MSMAD model defines three type of agents to represent neuronal and microglia cells, and Aβ. In 

addition, eight types of small molecules diffuse and degrade in the simulated mE, including Aβ  from 

Neurons, IL-4 from M0 microglia, IGF-1 from M2 microglia, TNF- 𝛼, and IL-1β from M1 microglia, as well 

as Aβ  oligomer and Aβ  plaque accumulated from Aβ . AD progression is simulated at intracellular, 

intercellular, and tissue levels in our MSMAD model. Intracellular signal transduction was modeled by Hill 

functions. The input parameters of Hill functions are the local concentrations of the cytokines shown in 
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Fig 1-2. The intercellular communication reflects the cell-cell interactions, including Ligand-receptor 

mediated cell-cell interactions, as well as physical interactions with the other cells. The tissue scale of our 

model reflects the AD brain tissue (e.g., hippocampus) and Aβ plaque formation via various intercellular 

cell-cell interactions. Moreover, the MSMAD model integrates a series biological events spatially and 

temporally. Spatially, the intracellular pathways are encapsulated into cells to determine the immune 

response or neuronal cell behavior (Aβ secretion, migration (Fig S1), proliferation or apoptosis). In turn, 

cytokines diffusing in 3D space trigger the intracellular signaling pathways via their receptors, resulting in 

the alteration of cell behaviors. Temporally, it covers signaling pathway dynamics (minutes to hours); cell 

division, apoptosis and local migration (hours to days); treatment responses and neuron growth (days to 

weeks). The cell behaviors and cytokine diffusion in 3D ABM model are updated every 2 hours. The details 

of the rules for agent-agent and agent-mE interactions are described in Supplementary Information.  

Hybrid model implementation. We implemented the 3D multi-scale system (MSMAD) by incorporation 

of ABM and Hill Functions. The ABM is a stochastic model and Hill functions are combined as a simplified 

continuous model. The communications between them were mediated by cytokines/growth factors 

described above. We simulated the whole process for up to 6 weeks according to the time line in CK-p25 

mice [24], and exported the dynamic profiles of all the cell populations and cytokines. Based on all the 

observed data collected from the literature (Table 1), we manually tunned all the parameters associated 

with ABM model in MSMAD for minimizing the errors of data fitting. All the parameters of ABM model 

are presented in Table S1. The framework of ABM was designed and achieved with C++. The whole model 

was implemented under Linux on the platform of TACC. 

 

Model evaluation and validation 

To test the performance of our established model, in silico simulations under several contexts were 

evaluated using the experimental data collected from the literature (Table 1). Firstly, we simulated the 

whole process of AD development in mouse model from the initial state to 6 weeks. The dynamic changes 

of neuron and microglia population in the simulated mE were predicted. Fig 4A shows that neuron cell 

survival is reduced 0.47 folds and microglia activation (M1, and M2) is increased 0.34 in AD patients. Fig 

4B represented that AD progression results in plaque accumulation and increased the numbers of 

microglia surrounding the amyloid plaque. The predicted results shown in Fig 4A-B are consistent with 

the experimental data reported in [15, 37-39]. Furthermore, we calculated the relative changes of 

cytokines and growth factors in AD relative to normal control. As shown in Fig 4C-D, the concentrations 

of sTREM2, TNF-α, and IL-1β are sharply increased, and IGF1 level is reduced. The simulation results are 

close to the previous findings reported in [40-43]. Taken together, our results indicate that the MSMAD 

model fits the observed data very well under different contexts. 

   To further validate the reliability of our MSMAD model, we compared the simulation results with the 

experimental data (Table 2) generated from 5xFAD mouse model [39]. Significantly more microglia are 

living in the AD mouse than wide type. We also confirmed increased expression of inflammatory cytokines 

(IL-1 β, and TNF- α) in 5XFAD mice. In summary, the experimental data further confirms that the outputs 

of MSMAD model are reliable. 

 

Prediction of potential therapeutic outcomes 
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To identify the potential therapeutic targets for AD progression in the brain microenvironment, we further 

simulated the effects of single or combine treatments (via anti-sTREM2, TREM2 agonist, and IGF-1 agonist) 

on neuron degradation and microglia phenotype switching using the established model. Anti-sTREM2 is 

assumed to inhibit sTREM2-induced pro-inflammatory signaling in microglia. TREM2 agonist is assumed 

to elevate TREM2 expression in microglia. IGF-1 agonist exerts neuroprotective effects. Fig 5 shows the 

predicted neuron survival (Fig 5A) and microglia activation (Fig 5B) from various therapeutic strategies. 

For a single treatment, sTREM2 antagonist received the better effects than other two strategies in 

reducing neurodegeneration. In addition, TREM2 agonist has a better inhibitory effects on microglia 

activation than IGF1 agonist, which is consistent with the experimental observations shown in [31, 44]. 

