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ABSTRACT

In this work, a method for classifying Autism Spectrum Disorders (ASD) from typically developing
(TD) children is presented using the linear and nonlinear Event-Related Potential (ERP) analysis of
the Electro-encephalogram (EEG) signals. The signals were acquired during the presentation of three
types of face expression stimuli —happy, fearful and neutral faces. EEGs are first decomposed us-
ing the Multivariate Empirical Mode Decomposition (MEMD) method to extract its Intrinsic Mode
Functions (IMFs), which provide information about the underlying activities of ERP components.
The nonlinear sample entropy (SampEn) features, as well as the standard linear measurements utiliz-
ing maximum (Max.), minimum (Min), and standard deviation (Std.), are then extracted from each
set of IMFs. These features are then evaluated by the statistical analysis tests and used to construct
the input vectors for the Discriminant analysis (DA), Support vector machine (SVM), and k-Nearest
Neighbors (kNN) classifiers. Experimental results show that the proposed features can differentiate
the ASD and TD children using the happy stimulus dataset with high classification performance for all
classifiers that reached 100% accuracy. This result suggests a general deficit in recognizing the pos-
itive expression in ASD children. Additionally, we found that the SampEn measurements computed
from the alpha and theta bands and the linear features extracted from the delta band can be considered
biomarkers for disturbances in Emotional Facial Expression (EFE) processing in ASD children.

1. Introduction
Autism Spectrum Disorders (ASD) is a lifelong condi-

tion associated with very high societal costs related to ser-
vices and lost productivity by patients and their families. As
an example, currently, the UK spends around £36B per year
only for managing this disorder [1]. ASD is identified by
restricted and repetitive behaviour combined with echolalia
and different forms of intellectual/motor disabilities. Very
early diagnosis (around or before 24 –30 months of age) and
subsequent early intervention has been shown as the most
effective way of treating ASD children in terms of maximal
behavioural and intellectual outcomes.

Traditionally, ASD is diagnosed at around 3.5 –4 years
of age, based on narrative behavioural interactions between
the children and specialists besides parental questionnaire.
This usually requires an extended period to detect abnormal-
ities, subjective in nature, and lacking from biological evi-
dence besides the fact that such a method cannot be applied
for very early diagnosis as for evaluating their behaviour, the
children needs to be at a certain age (typically > 3.5 years).
Therefore, recently more emphasis has been given to diag-
nose ASD based on biological markers, thereby increasing
evidence-based diagnostic accuracy.

The Electro-encephalogram (EEG) signal is widely used
in the literature as an effective tool for diagnostic systems
in different brain disorders as it can shed light on the pre-
cise temporal dynamics of the brain [2]. Event-Related Po-
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tential (ERP) is among the most common patterns extracted
from EEG and can help study the signal changes over time
in response to an external stimulus. This opens the possi-
bility of diagnosing ASD based on ERP analysis under cer-
tain age-appropriate tasks. One such stimulus, where ASD
children show severe deficit compared to a typically devel-
oping (TD) child, is in Emotional Facial Expression (EFE)
processing —a fundamental skill in child development that
begins typically in early childhood. Thus, identifying im-
pairments in processing EFE has been suggested as a possi-
ble tool for diagnosing ASD children [3]. Monteiro et al. [4]
have conducted a systematic review of EEG-based ERP stud-
ies regarding EFE processing in ASD, and they found that
the literature was inconsistent:while some research showed
differences in neural responses between ASD and TD indi-
viduals, other studies did not identify any deficits. Inconsis-
tency was also found regarding the ASD impairment in rec-
ognizing different EFE. Besides, none of the previous explo-
rations considered using the underlying nonlinear dynam-
ics of ERP components in addition to the traditional linear
measurements to characterize the signals in response to EFE
stimuli in individuals with ASD.

Nonlinear features consist of quantitative measures rep-
resenting the complex dynamic characteristics of the EEG
signals, which the linear measurements cannot capture. In
this work, we propose including the nonlinear features of
ERP components with the traditional linear ones to classify
ASD and TD children. More precisely, we employ the sam-
ple entropy (SampEn) [5] as a nonlinear measure to detect
the signal’s irregularity in response to the EFE stimuli. Si-
multaneously, three standard linear features, namely maxi-
mum (Max.), minimum (Min), and standard deviation (Std.),
were used to detect the amplitude changes after EFE presen-
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tation.
Before computing the measurements above, the Multi-

variate Empirical Mode Decomposition (MEMD) method
[6] has been used to decompose EEG signals into a set of
scales, namely Intrinsic Mode Functions (IMFs), and sub-
sequently, extracting the features from each of these IMFs.
MEMD was employed here as the SampEn may fail to ac-
count for time series with multiple time scales [5]. Besides,
extracting the features from the signal’s intrinsic components
gives insight into the overlapping time-frequency activity
underlying ERP components. Contrary to other decomposi-
tion approaches, the MEMDmethod adaptively decomposes
the signals and does not require a priori selection of the fil-
ter cut-offs. This characteristic solves the well-known vari-
ability between subjects in the frequency ranges of the tradi-
tional brainwaves, leading tomissing potentiallymeaningful
brain dynamics.

