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A B S T R A C T   

The availability of the epidemiological data strongly affects the reliability of several mathematical models in 
tracing and forecasting COVID-19 pandemic, hampering a fair assessment of their relative performance. The 
marked difference between the lethality of the virus when comparing the first and second waves is an evident 
sign of the poor reliability of the data, also related to the variability over time in the number of performed swabs. 
During the early epidemic stage, swabs were made only to patients with severe symptoms taken to hospital or 
intensive care unit. Thus, asymptomatic people, not seeking medical assistance, remained undetected. 
Conversely, during the second wave of infection, total infectives included also a percentage of detected 
asymptomatic infectives, being tested due to close contacts with swab positives and thus registered by the health 
system. Here, we compared the outcomes of two SIR-type models (the standard SIR model and the A-SIR model 
that explicitly considers asymptomatic infectives) in reproducing the COVID-19 epidemic dynamic in Italy, 
Spain, Germany, and France during the first two infection waves, simulated separately. We found that the A-SIR 
model overcame the SIR model in simulating the first wave, whereas these discrepancies are reduced in simu
lating the second wave, when the accuracy of the epidemiological data is considerably higher. These results 
indicate that increasing the complexity of the model is useless and unnecessarily wasteful if not supported by an 
increased quality of the available data.   

1. Introduction 

Coronavirus is a member of the Coronavirinae subfamily, Coronavir
idae family, and Nidovirales Order [1], which mainly causes infections in 
the respiratory and gastrointestinal tracts [2]. The genome is a single 
positive (+) strand RNA of about 30 kb in length (26.4–31.7 kb) that 
represents the longest known RNA virus. Several factors contribute to 
their high genetic variability:  

1. Infidelity of RNA-dependent RNA polymerase that causes a mutation 
rate of the order of 1 × 103/synonymous site/year.  

2. A random template switching during RNA replication with high 
homologous genome recombination.  

3. A great plasticity and genome modification allowed by the large size 
of the genome [3]. 

These three factors led to the generation of a diversity of strains and 
genotypes, but also allow new species to adopt new hosts and ecological 
niches, sometimes causing major zoonotic outbreaks with disastrous 
consequences [4]. 

The subfamily of coronavirinae includes four genera (i.e., Alphacor
onavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) ac
cording to their relationship and genomic structure. The Alphacoronavirus 

Abbreviations: SIR (Susceptible-Infected-Recovered), A-SIR (Asymptomatic Susceptible-Infected-Recovered). 
* Corresponding author. Lab of Virology, Pad Baglivi INMI L Spallanzani, Via Portuense, 292 00149, Rome, Italy. 

E-mail addresses: giulia.fiscon@iasi.cnr.it (G. Fiscon), f.salvadore@cineca.it (F. Salvadore), valerio.guarrasi@uniroma1.it (V. Guarrasi), argarbuglia@iol.it 
(A.R. Garbuglia), paci@diag.uniroma1.it (P. Paci).  

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2021.104657 
Received 4 June 2021; Received in revised form 14 July 2021; Accepted 14 July 2021   

mailto:giulia.fiscon@iasi.cnr.it
mailto:f.salvadore@cineca.it
mailto:valerio.guarrasi@uniroma1.it
mailto:argarbuglia@iol.it
mailto:paci@diag.uniroma1.it
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.104657
https://doi.org/10.1016/j.compbiomed.2021.104657
https://doi.org/10.1016/j.compbiomed.2021.104657
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.104657&domain=pdf


Computers in Biology and Medicine 135 (2021) 104657

2

and Betacoronavirus infect only mammals. The Gammacoronavirus and 
Deltacoronavirus infect birds, but some of them can also infect mammals 
[5]. Seven different coronaviruses (CoVs) are known to affect/infect 
humans. Four of them, HCoV-NL63, HCoV–229 V (Alphacoronavirus), 
HCoV-OC43, and HCoV-HKU (Betacoronaviruses), are responsible for 
mild respiratory and intestinal infections, but they are considered vi
ruses with low pathogenicity [6]. Instead, SARS-CoV (severe acute res
piratory syndrome), MERS (Middle East respiratory syndrome), and 
SARS-CoV-2 have been linked to epidemic or pandemic events. Based 
on phylogenetic analysis, all three viruses seem to originate from bat 
viruses, even if their genomes are remarkably different: SARS-CoV-2 
shows about 89% similarity with bat SARS-like CoVZC21 and 82% 
similarity to human SARS-CoV, and only 50% similarity to MERS CoV 
[7,8]. They have been classified as Beta coronaviruses, but SARS and 
SARS-CoV-2 belong to the same lineage B, whereas MERS belongs to 
lineage C. 

SARS-CoV was diffused from 2002 to 2003 in 33 countries with 8096 
cases and 774 deaths with a case fatality rate (CFR) of 10% [9]. 

In 2012, MERS was detected in the Middle East with 2494 confirmed 
cases and 858 fatal cases with a CFR corresponding to 35% [8,10]. 
Dromedary camel is the intermediate host of this zoonotic virus, while 
the bat is considered the origin of the MERS virus. The intra-human 
transmission is rarely described and this could represent a “plausible” 
explanation of the limited diffusion of this virus. The clinical symptoms 
may be asymptomatic, mild, or can lead to severe disease with multi
organ failure. The receptor of MERS-CoV to pneumocytes and epithelial 
cells is the DPP4, a protein that affects glucose metabolism, T cell acti
vation, cytotoxic modulation, cell adhesion, and apoptosis. 

In December 2019, a novel CoV named SARS-CoV-2 (COVID-19 
causative agent) emerged in Wuhan, city of Hubei province (China), and 
transmitted to almost 192 countries around the globe with a CFR of 
2.3%. According to the weekly epidemiological update released by the 
World Health Organization (WHO) on the 29th of December 2020, the 
total number of infected people had reached 79,231,893 and the death 
toll had increased to 1,754,754 globally [11]. It represents the fifth 
pandemic after Spanish flu (1918), Asia flu (1957), Hong Kong flu 
(1968), and swine pandemic flu (2009), thus the first pandemic which is 
not related to an orthomyxovirus. Both SARS-CoV-2 and SARS-CoV have 
the same receptor ACE (angiotensin converting enzyme2), which is 
expressed on the epithelial cell of the lung, kidney, heart, and liver. The 
attachment of S glycoprotein of ACE2 can cause the loss of cylia, squa
mous metaplasia, and an increase in macrophages in the alveoli that 
cause damage to the lung [12]. Biophysical and cryo-EM structure 
revealed that the affinity of S protein to ACE2 is 10–20 times more 
contagious for SARS-COV-2 than for SARS-CoV [12,13]. SARS-CoV-2 
can not only damage the human lungs but can also attack many other 
organs, including the gut and blood vessels, thus presenting different 
signs and symptoms [14]. 

Many similarities had been observed between SARS-CoV and SARS- 
CoV-2. Both viruses have a median incubation time of about 5 days (95% 
CI 5.3–19 days). The progression to acute respiratory distress syndrome 
occurs approximately around 8–20 days after the onset of first symp
toms, whereby lung abnormalities on chest CT (Computed Tomography) 
show a remarkable/notable severity approximately 10 days after the 
initial onset of symptoms [15,16], moreover these two viruses possess a 
significant inter-human transmission and not only on animal-humans. 
However, several differences should be mentioned in order to under
stand the wide diffusion of SARS-COV-2 and the high number of deaths 
it caused:  

1. SARS-Cov-2 originated/diffused in a city, Wuhan, which accounts for 
more than 11 million people, and it spread mainly in the community 
and not only in health care.  

