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ABSTRACT 

Background 

Virtual reality surgical simulators are a safe and efficient technology for the assessment and 

training of surgical skills. Simulators allow trainees to improve specific surgical techniques in risk-

free environments. Recently, machine learning has been coupled to simulators to classify 

performance. However, most studies fail to extract meaningful observations behind the 

classifications and the impact of specific surgical metrics on the performance. One benefit from 

integrating machine learning algorithms, such as Artificial Neural Networks, to simulators is the 

ability to extract novel insights into the composites of the surgical performance that differentiate 

levels of expertise. 

Objective 

This study aims to demonstrate the benefits of artificial neural network algorithms in 

assessing and analyzing virtual surgical performances. This study applies the algorithm on a virtual 

reality simulated annulus incision task during an anterior cervical discectomy and fusion scenario.  

Design 

An artificial neural network algorithm was developed and integrated. Participants performed 

the simulated surgical procedure on the Sim-Ortho simulator. Data extracted from the annulus 

incision task were extracted to generate 157 surgical performance metrics that spanned three 

categories (motion, safety, and efficiency).  

Setting 

Musculoskeletal Biomechanics Research Lab; Neurosurgical Simulation and Artificial 

Intelligence Learning Centre, McGill University, Montreal, Canada. 

Participants 

Twenty-three participants were recruited and divided into 3 groups: 11 post-residents, 5 

senior and 7 junior residents. 
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Results 

An artificial neural network model was trained on nine selected surgical metrics, spanning 

all three categories and achieved 80% testing accuracy. 

Conclusions 

This study outlines the benefits of integrating artificial neural networks to virtual reality 

surgical simulators in understanding composites of expertise performance. 

Keywords 

Multilayered artificial neural network, feature importance, virtual reality, surgical 

simulation, surgical education, performance metric, surgical expertise, anterior cervical 

discectomy and fusion 
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1 Introduction 

 Virtual reality surgical simulators have been rapidly adopted as a more objective method of 

training and evaluating surgical technical skills [1, 2]. The  incorporation of haptic technology has 

resulted in increased positive learning outcomes [3]. The range of difficulty  associated with spinal 

surgery has led to the development of novel spinal virtual reality (VR) simulators with haptic 

feedback  [4, 5]. These simulator platforms can deconstruct complex common surgical procedures 

such as the anterior cervical discectomy and fusion (ACDF) into discreet steps allowing trainees 

to concentrate on specific technical skills in need of enhancement rather than those already 

acquired [5]. The ACDF requires learners to master a broad spectrum of surgical techniques and 

each of these components can be assessed and trained utilizing virtual reality simulators [5, 6]. 

Virtual reality simulators collect enormous sets of data pertaining to the psychomotor 

interactions of the user during the completion of the simulated tasks. Such data are often 

transformed into performance metrics that play an important role in assessing and training surgical 

trainees. Several studies have established the value of performance metrics in classifying 

individuals into the correct level of expertise and training individuals to improve their level of 

performance [6-11]. 

Artificial intelligence (AI) algorithms employing the vast data sets available from surgical 

simulators have been able to classify surgical expertise with greater granularity and precision than 

has been previously demonstrated in surgery [12]. These algorithms have also provided insights 

into the composites of surgical performance that differentiate levels of expertise [6, 10, 12]. 

Artificial intelligence  can be described as the ability of computational algorithms to make “smart” 

decisions [13]. Machine learning, a subset of AI, is a term used to describe the ability of algorithms 



2 

 

to make classifications or decisions by identifying and learning from hidden patterns within 

datasets, without the need for explicit instructions [14]. Machine learning includes both simple 

linear algorithms and more complex non-linear ones [14].  Deeper subsets of machine learning, 

such as artificial neural networks (ANNs), can correctly learn complex non-linear patterns within 

the given dataset. ANNs consist of a series of layers containing nodes or neurons. The layers are 

interconnected via the nodes that pass information through connections with different weights [14]. 