It is the first time such an approach involving both linear
and nonlinear intrinsic characteristics of the ERPs has been
employed for ASD diagnosis to the best of our knowledge.
Statistical analysis is initially utilized to evaluate the pro-
posed features. The features were then used to train and test
three well-known classifiers, namely Discriminant analysis
(DA), Support vector machine (SVM), and k-Nearest Neigh-
bors (kNN), to show how useful they could be in practical
ASD classification.

Our quest here could be summarized for exploring the
answers to a set of fundamental questions: (1) Is the pro-
posed combination of linear and nonlinear features can clas-
sify ASD and TD? (2) Which IMF component is the best to
reveal ASD brain abnormality, andwhat is its underlying fre-
quency? (3) Which facial expression stimulus-evoked ERP
response gives better discrimination between ASD and TD
children?

The remainder of this paper is organized as follows: Sec-
tion 2 describes the EEG dataset used in this work, followed
by brief descriptions of the SampEn, MEMD method and
the feature extraction scheme adopted here to extract the lin-
ear and nonlinear measures from the IMF components. De-
scriptions of the statistical analysis, feature selection and the
classification procedure are also provided in the same sec-
tion. The results are presented in Section 3 and discussed
in detail in Section 4. Section 5 concludes the paper and
suggests some of the future research directions.

2. Materials and methods
In this study, we used an available EEG dataset recorded

during the presentation of EFE to explore whether the pro-
posed features in theMEMD domain can efficiently discrim-
inate between ASD and TD children. Thus, after decompos-
ing the signals using the MEMD method, the proposed lin-
ear and nonlinear features are computed from selected IMFs
and used to form feature vectors. The entire set of features
and the selected ones (using a feature selection technique)
were used to train and test DA, SVM, and kNN classifiers
for ASD classification. Figure 1 presents the overall process

of the proposed framework. The whole analysis is carried
out in the MATLAB software package R2018a.

2.1. Experimental data description
The dataset was taken from a previous EEG-based EFE

ERP studies [7, 8]. The dataset contains EEG signals from
24 subjects —12 ASD and 12 TD; age group 6 –13 years
(mean age 10.2 and 9.7 years for ASD and TD, respectively).

The EEG signals were acquired during the presentation
of three kinds of EFE —neutral, happy and fearful. The ex-
periment was done in 4 blocks, and in each block, 10 neu-
tral, 10 happy and 10 fearful faces were presented twice at
random order. Signals were recorded at 250 Hz using a 128-
channel HydroCel Geodesic Sensor net, as illustrated in Fig-
ure 2. The acquired EEG data were segmented into 1000 ms
epochs (150 ms baseline and 850 ms post-stimulus presen-
tation) to focus on the time window surrounding the actual
event. Epochs with signals over a threshold of 200 �V were
considered artefacts and rejected. Data were band-pass fil-
tered with cut-off frequencies from 0.5 Hz to 50 Hz to re-
move low-frequency drifts and high-frequencymeasurement
noise using a fifth-order forward-backward Butterworth fil-
ter, and the baseline was corrected [7, 8].

Eight channels located in the Fusiform Gyrus (FG) area
of the cortex are selected for the current study. FG is be-
lieved to be the specific region for processing face features
and emotions [7]. Right Region Of Interest (ROI) was de-
fined as electrodes no. 96 (P8/T6), 95 (P10), 90 (PO8) and
89, whereas left ROI as electrodes no. 58 (T5), 64 (P9), 65
(PO7) and 69. These channels are highlighted in red in the
electrode arrangement in Figure 2.

2.2. Sample entropy (SampEn)
SampEn, developed by Richman and Moorman [5], ef-

fectivelymeasures the complexity of nonlinear physiological
signals such as EEG. SampEn is a modification of approx-
imate entropy [9], improving its computation and accuracy
of signal regularity. SampEn has defined as the probability
that two similar patterns for m point remain identical at the
nextm+1 point within a tolerance r. For the time series x(i)
of lengthN , SampEn is given by:

SampEn(m, r,N) = −ln[Am(r)∕Bm(r)], (1)

where

Am(r) = (N − m)−1ΣN−mi=1 Cm+1i (r), (2)

Bm(r) = (N − m)−1ΣN−mi=1 Cmi (r), (3)

Cmi (r) = (N − m − 1)−1Ci, i = 1, 2, .., N − m, (4)

where m is the embedding dimension, Bm(r) is the like-
lihood thatXm(i) andXm(j) is matching for m points, while
Am(r) is the likelihood that Xm(i) and Xm(j) will match for
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Figure 1: Block diagram of the proposed method.