Moreover, we found that the optimal prediction outcome was achieved from the treatment group with a 

combination of sTREM2 antagonist and IGF-1 agonist, indicating that inhibition of sTREM2 induced-pro-

inflammatory signaling (e.g. NFKB pathway) and increase of IGF-1 concentration in AD brain potentially 

reduce neurodegeneration, as well as attenuate microglia activation. In the control condition (Fig 5B), the 

initial response of microglia was activated by accumulating Aβ  plaques, and the late response might be 

triggered by increased sTREM2. Our simulations also show that the proportion of M1 and M2 microglia is 

significantly changed under different conditions (Table S2). Taken together, the combination of switching 

microglia phenotypes and the activation of insulin metabolism appear to impair AD development. 

 

Discussion 

To systematically understand the key role of microglia in AD progression and predict the optimal 

therapeutic strategy in silico, we developed a 3D multi-scale model (MSMAD) by integrating multi-level 

experimental data, to manipulate the neurodegeneration in a simulated system. We found that 

TRREM2/DAP12 signaling molecules, microglial phagocytosis related genes (CD68, Lgals3, etc.), and anti-

inflammatory genes (e.g. IGF-1) in microglia were significantly up-regulated in the early stage of AD, but 

down-regulated in the late stage.  In the meantime, the expression of NFKB pathway in microglia was 

elevated in the late onset of AD mouse, and further generated a series of pro-inflammatory factors, such 

as IL-1b, and TNF-𝛼. Our analysis revealed that the microglia phenotypic switch appears to be driven by 

TREM2 signaling alteration.  Switching of M1/M2 phenotypes of microglia may provide a new therapeutic 

perspective in AD treatment. 

We are the first to systematically model the AD development using an integrated 3D system. In our 

MSMAD model, we simulated the neuron growth, microglia activation, and Aβ plaque formation (Fig S2). 

According to the timeline shown in [24], our simulation is up to 6 weeks, including the early stage (0-2 

weeks) and late stage (2-6 weeks) of disease onset. The cell populations, the proportion of M1/M2 

microglia, Aβ radius, and the density of microglia per plaque were calculated in each iteration (2 hours). 

Therefore, the proposed MSMAD model provides a new insight to simulate the dynamic changes in 

neuron degradation and immune response in AD mouse model. Current systems modeling framework 

also can be extended to human by fitting the model to AD patient-specific experimental data. 

   The MSMAD model also provides a novel computational platform to optimize the potential target 

therapy on AD progression. In our model, we assumed that anti-sTREM2 can block the downstream 

pathways of sTREM2, and inhibit the pro-inflammatory effects of microglia. The sTREM2 antagonist may 

inhibit the pro-inflammatory gene expression by modulating NFKB signaling. Since previous studies 

reported that sTREM2 levels is positively correlated with microglia activation and amyloidosis in PS2APP 

mice, reducing sTREM2 concentration in AD brain also seems to be a promising way to decrease AD risk 
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[20]. TREM2 agonist is assumed to elevate the expression of TREM2 in microglia. Lee, et al. is the first to 

reveal that increasing TREM2 gene dosage reprograms microglia responsivity in AD mouse brains [31]. 

Different from the first two strategies, the aim of IGF-1 agonist is to directly elevate IGF-1 concentration, 

which might be beneficial to neuron survival. Recent studies indicates that intranasal insulin may 

ameliorate cognitive impairment, providing a potential way for treating AD patients [44, 45]. However, 

different subgroups of AD patients show different dose-response curves to intranasal insulin [46]. In the 

present study, we evaluated four new therapeutic strategies in silico with our optimized MSMAD model. 

The simulated results showed that optimal prediction outcome was achieved from the combination of 

sTREM2 antagonist plus IGF-1 agonist, revealing the important role of microglia phenotypic switch in AD 

development. Targeting any one of the vast pro-inflammatory mediators or pathways may not be 

efficacious in AD treatment. 

    Moreover, our MSMAD model includes a set of parameters, and most of parameters were tuned 

manually or determined based on the experimental results. To confirm the variability of the simulated 

results from the in silico model, parameter sensitivity analysis was performed by measuring the impact of 

small perturbation (5% increase) of individual 15 key parameters on neuron cell populations. We found 

that the 6th and 8th parameters (the basic rate of microglia proliferation, and the basic rate of M0 microglia 

change to M2) are more sensitive than others. The sensitivity analysis showed that the changes in model 

outcomes were under 4%, indicating that the established model were stable (Fig S3). In general, the model 

analysis provides us a strong belief on stability of the established model and model-based outcome 

prediction.   

Finally, the quantified studies related with the proportion of M1 and M2 microglia activation were not 

reported. We are the first to evaluate the dynamic changes of microglial phenotypes in the AD progression 

using a novel computational model. Mastering the stage-specific switching of M1/M2 phenotypes at 

appropriate time may provide better therapeutic benefit.   