2. High transmission of infection by asymptomatic subjects. Several 
studies have indicated that asymptomatic patients can transmit 
SARS-CoV-2 virus to others [17–19], while this evidence lacks in 

SARS infection. Asymptomatic COVID-19 infectives include both 
asymptomatic and pre-symptomatic infected people. Those that, 
even if resulted positive to the reverse transcription-polymerase 
chain reaction (RT-PCR), never developed any signs or clinical 
symptoms of COVID-19 are considered asymptomatic infectives. 
Approximately 60% of COVID-19 cases may have no symptoms or 
mild symptoms [20]. SARS-Cov-2 viral load in upper respiratory 
specimens is almost as high in asymptomatic as symptomatic in
fections [21], indicating that people without symptoms have a strong 
ability to transmit the virus to others [22]. In a care home in Boston 
among 408 residents tested for SARS-CoV-2 by RT-PCR, 87.8% were 
asymptomatic, demonstrating that symptomatic screening may not 
be an effective way to prevent large clusters of infection [23]. 
Moreover, although many detection methods are available, in
dividuals with a “window period” of COVID-19 infection could be 
missed, and up to 29% of patients could have an initial RT-PCR 
false-negative result [24]. This suggests that a large portion of 
asymptomatic infections may be going undetected. 

3. Different values of the basic reproduction number (R0). It is a key 
factor of pandemic spread describing the intensity of the infectious 
disease outbreak. R0 describes the average number of secondary cases 
generated by an initial index case in the inherent infectiousness of a 
pathogen. Its value also depends on the environmental conditions, host 
contact behaviours, and other factors that influence the virus trans
mission. The value of R0 is notoriously tricky to nail down and its esti
mation remains still controversial, as witnessed by the broadly and 
relentless scientific production recently published on this issue. In 
particular, some studies showed that after 6 months of the outbreak the 
R0 value oscillated between 1.3 and 7.7, a range wider than other recent 
pandemic and it reached 13.3 in nosocomial structures [25]. Mean
while, other studies reported that the R0 value of SAR-CoV-2 oscillated 
from 0.5 to 2.5 within the time window from March to May 2020 in Italy 
[26] and was predicted to be equal to 1.98 in October 2020 in Italy [26]. 
Here, we propose a novel methodology to estimate R0 that shows how its 
value oscillates between 0.5 and 8 in the time frame from the 27th of 
February 2020 to the 28th of February 2021. SARS showed an R0 ranged 
from 2 to 5 [27]. 

All these considerations lead to the conclusion that it is essential to 
assess the impact of countries’ strategies since the risk of nosocomial 
spread may be much higher (Table 1 in Ref. [25]). 

Several mathematical models have been produced to forecast the 
COVID-19 epidemic evolution. In the following, we present a brief dis
cussion of the most popular ones along with their basic assumptions and 
limitations. 

Among simpler models, the deterministic Susceptible-Infected- 
Recovered (SIR) models consist of a set of ordinary differential equa
tions where control parameters are time-independent [28]. In the broad 
class of SIR-based models, Anastassopoulou et al. [29] proposed a Sus
ceptible–Infected–Recovered–Dead (SIRD) model to estimate the asso
ciated per day infection mortality and recovery rates in the Hubei 
province of Wuhan in China, based on the publicly available epidemi
ological data from the beginning of January 2020 to the beginning of 
February 2020; whereas Fanelli et al. [30] developed a SIRD model in 

Table 1 
Initial configuration for the SIR model.  

Initial parameters Value Constraints interval 

β  0.5 (0,1) 
γ  0.5 (0,1) 
Initial condition   
N 60′317′116  
S N − I0   

I I0   

R 0   
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combination with mean-field kinetics to calculate the high and the time 
of the peak of confirmed infected individuals in China, Italy, and France 
using as model fitting period the time window from the end of January 
2020 and the middle of March 2020. The main limitation of these 
models relies on the intrinsic nature of the standard SIR model that 
disregards the presence of asymptomatic infectives, being undetected 
and thus unregistered by the healthcare systems, especially during the 
early epidemic stage. To overcome this shortcoming, the author of [31] 
developed a SIR-type model variant, called A-SIR, which explicitly 
considered the presence of a large set of asymptomatic infectives. Spe
cifically, the author studied the early phase of the COVID-19 epidemic in 
Northern Italy in terms of the SIR and A-SIR models, by fitting the 
models’ parameters based on the period of first ten days of March, and 
considered how the models with such parameters were performing in 
predicting the evolution for the subsequent weeks. The author found 
that the dynamics of the two models significantly differed, specifically 
with the A-SIR model resulting much better in predicting the evolution 
of the first wave of infection [31]. 

Of course, the deterministic nature of these SIR-type models disre
gards the diffusion of the uncertainty in the considered variables and 
therefore does not allow to get an estimate of the fluctuations in the 
number of hospitalized patients or to capture changes in disease dy
namics. To overcome this limitation, more complex models have been 
proposed [32–35]. They mainly focused on exploring possible future 
epidemics scenarios of the long-term behaviour of the COVID-19 
epidemic in order to assess the probability of further waves of infec
tion [33–35]. Among them, Faranda and co-authors [33] proposed a 
stochastic Susceptible-Exposed-Infected-Recovered (SEIR), which con
sists of a set of ordinary differential equations where control parameters 
are time-dependent and modelled via a stochastic process. They also 
introduced the lockdown measures in the model parameters to avoid an 
overestimation of the number of reported infected individuals (as well as 
the number of deaths). This choice was raised from the observation that 
countries like Italy and France, faced a long phase of lockdown with 
severe restrictions in mobility and social contacts, managed to drasti
cally reduce the actual number of COVID-19 infections. By studying the 
period from the 27th of December 2019 to the 11th of May 2020 for 
France and from the 22nd of December 2019 to the 18th of May 2020 for 
Italy, the authors showed that their model was capable to well reproduce 
the behaviour of the first wave of infections and to provide an estimate 
of COVID-19 prevalence consistent with a-posteriori estimation. After 
the lockdown confinements were released (corresponding to the 11th of 
May 2020 for France and to the 18th of May 2020 for Italy), they also 
modelled three different future epidemics scenarios by choosing specific 
fluctuating behaviours for R0: one where all restrictions are lifted (back 
to normality); one where strict distancing measures are taken; one 
where the population remains mostly confined (partial lockdown). They 
concluded that observing or not the second wave of infections strictly 
depends on the value of R0 and on the presence or not of 
super-spreaders: the higher R0, the lower the ability to control the 
number of infections in the epidemics. Similarly, if super-spreaders are 
particularly active, the infection counts are difficult to control and a 
second wave can be triggered more easily. In particular, for what con
cerns modelling future dynamics of epidemic evolution for Italy, the 
back to normality scenario predicted the second wave of infections, 
peaking three months after the initial lockdown measures were released 
(more or less around the 4th of July 2020) and whose estimated peak 
intensity was about five millions of people. This would have meant 
reaching herd immunity by the summer, which is instead far from being 
achieved yet. The distancing measures scenario produced a second wave 
mostly similar, in terms of intensity, to the first wave, but occurring later 
(more or less around the 26th of August 2020); whereas the third sce
nario, in which partial lockdown measure were taken, did not produce a 
proper wave of infections. 

Among more complex models, where the complexity relies on the 
number of variables considered rather than the model itself, we recall 

the recent works [34,35] that extended the standard version of the SIR 
model to include patients taken to hospitals or to intensive care units. In 
particular, the authors of [34] categorized infectives in “severe” cases 
requiring hospitalization, and “non-severe” cases presenting infection 
with mild symptoms seeking or not medical care before recovery. They 
calibrated the model by using epidemiological data of the early 
epidemic stage for Washtenaw County (from the 8th of March 2020 to 
the 19th of May 2020) and found that the simulation fitted well against 
the real data in the first wave of infection. Then, they simulated a 
nine-month time frame beginning on the 8th of March 2020 by consid
ering two distinct scenarios, where both the timing of lifting ‘stay-a
t-home’ restrictions and the level of casual contacts after reopening were 
left to vary. Both situations predicted that a second wave would occur in 
the summer thus anticipating the time of the real peak that occurred in 
autumn. 