Figure 2: Right and Left ROIs used in the present study [7].

m+1 points. Cmi (r) is the probability of a vectorXm(i) being
similar to Xm(j) within a tolerance r, Ci is the number that
the distance of two vectors X(i) and X(j) is smaller than r,
and a vector Xm(i)(1 ≤ i ≤ N − m + 1) is reconstituted of
this series, and is given by: Xm(i) = {x(i), x(i+1),… , x(i+
m−1)}. To estimation SampEn optimally, some studies have
recommended the embedding dimensionm = 2 or 3, and the
tolerance r = 0.1−0.25 of the standard deviation of the sig-
nal [10, 11]. In this exploration, we set m = 3, and r = 0.2
of the standard deviation for the processed signal.

Given the multiple tempo-spectral scales inherent in the
brain, SampEn analysis is not appropriate to be applied di-
rectly to the EEG signals [5]. Thus, EEG needs to be decom-
posed first into single scale components to measure its un-
derlying nonlinear dynamic. The MEMD method has been
employed for this purpose.

2.3. Multivariate empirical mode decomposition
(MEMD)

MEMD was introduced by Rehman et al. [6] as a mul-
tivariate extension of the Empirical Mode Decomposition
(EMD) [12] method to resolve the mode alignment prob-

lem. EMD and their extensions have recently become use-
ful tools for the time-frequency analysis. Unlike other time-
frequency methods such as Short-time Fourier (STFT) [13]
and Wavelet transforms [14], EMD-based methods do not
require predefined frequency bands to analyse EEG signals.
Thus, they decompose the time-series adaptively, through
the Sifting process, from high to low-frequency components
known as IMFs. The resulted IMFs should sum to a com-
posite nearly identical to the original signal given by:

x(t) = Σni=1ci(t) + rn(t). (5)

where, x is the original signal, i being indices of the IMFs, n
is the total number of IMFs, r is the residue at the end of the
Sifting process [12]. The procedure of the Sifting process
of the MEMD method starts by considering a sequence of
n-dimensional vectors:
{

v(t)
}T
t=1 =

{

v1(t), v2(t), v3(t),… , vn(t)
}

that represents a
multivariate signal with n components, and
XQk =

{

xk1 , x
k
2 , x

k
3 ,… , xkn

}

denoting a set of direction vec-
tors along the directions given by angles
Qk =

{

Qk1 , Q
k
2 ,… , Qk(n−1)

}

on an (n − 1)-sphere. Then the
MEMD algorithm is summarized as following:

1) Choose a suitable set of points for sampling on a (n − 1)
sphere.

2) Calculate a projection, denoted by
{

PQk (t)
}T
t=1, of the

input signal
{

v(t)
}T
t=1 along the direction vectorX

Qk , for
all k (the whole set of direction vectors), giving
{

PQk (t)
}K
k=1 as the set of projections.

3) Find the time instants tQkj corresponding to the maxima

of the set of projected signals
{

PQk (t)
}K
k=1.

4) Interpolate [tQkj , v(tQkj )] to get the multivariate envelope

curves
{

eQk (t)
}K
k=1.

5) For a set of K direction vectors, the mean m(t) of the
envelope curves is calculated as m(t) = 1

KΣ
K
k=1e

Qk (t).
6) Extract the detail ci(t) using ci(t) = v(t) − m(t) (i is an

order of IMF). If the detail ci(t) satisfies the IMF condi-
tions, apply the above procedure to v(t)−ci(t), otherwise
apply it to ci(t).
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The Sifting process can be stopped when the detail ci(t)
is monotonic and no more IMFs can be extracted from it.

Once all IMFs are identified, the instantaneous frequen-
cies of each IMF can be acquired by the Hilbert Transform
(HT) [12]. MEMD also works as a filter where it can isolate
the inevitable noise inherent in the time series in separate
components. Thus, after decomposing the signal, the noisy
components can be identified and removed [6].

2.4. MEMD-based feature extraction process
To characterize the multi-subject neural recordings col-

lected from multiple channels over multiple trials, our pro-
posedMEMD-based analysis consists of the following steps:
1) The epochs of each class of stimulus are averaged at the

beginning of this analysis to enhance the signal to noise
ratio (SNR) and extract the ERP components.

2) For each class of stimulus, the data points of all sub-
jects from each channel are stacked on top of each other.
Hence, we construct eight matrices (one for each chan-
nel); each of them has the dimensionality of Ns × Nt,
where Ns denotes the number of subjects (which is 24)
andNt indicates the number of temporal samples (which
is 250). Figure 3 illustrates this process.

3) The MEMD method is then applied to each matrix sep-
arately, as shown in Figure 3. Following this way, the
datasets of all subjects for a specific channel are decom-
posed into the same number of IMFs.

4) As the number of IMFs may vary among channels, the
lowest number of modes can be considered. In the data
under study, the channels decomposed into the same num-
ber of IMFs, which was eight for each class of stimu-
lus. Figure 4 gives an example of the resulted IMFs from
channel 1 of the first ASD subject collected during the
happy stimulus presentation.