The algorithm adaptively learns the weights associated with connections between nodes in 

different layers to generate a better representation of the true model. When combined to virtual 

reality surgical simulators, the algorithm not only has the potential to increase the granularity of 

classification of surgical performance, but  can also provide deeper insights into the impact of the 

different performance metrics on the classifications [14]. Most studies utilizing artificial 

intelligence with surgical simulators only exploit the ability of the algorithms to classify 

participants, while failing to account for the underlying reasons for the classifications or to quantify 

the relative importance of the performance metrics used in developing the model [14]. 

Nevertheless, recent studies applied one-layered ANN combined with the Connection Weights 

Algorithm to highlight the relative feature importance in classifying surgical performance [13, 15-

17]. The Connection Weights Algorithm, originally developed by Olden and Jackson [17], was 

used to understand and quantify the relative impact of each metric on the classification task in one-

layered ANN. To the best of the authors’ knowledge, no prior studies implemented this algorithm 

on multilayered ANN. 

Thus, the objective of the study was to assess the ability of a multilayered ANN algorithm to: 

1) classify surgical performance on an ACDF virtual reality simulated scenario and, 2) identify the 

relative importance of specific performance metrics in the surgical expertise classification in this 
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virtual reality spinal procedure. In addition to establishing the effectiveness of an ANN algorithm 

in distinguishing surgical performance, the novelty explored in this study seek to validate a new 

adaptation of the Connection Weights Algorithm on a multilayered ANN to assess feature 

importance. 

2 Material and Methods 

2.1 The Virtual Reality Simulator & The Simulated Scenario 

This study utilized the Sim-Ortho VR simulat or developed by OSSimTechTM (Montreal, 

Canada) and the AO Foundation (Davos, Switzerland). The scenario simulated is the ACDF 

surgical procedure. The VR simulator exploits the use of 3D glasses and graphics from a gaming 

system to provide 3D visuals of the procedure [5, 6]. This platform immerses individuals in an 

active and dynamic learning process providing instrument haptic and auditory feedback. 

The ACDF simulated scenario utilized in this study has been extensively employed by our 

group to assess surgical expertise. The simulation includes 3 animated steps (neck incision, 

placement of retractors, and fusion) and 4 deconstructed interactive steps (C4-C5 vertebral disc 

annulus incision, discectomy, osteophyte removal, and posterior longitudinal ligament removal) 

[5, 6, 18]. Each of the interactive simulated steps have been shown to have face, content and 

construct validity [5]. Prior to the start of the simulation, participants were made aware of all steps 

and instruments needed to complete the procedure via verbal and written instructions. No time 

limit was imposed on completing the simulated scenario. The current study focuses on the first 

interactive step which consists of performing a 2cm transverse box incision exposing the disc 

annulus using a virtual No.15 scalpel. The second interactive step, discectomy,  has been assessed 



4 

 

by  Mirchi, et al. [6] and the third interactive step, osteophyte removal  by Reich, et al. [18] have 

been previously reported.  

2.2 Participants 

This study utilized participant data previously collected in a prior ACDF simulated scenario 

validation study [5, 6]. Twenty-seven participants were initially recruited to perform the virtual 

reality ACDF scenario. Since the simulator is optimized for right-handed individuals, data from 

left-handed participants were excluded. In the previous studies, data from post-residents with non-

spine focused clinical practices were excluded. However, since the first interactive step, C4-C5 

vertebral disc annulus scalpel incision was not dependent on the more complex remaining 

interactive steps it was considered appropriate to include data from the post-resident participants. 

Table 1 presents the demographics of the 23 participants. The participants were divided into three 

groups: A Post-Resident group (3 neurosurgeons, 2 spine surgeons, 5 spine fellows, and 1 

neurosurgical fellow), a Senior-Resident group (3 PGY 4-6 neurosurgery and 2 PGY 4-5 

orthopaedics residents), and a Junior-Resident group (3 PGY 1-3 neurosurgery and 4 PGY 1-3 

orthopaedics residents). Table 2 highlights the main differences between the groups based on 

previous experience, knowledge and comfort levels performing and/or assisting in an ACDF. The 

senior-resident group (PGY 4 and higher) assisted in more ACDF surgeries and have a higher level 

of comfort assisting and performing an ACDF solo than the junior-resident group (PGY 1-3). The 

post-resident group ratings demonstrated expert textbook and surgical ACDF knowledge (median 

5.0; range 4.0 – 5.0). This study was approved by an appropriate Research Ethics Board. All 

participants signed an approved written consent form prior to completing the simulation. 
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Table 1 Demographics of the post-resident, senior-resident, and junior-resident groups. 