Likewise, the author of [35] categorized infectives according to a 
strong or weak immunity system. They calibrated the model by using 
epidemiological data of the early epidemic stage for Iran (from the 22nd 
of January to the 25th of June 2020) and, once again, they found that the 
simulation fitted well against the real data in the first wave of infection. 
They predicted a second wave peaking on the 23rd of December 2020 
and 25th of December 2020 for the two classes of infected, respectively, 
thus delaying the time of the real peak that occurred in November. They 
also showed that decreasing the percentage of people with a weak im
mune system led to a further delay in the peaking time, showing that 
their model is very sensitive to the fluctuations of this variable. 

Finally, Fokas et al. [36] proposed a novel methodology for pre
dicting the time evolution of COVID-19 infection, exploiting two 
different approaches: one making use of appropriate mathematical 
models based on ordinary differential equations and one employing 
deep learning networks. By comparing the results obtained by applying 
their models to COVID-19 epidemic data of Italy, Spain, France, Ger
many, USA, and Sweden countries, the authors established that the two 
approaches yielded very similar predicting performance. 

One of the principal difficulties with all of the above-mentioned 
mathematical models in both fitting the real dynamics of the COVID- 
19 infection and predicting its future evolution, is related to limita
tions that reflect the poor quality and incompleteness of the data 
available, especially during the first stage of the pandemic. Moreover, 
the lack of recurring patterns and the marked heterogeneity of the data, 
limit the reliability of advanced techniques such as ‘deep learning’ 
which usually require a significant amount of homogeneous and struc
tured data (possibly with a priori knowledge of the nature of the data) to 
effectively complete the training stage. 

Here, in the tricky effort of simulating the dynamics of the COVID-19 
pandemic, we had to face two fundamental problems: 1) selecting the 
best methodology suitable to pursue our goal; 2) selecting the more 
reliable data for calibrating the model. 

For what concerns the first challenge, we chose to stick to deter
ministic SIR-type models, fueled by the idea that what is really impor
tant is the result and not the method for obtaining it. In fact, even if more 
complex models can give the illusion of realism, still continuing to miss 
key aspects of biology that are harder to be spotted, they need to 
introduce additional parameters, which can barely be inferred by the 
data, at the present stage. On the other hand, simpler models may 
provide less valid forecasts because they cannot capture some human 
characteristics, as well as time-varying characteristics of the infectious 
disease spread. However, a simple and easily comprehensible method
ology is preferable to more complex and less intuitive mathematical 
methods (i.e. a problem-solving principle also known as Occam’s razor), 
when the latter are not justified by the available data and by an 
improvement in the performance. 

For what concerns the second challenge, to estimate the models’ 
parameters, we used real data of early stage of infection in Italy (from 
the 27th of February 2020 to the 30th of April 2020), and then we 
simulated the evolution of infection for the subsequent 240 days (about 
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32 weeks) up to the 27th of September 2020. Hence, in order to simulate 
the next phase of infection corresponding to the second wave, we used 
the same time frame as before but starting from the post-lockdown 
period (from the 29th of September 2020 to the 30th of November 
2020), when data were more accurate and reliable with respect to ones 
of the early stage of infection, and then we simulated the evolution of 
infection for the subsequent 90 days (about 12 weeks) up to the 28th of 
February 2021. 

Basically, we started from the simplest standard SIR model and then 
we compared its outcomes with the ones resulting from the more so
phisticated A-SIR model proposed in Ref. [31], which explicitly takes 
into account the presence of a large set of asymptomatic infectives as 
further fuel to the spread of infection. Then, we also applied both models 
to study the COVID-19 epidemic dynamic in other countries (i.e. Spain, 
Germany, and France), which we selected as, similarly to Italy, they 
faced a long phase of lockdown with severe restrictions in social contacts 
and mobility, managing to drastically reduce the number of daily 
COVID-19 infections, and released almost simultaneously lockdown 
measures. 

Our goal was to assess the performance of both models in predicting 
the first and second wave of infection, separately, with data reflecting 
the enforcing/relaxing of confinement measures by the countries we 
studied. Yet, we aimed to verify whether the conclusions drawn up by 
the authors of [31] continued to hold even when the quality of the data 
is higher as the case of the second wave of COVID-19 infection. To 
complete the analysis, we proposed here a new methodology to evaluate 
the basic reproduction number R0 and discussed its trend over time during 
the whole pandemic evolution also with respect to the previous para
metric models. 

The SIR and A-SIR models presented here to study the epidemic 
dynamics in Italy, Spain, Germany, and France can be of course applied 
to many other countries around the world, and this is the reason why we 
publish the code of our analysis alongside the paper. In particular, we 
implemented both models (SIR and A-SIR) in the freely accessible and 
open-source R language environment. Code repository is accessible 
through GitHub at https://github.com/sportingCode/COVID-19_dyn 
amicsSimulation.git and is targeted to a general audience of non- 
expert users thus enabling other researchers to further develop and 
extend the source code. 

2. Results 

2.1. The SIR model 

The mathematical modelling for the dynamics of an infective 
epidemic started with the pioneer Kermack-McKendirck model [28], 
which provided the basis for a variety of widespread deterministic 
compartmental models, known as SIR (Susceptible-Infected-Recovered) 
models. The standard SIR model describes a homogeneous and isolated 
population of N individuals by partitioning them into three classes: each 
individual can be either susceptible (S), infected and infective (I), or 
removed (R) from the epidemic dynamics (i.e., either recovered, dead, or 
isolated). Denoting by S(t), I(t), and R(t) the populations of these classes 
at time t, by assumption, S(t) + I(t) + R(t) = N for all t (Fig. 1). 

The model is described by the following equations: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −
βSI
N

dI
dt

=
βSI
N

− γI

dR
dt

= γI  

with the β and γ time-independent parameters, describing the contact 
rate and the removal rate, respectively. These parameters depend both 
on the characteristics of the pathogen and on social behaviour. For 
instance, a prompt isolation of infected individuals is reflected in 
increasing γ, whereas a reduction of social contacts is reflected in 
decreasing β. 

The following parameter, known as the basic reproduction number, 

R0 =
β
γ  

has a special relevance since it estimates how many new infections are 
originated from a single infective in the initial phase of the epidemic 
[37,38]. When R0 > 1the infection will be able to start spreading in a 
population, whereas if R0 < 1, the infected people start to decrease and 
the epidemic will stop. 

The assumptions of the SIR model are the following:  

- the population is constant, thus disregarding deaths and new births, 

Fig. 1. SIR model. a) Infection spread scenario. At the initial condition, the total population is composed of a percentage of infected individuals (red) and the 
remaining one of susceptible individuals (blue). Upon exposure, a percentage of susceptible became infected, with an initial probability β = 0.5; then, a percentage of 
infected die or recover and then became removed (green), with an initial probability γ = 0.5. Infected individuals can still spread the infection, while removed 
individuals are no longer susceptible to infection. b) Model flow diagram. Upon exposure, individuals progress from susceptible (S) to infected (I) with a contact 
rateβ. Then, infected individuals that die or recover will be removed (R) with a recovery rate γ. 

G. Fiscon et al.                                                                                                                                                                                                                                  

https://github.com/sportingCode/COVID-19_dynamicsSimulation.git
https://github.com/sportingCode/COVID-19_dynamicsSimulation.git


Computers in Biology and Medicine 135 (2021) 104657

5

- the population is isolated and homogenous, with permanent immu
nity of individuals who have been infected and recovered,  

- an infected individual is immediately infective. 