5) The frequencies of each IMF is then acquired by HT. It
was found that IMF1 and IMF2 are noisy and contain dif-
ferent oscillatory components. Therefore, these modes
were excluded from further analysis. IMF8 was also ig-
nored as it represents the residue mode, which might give
unreal information about the signal. The frequencies of
the remaining IMFs were localized approximately in the
following ranges: IMF3 (30 –37 Hz), IMF4 (13 –20 Hz),
IMF5 (8 –12 Hz), IMF6 (4 –6 Hz), and IMF7 (0.5 –2.5
Hz). According to the traditional ranges of the five phys-
iological frequency bands [15], it was found that IMF3
to IMF7 frequencies belong to the gamma, beta, alpha,
theta and delta band, respectively.

6) SampEn are then computed over each IMF (IMF3 –IMF7)
to depict their complexity in the time domain.

7) Standard linear features (Max., Min. and Std.) are also
extracted from each IMF (IMF3–IMF7) to reflect the tem-
poral changes of the amplitude after the stimuli presen-
tation.

2.5. Statistical analysis
Statistical analysis test was used to determine the capa-

bility of the proposed set of features to discriminate between

the two classes (ASD and TD) and to choose the statistically
significant ones for classification purposes. To this end, we
applied the one-way analysis of variance (ANOVA) using
MATLAB’s statistics toolbox.

Generally, statistical tests include computing test statis-
tics translated as a statistically significant or non-significant
value greater or less than a threshold known as the level of
significance (�). Being without apparent reason, the most
common value of � is 0.05 [16]. This value of � needs to
be adjusted (lowered) mainly when several independent tests
are being performed simultaneously as the chosen value of
� may be appropriate for each test, but not for the set of
all tests. Bonferroni correction [17] is the straightforward
approach for such adjustment, in which the given � is di-
vided by the total number of running tests to find a corre-
sponding level of significance. In this study, the discrimi-
native capability of each feature (SampEn, Max., Min., and
Std.) computed from each IMF has been evaluated sepa-
rately, and this process was performed simultaneously for
each type of stimuli. Hence, Bonferroni correction has been
employed, and the value of � has been corrected from 0.05
to 0.0008. Thus, a difference is statistically significant if p-
value< �(= 0.0008).

2.6. Features selection
The proposed method uses four features extracted from

the multivariate IMF signal of each EEG channel. Thus,
the feature’s number could be large and lead to the over-
fitting problem. To prevent overfitting, the number of fea-
tures should be relatively small with respect to the number of
training samples to ensure good generalization performance
of the designed classifier. Thus, selecting highly informa-
tive features from a larger pool of available ones is crucial to
optimize the classification performance [18].

Two different feature selection techniques are known in
themachine learning literature—Scalar feature selection and
feature vector selection [18]. Scalar feature selection is em-
ployed independently of the classifier. The features are ranked
in descending order using a score like Fisher’s Discriminant
Ratio (FDR). The top-ranked features are then selected to
check a particular classifier’s performance [18].

On the other hand, feature vector selection identifies the
best combination of features based on several search tech-
niques, such as sequential backward search (SBS) and se-
quential forward search (SFS) [18]. The advantage of the
scalar feature selection over the feature vector selection is
computational simplicity while achieving the ultimate goal
of getting a reliable classification [18]. Thus, scalar feature
selection method based on FDR criterion is employed in this
study to select the highly discriminant features as follows:
1) Normalize the features to zero mean and unit variance to

remove the bias from features having high values.

x̂i =
xi − x̄
�

, i = 1, 2,… , N (6)

where x̂i is normalized value, N be the number of fea-
tures, xi is the feature i, x̄ the mean and � be the standard
deviation.
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Figure 3: Simultaneous decomposition of the dataset recorded during the happy stimulus presentation.

Figure 4: An example of the resulted IMFs from the MEMD
method.

2) Rank the features in descending order according to the
FDR measure.

FDR =
(�1 − �2)2

(�21 + �
2
2 )

(7)

where �1 is the mean of the first class, �2 is the mean of
the second class, �21 and �22 are the variance of the first
and second class, respectively.

3) Compute the cross-correlations among the top-ranked fea-
ture (with the index i1) and each remaining features. The
index, i2, of the second most important feature is com-
puted as

i2 = argmax
{

a1Cj − a2|Pi1,j|
}

, j ≠ i1 (8)

which incorporates the feature ranking value C for the
jth feature, and the cross-correlation (Pi1,j) between the

best feature (i1) and feature j ≠ i1. The parameters a1,
a2 are weighting factors.

4) The rest of the features are ranked according to

ik = argmax
{

a1Cj −
a2
k − 1

k−1
∑

r=1
|Pir,j|

}

, j ≠ ir (9)

for r = 1, 2,… , k − 1, and k = 3, 4,… , m. The average
correlation with all the previously considered features is
taken into account [18].

2.7. Machine learning
To assess our proposed features for the practical ASD

classification, Classification Learner App within the Statis-
tics and Machine Learning Toolbox in MATLAB was used
to train DA, SVM, and kNN classifiers. For DA, two popu-
lar discriminant functions were investigated —linear (LDA)
and quadratic (QDA). Three kernel functions were utilized
for SVM —linear (L-SVM), quadratic (Q-SVM) and cubic
(C-SVM). For kNN, a different number of nearest neighbor k
was used, and the best accuracy was reported. For a detailed
review of these classifiers, [19] can be consulted.