 Junior Residents Senior Residents Post-Residents 

No. of individuals 7 5 11 

Age (years) ± SD 27.4 ± 1.4 30.6 ± 2.3 44.2 ± 13.2 

Sex    

Male 5 4 11 

Female 2 1 0 

 

 

Neurosurgery Orthopaedic Surgery 

PGY 1-3 3 4 

PGY 4-6 3 2 

Fellows 1 5 

Consultants 3 2 

 

Table 2 Differences in previous experience, knowledge, and comfort level of the groups. 

 Junior Residents Senior Residents Post-Residents 

No. of individuals in each group who: 

Have previous experience using a 

surgical simulator 
5 (71%) 4 (80%) 9 (82%) 

Assisted on an ACDF in the last 

month 
1 (14%) 3 (60%) N/A 

Performed an ACDF solo in the last 

month 
1 (14%) 1 (20%) 8 (72%) 

Medina self-rating on 5-point Likert scale:    

Textbook Knowledge of an ACDF 3.0 (1.0 – 4.0) 3.0 (2.0 – 4.0) 5.0 (4.0 – 5.0) 

Surgical Knowledge of an ACDF 3.0 (1.0 – 3.0) 3.0 (3.0 – 4.0) 5.0 (4.0 – 5.0) 

Comfort level performing an ACDF 

with a consultant in the room 
3.0 (1.0 – 4.0) 3.0 (2.0 – 5.0) N/A 

Comfort level performing an ACDF 

solo 
1.0 (1.0 – 3.0) 3.0 (2.0 – 4.0) 5.0 (3.0 – 5.0) 

Surgical 

Specialty 
Level of 

Training 
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2.3 AI Analysis 

A systematic approach was used in integrating an ANN in classifying the virtual surgical 

performance. As illustrated in Figure 1, the methodology was divided into two main steps: Data 

collection & Preprocessing and Machine Learning Model Development. 

 

Figure 1 The study methodology consisted of two main steps: Data Collection & Preprocessing and Machine Learning 

Model Development 

2.3.1 Data Collection and Preprocessing 

During a simulation procedure, the surgical simulator recorded a series of data relating to 

the participants’ use of the surgical tools. The collected data included variables such as position, 

time, and angles of the simulated surgical tools, as well as applied forces, removed volumes, and 

surgical tool contacts of specific anatomical structures. In total 66 variables were collected 

throughout a simulation run. Subsequently, the recorded data were extracted and processed to 

generate surgical performance metrics that were used as a set of criteria to assess the performance 

of the participants in the virtual procedure. For example, position and time were combined to 

generate velocity metrics, forces and contact detection were used to determine the forces used 

when removing anatomical structures, and position and contact detection were used to determine 

the path length used while interacting with anatomical structures. A total of 157 metrics were 

initially generated based on expert opinion, publications that focused on surgical incision 

VR SIMULATED 
SURGICAL 

PROCEDURE

DATA ACQUISITION METRICS GENERATION BALANCED DATA 
TRAIN/TEST SPLIT

FEATURE SELECTION ARTIFICIAL NEURAL 
NETWORK TRAINING

Data Collection and
Preprocessing

Machine Learning Model 
Development
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performance, and novel metrics derived from the data [19, 20].  Subsequently, all derived metrics 

data were normalized using z-score normalization. The generated metrics were assigned into one 

of three main categories: motion, safety, and efficiency. Data extraction, metrics generation and z-

score normalization were done in Python (Version 3.7, OR USA).  

2.3.2 Machine Learning Model Development 

Building any machine learning model requires a series of steps to ensure the development 

of an optimal and a generalizable model. As described by Figure 1, three main steps were taken 

during the machine learning model development. At the very start, the data analyzed was split into 

training, validation, and testing sets. Since the dataset in this study contained underrepresented 

classes, a stratified split was used to ensure similar representation of all classes in all sets (Table 

3). To prevent leakage of information from the testing set into the model development, all 

subsequent steps – feature selection and model training – were only performed on the training and 

validation sets, which comprised approximately 78% of the total dataset. Following the split, a z-

score normalization was applied on the features. The normalization transformed the mean of each 

feature to a value of zero and mapped the rest of the values to be centered about the mean, assigning 

positive and negative z-scores for feature values above and below the mean, respectively. 