Since the SIR equations are nonlinear, it is impossible to figure out an 
analytical solution for them. Thus, they have to be numerically inte
grated as long as the value of the model parameters and the initial 
conditions (i.e., the number of actual infected individuals) are known. 
Unfortunately, this is not the case for the new coronavirus responsible 
for the COVID-19. In fact, even if we have one year of worldwide ob
servations, data are different in each country and cannot be pooled 
together to have wider statistics. They depend not only on the pathogen 
agent, but also on the social structure and organization of the country, e. 
g., on its population density, restrictive measures, and sanitary system; 
things that are specific to each country. Moreover, even within the same 
country, the containment measures based on social distancing taken by 
the Government differ between the first and the second phase of the 
pandemic. Thus, we cannot use data from the first epidemic wave to 
estimate the parameters describing the second wave, but we have to 
perform a wave-dependent model fitting to properly estimate the βand γ 
parameters (and hence R0) that will be thus specific for each phase. 

In particular, we set as time zero (t0) of the simulation for the first- 
wave modelling the day after that 655 cases were reported in Italy 
(the 27th of February 2020). This roughly corresponds to the moment 
when the infection starts to spreads more and more rapidly and the 
curve of infected individuals begins its relentless exponential growth. 
For the second-wave modelling, we had to set the starting point of the 
simulation (t0) when the course of the infected curve closely resembles 
this condition that approximately corresponds to the 29th of September 
2020. For both situations, we concentrated on a period of about two 
months (64 days) during the growth phase of the infected curve starting 
from the time zero and immediately before peaking. 

Then, we assumed that at the initial time (t0) the event of individuals 
becoming infective occurs with the same probability of becoming 
recovered (i.e., β and γ were both set to 0.5), that is, an individual could 
be either infected or recovered with the same initial rate. This choice 
does not take into account an increased risk factor influenced by age 
and/or underlying comorbidities, such as hypertension, diabetes melli
tus, cardiovascular disease, or healthy condition of immunocompro
mised people [39]. The β and γ parameters were then varied in the range 
(0–1). 

For the definition of I0 (i.e., infected at time zero) see the text. 
As the initial uninfected population N, we used the population of 

Italy in January 2020 according to the Italian National Institute of Sta
tistics [40], while as the initial infected people I0 (i.e., infected at time 
zero) we considered the registered infected people in Italy on the 27th of 
February 2020 for the first infection wave (i.e., 593 infectives) and on 
the 29th of September 2020 for the second infection wave (i.e., 50′630 
infectives). The initial conditions are reported in Table 1. 

In order to determine the best fitting for the model parameters, we 
minimized the residual sum of squares (RSS) defined as: 

RSS =
∑

t
(I(t) − Î(t)

)2  

where I(t) is the number of people in the infectious class I at time t, and 
Î(t) is the corresponding number of cases as predicted by the SIR model. 
To find the values of parameters that give the smallest RSS, we used the 
optimization method of Byrd and co-authors [41]. The optimization 
algorithm converged within 100 iterations and the first and second 
wave-modelling resulting values for the optimized parameters are re
ported in Table 2. 

We found in both cases that R0 was slightly above one - say around 
1.1 for the first wave and around 1.2 for the second wave – indicating 
ongoing transmission at a steadily increasing rate over the period 

between the two waves. This moderate growth of about 10% can be 
explained by the inclusion in the real count of infected, during the 
second phase of infection, of a percentage of detected asymptomatic 
infectives, being tested due to close contacts with swab positives and 
thus registered by the health system. Since they do not think to be sick 
and therefore do not self-isolate, asymptomatic people come into contact 
with more people than symptomatic individuals leading to an increase of 
the actual value of R0. It is, therefore, reasonable to think that this 
percentage was not included in the count of the infected in the first 
phase of the epidemic, when the priorities of the national health system, 
heavily struck by COVID-19, were to deal with the emergency and swabs 
were made only to patients with severe symptoms taken to hospital or 
intensive care units. 

Despite the slight discrepancies in the prediction of R0 in the two 
phases of infection, the estimates of the β and γ parameters during the 
first and second wave of infection appear to differ substantially. In fact, 
all individuals who come into contacts with the virus become symp
tomatic infected (β = 1) and 90% recovered (γ = 0.9) as predicted from 
the model during the first phase, whereas the model predicts 44% of 
individuals become symptomatic infected (β = 0.44) and 37% recover 
(γ = 0.37) during the second phase. 

By using the optimal estimated parameters (Table 2), we run the 
model to simulate the behaviour of the epidemic dynamics in Italy 
during the first and second infection wave for 304 days and for 153 days 
starting from time zero, respectively. The first and second-wave 
modelling results as a function of the number of days after the day 
corresponding to point zero (t0) are shown (Fig. 2). We found that the 
SIR model performed poorly in simulating the first epidemic wave. In 
fact, both the number of infectives and the time before the epidemic 
peak - so the time available to prepare the health system to face it - were 
over-estimated (Fig. 2a). As already recalled, this could be due as, during 
this phase when the quarantine measures were adopted, the model’s 
parameters were estimated by epidemiological data based only on 
registered infectives needing hospital care (thus mostly symptomatic), 
which were only a small part of the actual infected people, and thus the 
estimates of the parameters could be largely different from the true ones. 

On the other hand, the SIR analysis performed quite well when 
simulating the second epidemic wave (Fig. 2b). In this period, the 
number of actual infective people was more realistic and included not 
only hospitalized patients (which are by definition symptomatic) but 
also at least a part of detected asymptomatic infectives that were tested 
due to contacts with known infectives. It’s worth noting that the number 
of infectives when starting to simulate the first wave is 100 times lower 
than the one at the beginning of the simulation of the second wave, 
leading to a delay in starting the exponential growth (Fig. 2a). 

Yet, the three classes of individuals predicted from the SIR model as a 
function of the number of days after the day that epidemic broke out for 
both the first and the second wave of SARS-CoV-2 infection are shown 
(Fig. 3). We found that the number of people not touched by the 
epidemic wave, so still in danger if a further wave arises, was over- 
estimated (blue curves in Fig. 3a–b); whereas the SIR model expected 
a much greater part of the population than reality to go through 
symptomatic infection and then to recover (Fig. 3c–f). This could be due 
to the actual number of both confirmed and recovered people (grey lines 
in Fig. 3c–f) that did not include asymptomatic people, mostly passing 
unnoticed through the infection and posing a serious threat to public 

Table 2 
Parameters for the SIR model obtained through the fit of I(t) for the first wave 
and second wave.  

Estimated Parameters First wave Second wave 

β  1 0.44 
γ  0.90 0.37 
R0  1.11 1.18  
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health. 
There is increasing evidence that one of the main difficulties in trying 

to control the ongoing COVID-19 epidemic is the presence of a large 
cohort of asymptomatic infectives. In fact, at the early stage of a 
pandemic the registered infectives, those known to the national health 
systems and thus isolated and monitored, are only a part of the total pool 
of infectives. 

In order to investigate how the presence of a large class of asymp
tomatic infectives can affect the dynamics within a SIR-type framework, 
we applied a variant of the SIR–type model, called A-SIR [31], which 
takes explicitly into account asymptomatic people and the long-time 
asymptomatic spend being infective and not isolated. In the A-SIR 
model, each individual can belong either to the susceptibles class S(t), to 
the two classes of infected and infective people: symptomatic I(t) and 
asymptomatic J(t); or to the two classes of removed people: symptomatic 
removed R(t) and asymptomatic removed U(t), mostly passing unnoticed 
through the infection (Fig. 4). 

The model is described by the following equations: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −
βS
N

(

I + J
)

dI
dt

= ξ
βS
N

(

I + J
)

− γI

dJ
dt

= (1 − ξ)
βS
N

(I + J) − ηJ

dR
dt

= γI

dU
dt

= ηJ  

with the parameter β describing the contact rate (as for the above dis
cussed SIR model), the parameters γ and η describing the recovery rate at 
which symptomatic and asymptomatic people are removed from the 
epidemic dynamics, respectively; and the parameter ξ describing the 
fraction of symptomatic patients over the total of infectives. 