In order to obtain the classifiers’ performance, we ran-
domly selected 75% of the total number of samples to be
used for training, and the remaining 25% (which were un-
seen by the models during the training) were used for testing
the resulted model. The 10-fold cross-validation technique
was used in the training process to prevent overfitting due
to its reliability and lowest chance of introducing an unde-
sired bias with few samples [20]. Thus, 90% of the training
data samples were used for training, and 10% of the hold-
out samples were used for validation. This procedure was
repeated for ten folds, and the classifier performance was
then obtained by averaging the ten independent results. Dur-
ing the validation process, the hyperparameters were tuned
using hyperparameter optimization within the Classification
Learner app. The app tries different combinations of hyper-
parameter for each model type using an optimization scheme
that seeks tominimize themodel classification error. Table 1
shows the division of the dataset for the training, validation,
and testing process.
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Table 1
Details of datasets division into training and testing sets.

Division Training/validation Testing

Percentage 75% (90% for training and 10% for validation) 25%
Samples 18 (16 for training and 2 for validation) 6

Table 2
p-values of the proposed features for the happy, fear, and neu-
tral stimuli datasets. Features that are statistically signi�cant
are indicated in boldface.

Component Feature Happy Fear Neutral

IMF3

SampEn 0.06 0.43 0.82
Max. 0.81 0.84 0.43
Min. 0.44 0.54 0.78
Std. 0.73 0.85 0.57

IMF4

SampEn 0.08 0.81 0.58
Max. 0.01 0.32 0.37
Min. 0.06 0.47 0.79
Std. 0.01 0.36 0.34

IMF5

SampEn 0.000007 0.04 0.00001
Max. 0.73 0.57 0.66
Min. 0.57 0.29 0.53
Std. 0.45 0.49 0.91

IMF6

SampEn 0.00002 0.16 0.84
Max. 0.25 0.70 0.77
Min. 0.18 0.14 0.31
Std. 0.62 0.54 0.76

IMF7

SampEn 0.05 0.80 0.48
Max. 0.01 0.05 0.004
Min. 0.0007 0.02 0.001
Std. 0.0005 0.02 0.002

The classification performance was evaluated using the
conventionalmeasures of accuracy (ACC), sensitivity or true
positive rate (TPR), and specificity or true negative rate (TNR).

3. Results
3.1. ANOVA results

Table 2 presents the p-values of the proposed features
for the happy, fear, and neutral stimuli datasets. It has been
noticed that SampEn features computed from IMF5 signifi-
cantly differ between the ASD and TD groups in the happy
and neutral datasets. SampEn extracted from IMF6 in the
happy stimulus case also gave a low p-value indicating good
discriminative capability between the two groups. The re-
sults also indicate that the Min. and Std. features extracted
from IMF7 can significantly differentiate between ASD and
TD signals in happy stimulus case. All features computed
from IMF3 and IMF4 gave high p-values indicating low dis-
criminatory capability. Thus, IMF3 and IMF4were excluded
from the classification process. Besides, Max. feature also
achieved a high p-value in all comparisons. Therefore, it
was eliminated from the training and testing matrices before
feeding them into the classifiers.

Table 3
Mean values of the channel-based SampEn features computed
from IMF5 (for the happy and neutral stimuli) and IMF6 (for
the happy stimulus) in each group (ASD and TD).

Channel no. Group
IMF5 IMF6

Happy Neutral Happy

96 (P8/T6)
TD 0.231891 0.255047 0.179828
ASD 0.180592 0.195368 0.162561

95 (P10)
TD 0.237618 0.251609 0.165598
ASD 0.177465 0.191654 0.157265

90 (PO8)
TD 0.252373 0.240605 0.192727
ASD 0.216844 0.206553 0.187306

89
TD 0.238013 0.242491 0.170675
ASD 0.192634 0.183182 0.158942

58 (T5)
TD 0.253348 0.212844 0.18533
ASD 0.203716 0.2226 0.157741

64 (P9)
TD 0.211596 0.213144 0.17435
ASD 0.187116 0.199813 0.161868

65 (PO7)
TD 0.257222 0.238206 0.224777
ASD 0.257747 0.220763 0.177993

69
TD 0.233715 0.243575 0.193015
ASD 0.182412 0.204113 0.159689

3.2. SampEn analysis
To show how the complexity differs between ASD and

TD children, we computed the mean values of SampEn fea-
tures in each group (ASD and TD) that are extracted from
IMF5 (for the happy and neutral stimuli) and IMF6 (for the
happy stimulus) for all channels. Table 3 presents the re-
sults. Compared to the TD group, the ASD group showed
lower SampEn in almost all FG channels during EFE pro-
cessing tasks, indicating a complexity reduction of the FG
brain activity, specifically in the alpha and theta bands—the
frequency bands corresponding to IMF5 and IMF6, respec-
tively.