    

Methods 

Data collection and quantification 

To optimize the parameters in agent-based model, we collected the experimental data related with the 

dynamic changes of cell population and cytokines from AD patients (or mouse models) relative to the 

normal controls (Table 1). Isla, et al. reported that the average total number of neurons in the cortex was 

reduced by 48% in the AD group [37]. Fan and colleagues evaluated the temporal profile of microglia 

activation in 30 subjects and found that microglia activation was increased by 36% in AD compared with 

controls [15]. Also, the mean plaque radius in the late-onset AD is significantly higher than that in early-

onset [38]. Heslegrave, et al. examined CSF samples in 37 AD patients and 22 controls, and found that the 

sTREM2 concentrations were significantly higher in AD (p-value: 0.0457) [40]. Moreover, some pro-

inflammatory cytokines (e.g. TNF-𝛼, and IL-1β) were significantly increased in the late-onset of AD [41, 

42]. In the meantime, recent experiments observed that IGF1 is significantly reduced in Alzheimer patients, 

which indicates that loss of IGF-1 input to the brain as an early biomarker of disease onset in AD [43]. For 

the microglia-plaque interactions, Wang, et al. observed that a high degree of microglial clustering around 

amyloid plaques in 5xFAD mice (average 4.28 microglia per plaque) [39]. 

 

Multi-scale modeling of AD progression (MSMAD) 
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The multi-scale model developed in this study is to reflect the temporal imbalanced activation of M1/M2 

microglia leading to AD progression. The proposed model combines a 3D multi-scale agent-based model 

(ABM) [47] for neurodegeneration and immune response, and a Hill functions system [48] for dynamic 

signaling transduction. The communications between them were mediated by cytokines, which were 

inferred from our genomic profiles. As a type of stochastic model, our ABM model used Markov Chain 

Monte Carlo approach [49] to simulate individual cell behaviors (Fig S4). Moreover, we also simulated the 

formation of Aβ plaques over time in our model based on the previous experimental observations [50]. 

The parameters in the ABM component should be tuned first to minimize the fitting error on the 

phenotype data shown in Table 1. Finally, based on the optimized model, we can design specific in silico 

therapeutic approaches to perturb the computational systems and predict the optimal intervention for 

preventing the development of AD. The details of MSMAD model as well as the corresponding 

mathematical rules was described in the Supplementary Information.  

 

Model implementation 

The framework of ABM model was designed using the conception of “Object-Oriented Programming” and 

were achieved with C++. The proposed model was debugged and implemented under Linux environment 

on the cluster platform of the Texas Advanced Computing Center (TACC) at the University of Texas at 

Austin (http://www.tacc.utexas.edu). All of the parameters in the ABM model were tuned after running 

the system 100 times to fit the training data. 
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Figures 

 

 

Fig 1. Identification the temporal changes of key factors in microglia cells. A-B. DEGs in the early and later response 

of microglia (GSE103334). C-D. DEGs identified by GSE65067 and GSE104775. E-F. Inferred intracellular pathways of 

microglia in early and late response. Red arrows: up-regulated pathways; Green arrows: down-regulated pathways. 
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Fig 2. The inferred specific pathway of Neuron based on GEO dataset GSE75431. 
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Fig 3. Systems diagram of MSMAD model. 
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Fig 4. Model evaluation (data fitting). The experiment data were collected from literature (Table 1). In our simulation, 

1 WK (Time step: 84) and 6 WK (Time step: 504) are considered as NC and AD condition, respectively.  
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Fig 5. The effects of therapeutic strategies on neuron survival and microglia activation simulated by MSMAD model. 

The starting point of the curves is 1 WK (Time step: 84) in our in silico model. The curves presented are the mean 

effects of 100 runs of model.  
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Tables 
 
Table 1. The experimental data used for data fitting of MSMAD model.  

 NC AD Models PMID 

Neuron cells (x106) 6.9±1.1 3.6±1.6 AD patients 8699259 

Microglia activation (FC) 1 1.36 AD patients 28122877 

Plaque radius (𝜇m) 5.413±0.04 13.41±1.65 APPPS1 mice 22993126 

Microglia per plaque (FC) 1 4.28 5xFAD mice 25728668 

sTREM2 (pg/ml) 195.5±45.1 231.2±74.2 AD patients 26754172 

TNF-𝛼 (pg/ml) 20.56±10.90 52.23±22.36 AD patients 15936505 

IL-1β (FC) 1 6.0 AD patients 2529544 

IGF1 (FC) 1 0.3 AD patients 24301648 

 

 
Table 2. The experimental data used for model validation. 

 WT AD Models PMID 

Living microglia (x105) 1.5±0.25 3.8±0.45 5xFAD mice 25728668 

IL-1β (relative expression) 1±0.3 5.3±0.3 5xFAD mice 25728668 

TNF (relative expression) 0.8±0.18 2.16±0.47 5xFAD mice 25728668 
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