The assumptions of the A-SIR model are the following:  

- the population is constant, thus disregarding deaths and new births, 
- the population is isolated and homogenous, with permanent immu

nity of individuals who have been infected and recovered,  
- an infected individual is immediately infective,  
- both classes of infected people are infective in the same way,  
- an individual who gets infected belongs with probability ξ to the 

class I(t) and with probability (1-ξ) to the class J(t). 

To obtain the best fit of the A-SIR parameters, we used the same 
procedure described for the SIR model with the initial configuration 
reported in Table 3. 

For the definition of I0 (i.e., infected at time zero) and σsee the text. 
In particular, we set the same time zero (t0) of the simulation as for 

the SIR model, both for the first and second wave. That is, for the first- 
wave modelling t0 was set to the day after that 655 cases were reported 
in Italy (the 27th of February 2020), which corresponds to the moment 
when the infection starts to spread more and more rapidly, and the curve 
of the infected begins to sharply rise. For the second-wave modelling, t0 
was set to the 29th of September 2020, which approximately corre
sponds to the moment when the course of the infected curve closely 
resembles the condition observed for the first wave. For both situations, 
we concentrated on a period of about two months (64 days) during the 
growth phase of the infected curve starting from the time zero and 
immediately before peaking. 

Then, we assumed that at the time zero (t0) the event of individuals 
becoming (a)symptomatic infective occurs with the same probability of 
becoming (a)symptomatic recovered (i.e., β, γ, and η were set to 0.5), 
that is, an individual could be either infected or recovered with the same 
initial rate. Then, the parameters β, γ, and η were varied in the range 
(0–1). 

Instead, the estimate of the fraction of symptomatic infectives ξ is 
part of an ongoing and heated debate, as witnessed by the huge number 
of recently published studies on this topic [19,31,42–45]. During the 
early phase of pandemic, in the first infection foci in Italy (i.e., Vo’ 
Euganeo, near Padua), a significant number of asymptomatic infectives 
was observed when the whole population (about 3000 people) were 
tested twice – at one week distance – for the virus [42]. Even the initial 
estimates produced by the MRC Centre for Global Infectious Disease 
Analysis of the Imperial College of London were that the registered in
fectives would be between 1/3 and 1/4 of the actual infectives [45], and 
later the British Government scientific advisers claimed that this ratio 
could be as little as 1/10 [46]. In addition, the estimate provided by Li 
et al. [19] was a ratio of about 1/7 of detected infections, whereas other 
studies suggested that the fractions of undetected infections could be 
even higher [43,44]. Furthermore, the author of [31] confirmed the 
early estimate by the British Government scientific advisers [46], esti
mating that 10% of infectives in Italy was symptomatic. In accordance 
with the above discussed, we chose an arbitrary (but realistic) initial 
value of ξ equal to 0.15 and we constrained it in the range (0.1–0.3). 

As for the SIR model, as uninfected initial population N, we still 
assumed a constant population equal to the population of Italy in 
January 2020 according to the Italian National Institute of Statistics 
[40]. As the number of symptomatic infected at time zero (I0), we set the 
cumulative number of infectives registered by the Italian healthcare 

Fig. 2. Predictions for the infectives I(t) provided by the SIR model for the first (a) and second wave (b) in Italy. The infected individuals predicted by the SIR 
model (red line) are plotted as a function of days together with the real observed infected people (grey line). The dark blue points represent real data used to estimate 
the optimal parameters for the best fitting, i.e. the cumulative number of individuals reported to be infected in Italy up to the 30th of April 2020 after the day that 655 
cases were reported (27th of February 2020) for the first peak (a) and from the 29th of September 2020 up to the 30th of November 2020 for the second peak (b). 
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system on the 27th of February 2020 for the first infection wave (i.e., 593 
infectives) and on the 29th of September 2020 for the second infection 
wave (i.e., 25′315 infectives). Given that the number of asymptomatic 
infectives is not ascertained, setting their initial number is not trivial. 
We assumed that at time zero they were a fraction σ of the total in
fectives registered by the Italian healthcare system. Then, we chose an 
arbitrary value of σ equal to 0.5, but an analysis of the dependence of the 
results on this value is provided in Supplementary Fig. 1. 

The optimization algorithm converged within 150 iterations and the 
first and second wave-modelling resulting values for the optimized pa
rameters are reported in Table 4. 

We observed that the estimate of asymptomatic recovery rate 
described by η parameter (estimated to be 0.88 for the first wave and 
0.29 for the second wave) was always higher than the symptomatic rate 
described by γ parameter (estimated to be 0.53 for the first wave and 
0.10 for the second wave). It means that the time of symptomatic re
covery γ− 1 was higher than the time of asymptomatic recovery η− 1. This 
finding is consistent with the observation that, even if the symptomatic 

infection is promptly recognized and swiftly treated, symptomatic pa
tients took longer to discharge than asymptomatic ones [47]. Mean
while, we found that the optimal estimate for the ratio of clearly 
symptomatic versus total infections was = 1/10 for the first wave and ξ 
= 1/7 for the second wave, which is in a good agreement with what has 
been observed so far [19,31,42–45]. ξIn particular, some studies showed 
that after 6 months of the outbreak the R0 value oscillated between 1.3 
and 7.7, a range wider than other recent pandemic and it reached 13.3 in 
nosocomial structures [25]. Meanwhile, other studies reported that the 
R0 value oscillated from 0.5 to 2.5 within the time window from March 
to May 2020 in Italy and was predicted to be equal to 1.98 in October 
2020 in Italy [26]. In the next section, we will present a novel meth
odology we implemented to estimate R0 that shows how its value os
cillates between 0.5 and 8 in Italy in the time frame from the 27th of 
February 2020 to the 28th of February 2021. 

By using the optimal estimated parameters (Table 4), we run the A- 
SIR model to simulate the behaviour of the epidemic dynamics in Italy 
during the first and second wave of infection for 304 days and for 153 

Fig. 3. Predictions for the three 
classes provided by the SIR model 
for the first wave (a-c-e) and the 
second wave (b-d-f) in Italy. The 
model simulates the long-term behav
iour of the epidemic dynamics in Italy, 
i.e. 304 days after the 27th of February 
2020 (a-c-e) and 153 days after the 
29th of September 2020 (b-d-f) when 
the epidemic broke out for the first and 
second wave infection, respectively. 
Blue lines represent susceptible S(t), 
red lines represent infected I(t), green 
lines represent recovered R(t), tur
quoise lines represent confirmed in
dividuals predicted by the SIR model, 
grey lines correspond either to the 
actual registered confirmed cases in 
Italy (c–d), or to the actual registered 
recovered people in Italy (e–f). A 
model with asymptomatic infectives: 
the A-SIR model.   
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days starting from time zero, respectively. 
The first and second-wave modelling results of the A-SIR model as a 

function of the number of days after the day corresponding to point zero 
(t0) are shown (Fig. 5). In simulating the first epidemic wave (Fig. 5a), 
we observed that the height of the epidemic peak of the symptomatic 

infectives (red curve) was lower than the one predicted by the SIR model 
(blue curve), and mostly it occurred at an earlier time. Yet, the symp
tomatic infected curve quite resembled the wavy behaviour of the actual 
infectives curve (grey curve). Then, the A-SIR model estimated that 10% 
of the total infectives (yellow curve) were symptomatic (red curve). 
These findings confirmed the already established observation that the 
registered infectives, those known to the national health systems and 
thus isolated and monitored, were only a part of the total pool of in
fectives and appeared in accordance with the results of [31]. By 
considering the infectives class as the contribution of symptomatic and 
asymptomatic people (yellow curve), the A-SIR model overcame the SIR 
model in simulation of the first wave of infection, since it better esti
mates the timing of the epidemic peak. On the other hand, these dis
crepancies are reduced in simulating the second infection wave, where 
we found that the curve predicted by the A-SIR model for the symp
tomatic infectives (red curve) nearly coincided with the one predicted 
by the SIR model (blue curve) and the timing of the epidemic peak is 
well-estimated by both of them (Fig. 5b). As abovementioned, during 
this second wave of the infection, the number of infective people 
registered by the Italian healthcare system already included detected 
asymptomatic infectives (tested due to contacts with known infectives) 
and thus also the simpler SIR model was able to provide more reliable 
predictions. 