3.3. Machine learning results
DA, SVM, and kNN classifiers were trained on differ-

ent dimensions of feature vectors to find the optimal pool of
features that can best distinguish between the ASD and TD
children. The dimension of the vectors was as follows: Each
feature from IMF5, IMF6 and IMF7 was first evaluated for
classification separately. Thus, the feature vectors for each
subject wereNe×Nf×Nm, whereNe is the number of chan-
nels,Nf is the number of features, andNm is the number of
IMFs, i.e. (8 × 1 × 1 = 8). The classifiers were then trained
with the combination of the three features (SampEn, Min.
and Std.) that computed from each IMF, and the dimensions
of the feature vectors in this case were (8 × 3 × 1 = 24).
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Table 4
L-SVM performance using di�erent features vectors for all types of stimuli.

Component/s Feature/s
Happy Neutral Fear

ACC TPR TNR ACC TPR TNR ACC TPR TNR

IMF 5

SampEn 72.2% 78% 67% 72.2% 78% 67% 61.1% 78% 44%
Min. 55.6% 67% 44% 38.9% 56% 22% 55.6% 89% 22%
Std. 50% 67% 33% 44.4% 67% 22% 55.6% 78% 33%
All 77.8% 89% 67% 72.2% 78% 67% 61.1% 78% 44%

IMF 6

SampEn 77.8% 78% 78% 66.7% 67% 67% 50.0% 67% 33%
Min. 61.1% 44% 78% 72.2% 67% 78% 61.1% 44% 78%
Std. 55.6% 44% 67% 55.6% 44% 67% 61.1% 89% 33%
All 88.9% 89% 89% 72.2% 67% 78% 38.9% 33% 44%

IMF 7

SampEn 55.6% 78% 33% 44.4% 67% 22% 55.6% 44% 67%
Min. 77.8% 67% 89% 66.7% 67% 67% 61.1% 44% 78%
Std. 77.8% 56% 100% 72.2% 67% 78% 61.1% 44% 78%
All 72.2% 67% 78% 66.7% 56% 78% 61.1% 44% 78%

IMF 5�7

SampEn 88.9% 100% 78% 66.7% 78% 56% 44.4% 56% 33%
Min. 77.8% 67% 56% 61.1% 56% 67% 61.1% 56% 67%
Std. 83.3% 67% 100% 66.7% 56% 78% 55.6% 56% 56%
All 94.4% 89% 100% 72.2% 67% 78% 61.1% 44% 78%

Additional investigations were obtained to explore whether
combining IMF5, IMF6, and IMF7 could improve the clas-
sifiers’ performance. In this case, the dimensions of the fea-
ture vectors were (8 × 1 × 3 = 24) to explore each feature
individually and (8 × 3 × 3 = 72) for the combination of the
three features (i.e. SampEn, Min. and Std.).

In general, the 10-fold cross-validation results of all clas-
sifiers showed an enhancement in the classification perfor-
mance when the classifiers were trained on the combination
of the three features extracted from the last three IMFs (i.e.
on the feature vector of size 72). Table 4 gives the detailed
validation results of L-SVM to show an example of how the
performance improved by combining all features, especially
with the happy dataset. All other classifiers had similar im-
provement.

The classifiers were then trained on different subsets of
the 72 features to prevent overfitting. The features on each
subset were selected based on the scalar feature selection
procedure described previously. In practice, one has to ex-
periment with a different number of selected features and
choose the one that results in the best classification perfor-
mance [18]. Thus, we started by exploring the discrimina-
tion capability of the top high ranked 15 features, where the
role of thumb is not to exceed the number of the training
samples (which is 18) [18]. The top 10 and top 5 features
were also investigated. Figure 5 gives the 10-fold cross-
validation accuracies for all three stimuli when the classi-
fiers were trained on the entire feature set and the top se-
lected ones. Generally, it can infer that the classifiers’ per-
formance was enhanced by reducing the number of features
in the happy, neutral, and fear datasets. The best classifica-
tion accuracies were when the top 10 selected features are
used to train almost all the classifiers. Visualizations of the
training sets associated with the full and the reduced set of
features for all stimuli are also shown in Figure 6. As seen,

the two groups can often better separated, especially in the
happy dataset, using the reduced set of the highly selected
features.

It has also been noticed from Figure 5 that the best dis-
crimination between ASD and TD children, for all classi-
fiers, were achieved using the happy dataset. The same fig-
ure also shows that the classifiers’ results for each stimulus
type were close to each other, and the QDA achieved the
worst performance in general. The best accuracy for the
happy dataset was 100% when the top 10 or 15 features were
used to train the LDA, kNN and all SVMs. The best accu-
racy was 88.9% for the neutral dataset when the top 10 or
15 features were used to train the LDA, kNN, L-SVM and
Q-SVM. The best accuracy the fear dataset was 83.3% when
the top 10 features were used to train the kNN and all SVMs.