The epidemic dynamics of the three classes of individuals predicted 
by the A-SIR model for both the first and the second wave of SARS-CoV-2 
infection are shown, together with the comparison with the predictions 
obtained by the standard SIR model (Fig. 6). Both SIR and A-SIR models 
overestimate the confirmed cases compared to the real data, or, equiv
alently, underestimate the number of susceptible individuals (Fig. 6a–d). 
In the A-SIR model the overestimation is even more marked but if, 
consistently with the model itself, we compare the real confirmed cases 
to the modelled symptomatic cases (I(t)+R(t)) the overestimation is 
significantly reduced and becomes less than the SIR counterpart. Similar 

Fig. 4. A-SIR model. a) Infection spread scenario. At the initial condition, the total population is composed of a percentage of symptomatic infected (red), of 
asymptomatic infected (purple) that are assumed to be half of the symptomatic ones, and the remaining one of susceptible individuals (blue). Upon exposure, the 
percentage of susceptible becoming asymptomatic infected (purple) is greater than the one of becoming symptomatic infected (red); then, asymptomatic and 
symptomatic infected die or recover and thus become removed (light blue or green) with the same initial probability γ = η = 0.5. Infected individuals can still spread 
the infection, while removed individuals are no longer susceptible to infection. b) Model flow diagram. Upon exposure, individuals progress from susceptible (S) to 
symptomatic infected (I) with probability ξ and to asymptomatic infected (J) with probability (1-ξ), both with the same contact rateβ. Then, symptomatic infected 
individuals that die or recover will be removed (R) with a recovery rate γ; whereas, asymptomatic infected individuals that die or recover will be removed (U) with a 
recovery rate.η.

Table 3 
Initial configuration for the A-SIR model.  

Initial parameters Value Constraints interval 

β  0.5 (0,1) 
γ  0.5 (0,1) 
η 0.5 (0,1) 
ξ 0.15 (0.1,0.3) 
Initial condition   
N 60′317′116  
S N − I0 − σI0   

I I0   

J σI0   

R 0  
U 0   

Table 4 
Parameters for the A-SIR model obtained through the fit of I(t) for the first wave 
and the second wave.  

Estimated Parameters First wave Second wave 

β  1 0.34 
γ  0.53 0.10 
η 0.88 0.29 
ξ 0.10 0.14 

R0  1.87 3.31  

G. Fiscon et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 135 (2021) 104657

9

conclusions can be drawn from the comparison between the removed 
cases (Fig. 6e–f). In fact, if we only include the symptomatic removed 
cases for the A-SIR evaluation, the difference between real and modelled 
data is much less than that obtained with the SIR model. 

Eventually, we applied both the standard SIR and A-SIR model to 
study the COVID-19 epidemic dynamic in other countries (i.e. Spain, 
Germany, and France), which we selected as, similarly to Italy, they 
faced a long phase of lockdown with severe restrictions in social contacts 
and mobility, managing to drastically reduce the number of daily 
COVID-19 infections, and released almost simultaneously lockdown 
measures. In particular, for both the first and second wave modelling of 
those countries, we chose time windows of comparable lenghts and 
whose start dates showed a comparable number of confirmed cases with 
respect to Italy. The scenarios of COVID-19 infections in those countries 
predicted by SIR and A-SIR models are reported in Supplementary File 1. 
Our finding confirmed what we have already observed for Italy, that is 
the SIR model failed to properly reproduce data in the presence of un
detected asymptomatic infectives (first peak of infection), over
estimating certain very relevant parameters and underestimating others; 
whereas the SIR model well-fitted in most cases with the wavy behav
iour characterizing the infected population curve when detected 
asymptomatic infectives were part of the total pool of infectives (second 
peak of infection). 

2.2. Basic reproduction number estimation 

In the previous sections, we discussed the ability of SIR models to 
reproduce the data of the two Italian waves of pandemic infections. We 
showed that the inclusion of asymptomatic infected in the A-SIR model 
allows to reduce the modelling error especially in the first wave in 
which, as known, the quality of the measured data is considerably 
limited by the scarcity of performed swabs. However, the trends of the 
different populations – infected, susceptible and removed – still show 
significant discrepancies between models and measured data, and, in 
particular, a single set of modelling parameters is not able to reproduce 
the trends of more than one wave thus making the use of the model itself 
very limited as a predictive tool. Among the intrinsic limitations of the 
adopted SIR models, the assumption of constant contagion parameters 
over time appears critical to reproduce time-dependent factors affecting 
the pandemic evolution, e.g., the imposition and relaxation of confine
ment measures. In this section, we focus on the temporal variability of 
the measured data, estimating the basic reproduction number R0 not as a 
fixed characteristic of a certain wave – as occurs in the considered SIR 
models – but as a continuous function of time throughout the time range 

of the pandemic. Different estimation methods of the R0 are available 
and the optimal choice is still a debated topic [48]. In the present work, 
we propose and discuss a simple but robust method of evaluating R0. The 
estimation strategy follows a similar reasoning to that used to derive the 
Lotka-Euler equation [49,50]. In particular, let be τ(a) as the trans
missibility of a random infected individual at infection age a (time after 
the infection). This quantity can be interpreted as the product between 
the probability δ(a) that the subject is infected at time a and the trans
mission rate β(a) always at the same time. The entire population is 
assumed to be susceptible to infection, a reasonable hypothesis consid
ering an epidemic phase in which a large majority of individuals have 
not contracted the virus. The reproduction number can therefore be 
evaluated as: 

R0 =

∫∞

0

τ(a)da 

We also assume that the population has a uniform rate of contact. Let 
be c(t) the incidence rate of infections, i.e. c(t) dt is the number of new 
infections in the interval [t + dt]. New infections can be expressed as the 
sum of all infections caused by infected individuals at time t − a, 
weighted by the transmissibility τ(a) of such individuals at infection age 
a. 

c(t)=
∫∞

0

c(t − a)τ(a)da 

Assuming an exponential trend for c(t), it is possible to develop the 
previous equations and obtain an expression for R0which involves the 
exponential growth rate and the moment generating function of 
normalized transmissibility (serial interval distribution) [47]. More 
simply, an estimate of R0 can be obtained from the previous formulas 
assuming that the transmissibility of an individual is constant during an 
infection age interval between a1 and a2. These values can be considered 
reasonably uniform during the evolution of the epidemic and can 
therefore be extracted from sample studies during the epidemic itself (e. 
g., contact tracing investigations). Under these assumptions, the previ
ous formulas are simplified as: 

R0 = τ(a2 − a1)

c(t)= τ
∫a2

a1

c(t − a) da 

Fig. 5. Predictions for the infectives provided by the A-SIR model for the first (a) and second wave (b) in Italy. The total number of infected individuals I + J 
(yellow lines), symptomatic infected I (red lines), and asymptomatic infected J (orange lines) predicted by the A-SIR model are plotted as a function of days, together 
with the infected individuals predicted by the SIR model (blue lines) and the real observed infected people in Italy (grey lines). The dark blue points represent real 
data used to estimate the optimal parameters for the best fitting, i.e. the cumulative number of individuals reported to be infected in Italy up to the 30th of April 2020 
after the day that 655 cases were reported (27th of February 2020) for the first peak (a) and from the 29th of September 2020 up to the 30th of November 2020 for the 
second peak (b). 
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from which it is found that: 

R0 = c(t)
a2 − a1

∫ a2
a1

c
(

t − a
)

da
=

c
(

t
)