The trainedmodels with the top 10 selected features were
then used to make predictions with the test datasets. This
set of features were employed due to its best and consis-
tent validation performance of all classifiers with the three
stimuli datasets. Table 5 gives the testing results. Again
the happy dataset had the best classifiers’ performance that
reached 100% ACC, 100% TPR, and 100% TNR using the
LDA, and Q-SVM. Followed by the fear dataset with 50%
ACC, 100%TPR, and 0%TNRusingQ-SVMand 50%ACC,
66.7% TPR, and 33.3% TNR using QDA. The best perfor-
mance for the neutral dataset was 33.3% ACC, 0% TPR, and
66.7% TNR using LDA and kNN. The confusion matrix of
the best testing performance for each dataset is shown in Fig-
ure 7.

4. Discussion
This study addresses a multimodal abnormality in EFE

processing in ASD children over the FG brain region. It in-
vestigates the impairments in the intrinsic EEG complex-
ity (as indexed by SampEn measures) and the ERP alter-
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Figure 5: Accuracy of di�erent classi�ers with di�erent group of features for each stimulus.

Figure 6: Visualizations of the training sets associated with the full and the top 10 sets of features for all stimuli.

Table 5
Prediction performance of all classi�ers on the testing data for all stimuli.

Classi�er
Happy Neutral Fear

ACC TPR TNR ACC TPR TNR ACC TPR TNR

LDA 100% 100% 100% 33.3% 0% 66.7% 33.3% 33.3% 33.3%
QDA 66.7% 100% 33.3% 16.7% 0% 33.3% 50.0% 66.7% 33.3%
L-SVM 83.3% 66.7% 100% 16.7% 0% 33.3% 33.3% 33.3% 33.3%
Q-SVM 100% 100% 100% 16.7% 0% 33.3% 50.0% 100% 0%
C-SVM 83.3% 100% 66.7% 16.7% 0% 33.3% 33.3% 66.7% 0%
kNN 83.3% 100% 66.7% 33.3% 0% 66.7% 33.3% 33.3% 33.3%
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Figure 7: Confusion matrix of the best classi�cation results for each stimulus. Here class 1 depicting ASD, and class 2 representing
TD.

ations (through the standard linear features). The statistical
analysis tests showed significant differences between ASD
and TD children, especially in processing the happy stimu-
lus through the SampEn features computed from IMF5 and
IMF6. IMF5 and IMF6 were found (through the HT analy-
sis) to contain the alpha and theta bands, respectively.

Particularly, our results showed a decrease in EEG com-
plexity in the ASD group compared to the TD group. This
result is in line with Catarino et al. [21] study, which demon-
strated a reduction of EEG signal complexity in the ASD
group in response to a visual matching task. Hence, our find-
ings support the hypothesis that the complexity of electri-
cal brain activity is reduced in individuals with ASD due to
EEG long-range temporal correlations reduction and atypi-
cal neural connectivity in the ASD population [21]. The im-
pairments in the alpha bandmeasurements of ASD signals in
response to EFE stimuli have also been reported previously
in the literature. Khan et al. [22] measured functional brain
connectivity of magnetoencephalography (MEG) signals in
the FG region while subjects were doing emotional recogni-
tion tasks. They found that children with ASD demonstrated
specific alpha abnormalities compared to TD ones.

Statistical analysis tests also showed significant differ-
ences between the two groups in processing the happy stim-
ulus through the linear measurements computed from IMF7,
which was found (through the HT analysis) to include the
delta band’s frequencies. This finding indicates that the fea-
tures extracted from the low-frequency component could sig-
nificantly account for the linear ERP variations between the
two groups. The role of the delta band in recognition of EFE
has been reported before in the literature [23, 24]. In partic-
ular, Dominguez et al. [25] found that those with ASD had
increased coherence in the lowest frequency bands, delta and
theta, over occipital channels, including the FG region, as
viewing emotional faces compared to controls.

We also trained and tested different classifiers with var-
ious feature vectors constructed from IMF5-IMF7 to inves-
tigate their practical capability in ASD diagnosis. Almost
all validation results suggested that combining the nonlinear
measurements (as indexed by SampEn) and the linear fea-
tures (Min. and Std.) and extracting them from the combina-

tion of the last three IMFs (to include alpha, theta, delta brain
bands) can improve the classifiers’ performance. Besides,
selecting the highly informative features from this large pool
using the scalar feature selection technique was further en-
hanced the results.

In general, the results of all employed classifiers were
comparable in each case of stimuli during both the validation
and testing procedures. The results showed that the signals
recorded during the happy stimulus presentation achieved
the best classification performances. This finding suggests
general impairment in the positive emotions recognition (as
indexed by happiness) in children with ASD. This result is
consistent with Yeung et al. [26] finding, but it contradicts
other studies that only found a deficit in recognition of nega-
tive emotions (such as fearful faces) [27, 28]. This inconsis-
tencymight be due to the differences in the task demands that
widely vary across studies [26]. Nevertheless, the testing re-
sults of the fear dataset indicate better performance than the
neutral stimulus results. More precisely, the TPR was better
in all classifiers. A good TPR is often important in a diag-
nostic test where children identified as having ASD should
be highly likely to have the condition.