1
a2 − a1

∫ a2
a1

c(t − a) da
=

c(t)
c(t − a)a1 ,a2 

The function R0(t | a1, a2) can therefore be evaluated as the ratio 
between new infections at time t and the mean of new infections 

between time (t − a1) and time (t − a2). In conclusion, it is possible to 
roughly estimate the trend of R0 starting from the data of the new in
fections by setting the start and end times of contagiousness. In the 
following, we chose to estimate R0 by selecting different values of a1 and 
a2 to have a comparative evaluation of the range of obtainable values. In 
particular, measuring infection ages as number of days, R0(t | 0, 7) , 
R0(t | 0, 25) and R0(t | 4, 18) have been evaluated, that are i) the new 
infections at time t over the mean of infections occurred during the 

Fig. 6. Predictions for the three classes provided by the A-SIR model during the first wave (a-c-e) and the second wave (b-d-f) in Italy. The model simulates 
the long-term behaviour of the epidemic dynamics in Italy, i.e. 304 days after the 27th of February 2020 (a-c-e) and 153 days after the 29th of September 2020 (b-d-f) 
when the epidemic broke out in Italy for the first and second wave infection, respectively. (a–b) Blue lines represent susceptible S(t); dark green lines represent the 
asymptomatic recovered U(t); green lines represent the symptomatic recovered R(t); orange lines represent asymptomatic infectives J(t); red lines represent 
symptomatic infectives I(t). (c–d) Water blue lines represent the total number of confirmed I(t) + J(t) + R(t) + U(t) (i.e., symptomatic and asymptomatic) predicted 
by the A-SIR model; dark green lines represent the asymptomatic confirmed J(t) + U(t) predicted by the A-SIR model; blue lines represent the confirmed cases 
predicted by the SIR model; green lines represent the symptomatic confirmed I(t)+R(t) predicted by the A-SIR model; and grey lines correspond to the actual 
registered confirmed cases in Italy. (e–f): Water blue lines represent the total number of recovered R(t) + U(t) (i.e., symptomatic and asymptomatic) predicted by the 
A-SIR model; dark green lines represent the asymptomatic recovered U(t) predicted by the A-SIR model; blue lines represent the recovered individuals predicted by 
the SIR model; green lines represent the symptomatic recovered R(t) predicted by the A-SIR model; and grey lines correspond to the actual registered recovered 
people in Italy. 
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previous 7 days, ii) the new infections at time t over the mean of in
fections occurred during the previous 25 days, iii) the new infections at 
time t over the mean of the infections occurred from 18 to 4 days before. 
The last choice is the most theoretically consistent, as it includes a start 
infection age greater than zero, thus allowing to eliminate the possibility 
that a contagion was caused by an immediately previous contagion. It is 
worth noting that this possibility of including a non-infectious incuba
tion period is absent in the SIR modelling. To mitigate the fluctuations 
due to measurements of non-uniform data within the week, the 
smoothed versions – within the weekly window – of the estimates of R0 

in the three above-mentioned scenarios in Italy were calculated and 
shown (Fig. 7). 

In the time frame we used to simulate, within the SIR and A-SIR 
frameworks, the first wave of infection in Italy (from 27th of February 
2020 up to 27th of September 2020), we observe that the estimates of R0 
highly fluctuated around 1, reaching values much greater than 1 within 
the first 30 days when the pandemic prompted a spike of outbreaks in 
Italy (with a peak varying from 2 to 8), and showing a growing ampli
tude of fluctuations in the three scenarios: from the estimates of R0(t | 0,
7)with values varying in the range of 0.8–2.3 (Fig. 7a), to those ones of 
R0(t | 0, 25) in the range of 0.48–7.2 (Fig. 7b), up to those ones of 
R0(t | 4, 18) in the range of 0.53–8.2 (Fig. 7c). Even though such a 
discontinuous trend certainly represents a sudden explosion of in
fections, it is also likely to be attributed to the reduced quality of the 
data due to the limited use of swabs in the initial phase. 

On the other hand, in the time frame we used to simulate the second 
wave of infection in Italy (from the 29th of September 2020 to 28th of 

February 2021), we observe a quite steady trend of the R0 estimates, 
with less broad fluctuations around 1, whose amplitude slightly grows in 
the three scenarios leading to more coherent estimations among each 
other, especially for the second and third scenarios: from R0(t | 0, 7)
with values varying in the range of 0.87–1.38 (Fig. 7a), to R0(t | 0, 25) in 
the range of 0.67–2.5 (Fig. 7b), and up to R0(t | 4, 18) in the range of 
0.69–2.6 (Fig. 7c). 

All in all, the trends of R0over time shows a more complex dynamic 
than the rigid categorization in waves, with a continuously fluctuating 
trend that is also driven by time-dependent external factors – such as 
confinement rules – and possibly by the evolution of the virus itself in its 
most recent variants. The reproduction of such an evolution using pre
dictive models is still challenging. The estimates of R0for other selected 
countries (i.e. Spain, Germany, and France) compaired with the ones 
obtained for Italy are reported in Supplementary File 1, showing mostly 
comparable trends. 

3. Discussion 

The occurrence of subsequent waves of COVID-19 cases represents a 
unique pattern orchestrated by SARS-CoV-2 virus, which was not 
observed in the other coronaviruses, such as SARS-CoV and MERS-CoV. 
In fact, unlike the latter showing a controlled and very low human-to- 
human transmission and therefore were characterized by contained 
outbreaks in more limited geographic areas, SARS-CoV-2 has an un
controlled and high human-to-human transmission: even vaccinated 
people become infected and can transmit the virus, as well as 

Fig. 7. Estimation of the basic reproduction number R0 in Italy. The smoothed versions of the estimates of R0 as a function of time t (days) are plotted for the 
three contagiousness scenarios: R0(t | 0, 7)(a), R0(t | 0, 25)(b), and R0(t | 4,18) (c). We assumed as t = 0 the 22nd of January 2020, typical assessment of the start date 
of the pandemic outbreak in Wuhan. The orange and violet rectangles highlight the time frames we used to simulate, within the SIR and A-SIR frameworks, the first 
(i.e., from 27th of February 2020 up to 27th of September 2020) and second wave (i.e., from 29th of September 2020 up to 28th of February 2021) in Italy. For each 
time frame, the maximum and the minimum value of the estimated R0 were highlighted. 
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asymptomatic unvaccinated people. This could likely lead to an endemic 
virus that may never go away. Therefore, having models for simulating 
how the virus will circulate is of fundamental importance for setting up 
adequate control strategies and prevention measures. 

However, the quality of the data is not always adequate to face the 
complexity of many computational models and hampers a fair calibra
tion of the parameters and the evaluation of their relative performance. 
A bear witness of poor data reliability is the clear difference of detection 
of the large cohort of asymptomatic infectives during the two infection 
waves. In the early epidemic phase, swabs were made only to patients 
with severe symptoms taken to hospital or intensive care unit, since the 
priorities of every national health system, heavily struck by COVID-19, 
were to deal with the emergency. As consequence, asymptomatic peo
ple, not seeking medical assistance and hence hidden to the national 
health system, remained undetected. On the contrary, during the second 
wave of infection, a percentage of asymptomatic infectives was included 
in the total ammount of infected people, since they were tested due to 
close contacts with swab positives and thus being detected by the health 
system. 

To address this issue, in the present study we started from the 
simplest standard SIR model and then we compared its outcomes with 
the ones resulting from the more sophisticated A-SIR model proposed in 
Ref. [31], which explicitly takes into account the presence of a large set 
of asymptomatic infectives as further fuel to the spread of infection. 

Our goal was to assess the performance of both models in predicting 
the first and second wave of infection in different countries that simul
taneously faced a long phase of lockdown - including Italy, Spain, Ger
many, and France - with data reflecting the enforcing/relaxing of 
confinement measures. Yet, we aimed to verify whether the conclusions 
drawn up by the authors of [31] while simulating the first wave of 
COVID-19 infection, continued to hold even when the quality of the data 
is higher as the case of the second wave. 

Thus, we firstly applied both the SIR and the A-SIR model to the 
COVID-19 epidemic in Italy and we solved them via numerical simula
tions for realistic values of the parameters obtained by calibrating the 
model with the same epidemiological data available for a time frame of 
two months before the flattening of the first (March–April 2020) and 
second infection peak (October–November 2020). Then, we simulated 
the COVID-19 epidemics dynamics also in Spain, Germany, and France 
starting from the same initial configuration of the model parameters as 
in Italy. 

As expected, we found that the predictions extracted for the in
fectives outside the period used to fix the model parameters, but still 
remaining far from the second wave peaking period, grossly differed if 
these were analyzed using the SIR or the A-SIR models, with the A-SIR 
model resulting much better in predicting the evolution of the first wave 
of infection. In fact, in the presence of a large number of undetected 
asymptomatic infectives the standard SIR model leads to overestimating 
certain very relevant parameters and underestimate others. These 
findings confirmed the results of [31], when applied in an analogous 
time frame nearby the first wave peaking period, and point out the 
unquestionable and absolute necessity of considering the presence of 
undetected asymptomatic individuals to obtain more realistic outcomes. 

The situation drastically changed, when we dealt with more accurate 
data to calibrate the model that considered detected asymptomatic in
fectives, being tested due to close contacts with swab positives and thus 
registered by the health system. Since they do not think to be sick and 
therefore do not self-isolate, asymptomatic people come into contact 
with more people than symptomatic individuals posing a serious threat 
to public health and leading to an increase of the actual value of R0 
(Table 4, First wave column). Thus, differently from what was predicted 
by our previous analysis and by the one in Ref. [31] for the first wave 
modelling, we found that the outcomes of both the models nearly 
coincided and well-fit with the shape of the actual epidemic curve of 
infected during the time span nearby the occurrence of the second peak 
of the infection (Fig. 5d). 

4. Conclusions 

In this study, we demonstrated that with the same set of model pa
rameters it is not possible to simulate different trends of a relevant 
epidemic when available data used to calibrate the model strongly de
pends on the situations at hand and don’t show any periodicity that 
could aid the model training process. The first and the second wave of 
SAR-Cov-2 infection were completely different from each other and the 
SIR-type models we implemented here have to use different values for 
the equation parameters to obtain the best fit of the data. Our findings 
thus indicate that increasing the complexity of the model is useless and 
unnecessarily wasteful if not supported by an increased quality of the 
available data. Of course, more detailed models can surely be cast, but 
the very simple SIR model is sufficient to explain the infection dynamics 
when the quality of the real data is fairly good to provide a well model 
fitting, but not high enough to justify additional parameters, which can 
barely be inferred by the available data. Certainly, the usage of more 
complex models is mandatory when interested in understanding how the 
infection dynamics depends on specific variables, like the deploying 
different non-pharmaceutical interventions by governments around the 
world [51], the enforcing/relaxing ‘stay-at-home’ restrictions [33,34], 
the level of casual contacts [34], the number of patients taken to hos
pitals or to intensive care units [34], the percentage of patients with a 
weak immunity system [35] and so forth [32]. 

4.1. Limitations of the study and future directions 

The main limitation of the SIR-types models implemented in this 
study relies in their deterministic nature that disregards typical evolu
tion parameters of the COVID-19 dynamics, including the containment 
measurements adopted by the governments across the world and the 
rapid spread of the new virus variants. As future direction, we intend to 
develop a more complex model that will explicitly consider these pa
rameters in order to highlight how the reactivity of certain measures 
plays a fundamental role in limiting the spread of the infection and 
therefore the overall number of deaths, the most important factor for 
evaluating the success of an epidemic management. In fact, the evalu
ation of the impact of the various containment measures potentially 
allows to re-calibrate the adopted strategies through the evaluation of 
faster and more precise strategies, thus limiting the dramatic sanitary 
consequences and, at the same time, not compromising the economic 
and social stability of the country. 

However, developing models capable of replicating past epidemio
logical trends of the ongoing COVID-19 pandemic – or even more 
ambitiously able to predict future trends – is extremely challenging, 
given the poor quality of the available data and the lack of recurrent 
pattern. In order to overcome this limitation, we will use the Italian past 
context as case study. In fact, in order to control the SARS-CoV-2 
epidemic, the Italian government adopted a national tiered system 
that divided Italian regions into red, orange, yellow and white zones 
depending on how severe the coronavirus situation was locally. Since 
this tiered framework has been uniformly applied on a national scale, it 
led to high-quality data available at a regional level, which in turn can 
be analyzed in parallel to increase the reliability of the parameters 
estimation. 

5. Methods 

5.1. Data accessibility 

The time-series data for the coronavirus disease (COVID-19) were 
obtained from the COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University available 
at https://github.com/CSSEGISandData/COVID-19. In particular, we 
downloaded the available time series tables for the global confirmed 
cases, recovered cases, and deaths and we extracted data of countries 
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here investigated (i.e. Italy, Spain, Germany, and France). 

5.2. The SIR model 

The SIR model was implemented in R (version 3.6.1) and tested on 
the following operating systems: macOS High Sierra 10.13.6 and Win
dows 10 Pro version 20H2 (OS builds 19042.867). The equations 
describing the model are defined in the corresponding subsection of the 
Results and Discussion section. The input parameters that determine the 
probabilities of events occurring are: β describing the contact rate, and γ 
describing the removal rate. The SIR model was solved via numerical 
simulations by using ode function of deSolve R package. It takes as input 
the optimal values of β and γ parameters obtained by using the optim 
function of stats R package. We chose the algorithm called “L-BFGS-B” as 
the method for the optim function, referring to the algorithm developed 
in Ref. [41]. For the fitting, we used time-series data of the two months 
preceding the flattening of the first and second peak in Italy, from the 
27th of February 2020 to the 30th of April 2020 and from the 29th of 
September 2020 to the 30th of November 2020, respectively. The initial 
model configuration and the first and second wave-modelling resulting 
parameters are given in Tables 1 and 2, respectively. Details about the 
fitting process, the initial configuration and the first and second 
wave-modelling resulting parameters when simulation the COVID-19 
epidemic dynamics in Spain, Germany, and France, are provided in 
Supplementary File 1. 

5.3. The A-SIR model 

The A-SIR model was implemented in R (version 3.6.1) and tested on 
the following operating systems: macOS High Sierra 10.13.6 and Win
dows 10 Pro version 20H2 (OS builds 19042.867). The equations 
describing the model are defined in the corresponding subsection of the 
Results and Discussion section. The input parameters that determine the 
probabilities of events occurring are: β describing the contact rate; γ and 
η describing the recovery rate at which symptomatic and asymptomatic 
people are removed from the epidemic dynamics, respectively; and ξ 
describing the fraction of symptomatic individuals over the total of in
fectives. The A-SIR model was solved via numerical simulations by using 
ode function of deSolve R package. It takes as input the optimal values of 
the parameters obtained by using the optim function of stats R package. 
We chose the algorithm called “L-BFGS-B” as the method for the optim 
function, referring to the algorithm developed in Ref. [41]. For the 
fitting, we used time-series data of the two months preceding the flat
tening of the first and second peak in Italy, from the 27th of February 
2020 to the 30th of April 2020 and from the 29th of September 2020 to 
the 30th of November 2020, respectively. The initial model configura
tion and the first and second wave-modelling resulting parameters are 
given in Tables 3 and 4, respectively. Details about the fitting process, 
the initial configuration and the first and second wave-modelling 
resulting parameters when simulation the COVID-19 epidemic dy
namics in Spain, Germany, and France, are provided in Supplementary 
File 1. 

5.4. R-code availability 

All data generated during this study are included in this published 
article. The R-code of the SIR model and the A-SIR model is open-source 
and freely available at https://github.com/sportingCode/CO 
VID-19_dynamicsSimulation.git. 
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