The results of this study are first compared to three previ-
ously published works that used the same dataset employed
herein. Apicella et al. [7] assessed the mean values of the
ERP latencies and amplitudes using the ANOVA repeated
measures of the three stimuli. They reported reduced ampli-
tudes and delayed latencies of all the early ERPs inASD chil-
dren regardless of the EFE stimuli. Thus, they suggested that
ASD children similarly process all the three faces compared
to TD ones. However, they neither studied the frequency al-
teration nor nonlinear activity underlying ERP components.
Jamal et al. [8] reached 94.7% ACC as the best performance
with 85.7% TPR and 100% TNR using functional connectiv-
ity features and the SVM. Although these promising results,
their exploration mainly combined all data from the three
stimuli. Thus, they tested the capability of the connectivity
features to differentiate between the ASD and TD children
without giving attention to the effect of each EFE (happy
vs. fear vs. neutral). Though their features were based on
time-frequency analysis, they also did not discuss the oscil-
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lations of interest associated with their findings. Khuntia et
al. [29] carried out multivariate pattern analysis using Class-
wise Principle Component Analysis in both time and time-
frequency domains (via STFT). Classification performance
reached around 81% in the time domain analysis and 84%
in the time-frequency domain exploration regardless of the
face and non-face stimuli (as they include the tree stimulus).
In the time-frequency analysis, alpha and beta oscillations
seemed to identify ASD children best. Nevertheless, this
work also did not consider the nonlinear behaviour of the
EEG signals.

We also compared our study with two relevant EEG-
based ERP studies that employed another children dataset
for ASD diagnosis. Yeung et al. [26] employed happy, sad,
anger, disgust, fear, surprise, and neutral stimuli, and their
samples included 18 TD and 18 ASD children ranging in age
from 9 –10 years-old. They usedANOVA repeatedmeasures
to assess functional connectivity, as indexed by theta coher-
ence, during EFE recognition tasks. They found that ASD
children exhibited abnormal patterns in the theta coherence
associated with their EFE recognition ability. Their results
also suggested general impairment in recognition of the pos-
itive emotions. Despite their significant findings, they only
studied theta wave’s connectivity and did not consider the
nonlinear activity underlying ERP components. Dominguez
et al. [25] used fearful and happy stimuli, and their dataset
consists of 31 TD and 72 ASD children (age ranges 2 to
4 years 11 months). They trained and tested L-SVM with
high dimensional feature vectors of the imaginary part of
coherency of all frequency bands, and classification accu-
racy of 80% was reached. They also carried out ANOVA
analysis and found that ASD children exhibited enhanced
synchronization during the post-stimulus time, particularly
at lower frequency bands. However, they did not report the
differences in processing the happy and fearful expressions
and did not consider the nonlinearity of the signals. Table 6
summarizes all this researches.

From the above studies and the systematic review ofMon-
teiro et al. [4], which review other 14 state-of-the-art arti-
cles, we can argue that our exploration’s novelty is mainly
represented by including linear and nonlinear characteristics
of ERPs. Almost all of the reviewed studies did not consider
the nonlinearity of the EEG signals when analysing the ERP
components. Additionally, even though few articles stud-
ied the overlapping time-frequency activity in response to
the recognition of emotional facial expression tasks [25, 26,
29], they often spectrally analysed the signals using time-
frequency methods that rely on the predefined traditional
brainwaves. The prior selection of the filter cut-offs raises an
issue due to the well-known variability between subjects in
the neural oscillations associated with different tasks. This
limitation has been settled in our proposed approach using
the MEMD method, which decomposes the signals adap-
tively. Hence, all potentially meaningful brain dynamics are
included in the analysis.

Overall, the proposed framework successfully diagnosed
ASD with high efficiency that outperforms the results of the

related works. Therefore, it could be instrumental in solv-
ing the late diagnosis problem of ASD. However, more work
needs to be carried out with a larger number of samples to
eliminate the possible effects of misclassification and estab-
lish the method’s practical validity before putting it into clin-
ical practice.

5. Conclusion
The proposed framework successfully classifiedASD chil-

dren from the TD ones using their EEG signals collected
over the FG brain region during EFE tasks. Linear and non-
linear measurements of IMFs were assessed using statistical
analysis and a machine learning framework. A high predic-
tion accuracy of 100% for the happy stimulus dataset was
achieved. Thus, the study revealed general impairment in
recognizing the positive EFE inASD children. Besides, EEG
complexity, as indexed by SampEn measure through the al-
pha and theta brain waves, and the linear features extracted
from the delta band componentsmay be considered biomark-
ers for detecting ASD children. Nevertheless, more work
needs to be carried out in the future, with a larger ASD and
TD children population, to bring it into clinical practices ef-
fectively. Investigating the proposed method with a sample
of younger children is also required.
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