Table 3 Stratified split of the dataset into training, validation, and testing sets. 

Classes Original Dataset Training Dataset Validation Dataset Testing Dataset 

Junior 7 4 1 2 

Senior 5 3 1 1 

Post 11 7 2 2 

Total 23 14 4 5 

Feeding a large number of unimportant features into any machine learning algorithm would 

introduce noise and inefficiencies [15]. Hence, following the data split and before training the 
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machine learning model, a sequential forward selection (SFS) algorithm was used to remove 

irrelevant metrics that may not be useful in distinguishing surgical performance. The SFS 

algorithm employs its own built-in machine learning model to determine the optimal subset of 

features. Starting from an empty feature subset, the SFS algorithm iteratively builds optimal 

feature subsets based on the performance of the built-in machine learning model on the feature 

subsets. More specifically, at each iteration the SFS algorithm checks the relative performance of 

the new subset of features as compared to the previous iteration. The algorithm continues until all 

the features are added, and subsequently returns the optimal subset with the best performance. This 

study employed a 4-fold cross validation Neural Network model as part of the SFS algorithms for 

feature selection. The feature selection step reduced the features into nine final metrics as shown 

in Table 4.  

Table 4 Nine final metrics resulted from the SFS algorithm used in this study. The metrics spanned all three categories. 

Metric Category Metric Description Metric Abbreviation 

Motion 
Maximum velocity in the Z direction 𝑣𝑧𝑚𝑎𝑥 

Mean velocity in the Y direction while contacting the Nucleus 𝑣𝑦𝑁𝑚𝑒𝑎𝑛
 

Safety 

Maximum force exerted on the Spinal Cord Nerves 𝐹𝑚𝑎𝑥𝑆𝐶𝑁 

Maximum force exerted on the Right Vertebral Artery 𝐹𝑚𝑎𝑥𝑅𝑉𝐴 

Volume removed of the Spinal Cord Nerves 𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝐶𝑁 

Efficiency 

Contact time with the C4 Vertebra 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4 

Contact time with the Left Posterior Longitudinal Ligament 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐿𝑒𝑓𝑡𝑃𝐿𝐿 

Contact time with the Right Posterior Longitudinal Ligament 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑅𝑖𝑔ℎ𝑡𝑃𝐿𝐿 

Contact Length with the C4 Vertebra 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 

2.3.3 Building and Training the ANN 

Following the feature selection step, a multilayer perceptron (MLP) artificial neural network 

was built and trained. A PyTorch framework was used to build and train the MLP model. The 
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framework used was similar to a general framework as described by Paszke, et al. [21] and 

demonstrated by Chintala [22]. The cross-entropy loss was used along with the stochastic gradient 

descent optimization with momentum algorithm (SGD with momentum) for model training. The 

ReLu activation function was used with the default Lecun weights initialization technique as 

defined by the PyTorch built-in functions. To prevent overfitting the model on the training set, 

early stopping was implemented using the loss obtained on the validation set as a stopping 

criterion. More specifically, training was stopped once the validation loss increased. The training 

algorithm built in this study saves a copy of the model parameters when the validation loss is 

improved. It also saves a history of the training and validation accuracies and loss function value 

during training.  

 

Figure 2 A general MLP diagram showing the input layer, the hidden layers and the interconnected hidden units, and the 

output layer. 

An MLP architecture consists of multiple interconnected hidden neurons within multiple 

layers as presented in Figure 2. MLP optimization requires the tuning of several hyperparameters 

related to both model architecture and training. Model architecture hyperparameters include: the 

number of hidden layers and the number of hidden units. Model training hyperparameters for the 
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MLP used in the current study (MLP with SGD) include: the learning rate and the momentum of 

the SGD algorithm. Table 5 presents a non-exhaustive list of potential values of each 

hyperparameter. These values were chosen based on best practices seen in literature when using 

the SGD learning with momentum algorithm in a multilayer perceptron neural network [23]. A 

semi-systematic grid search was conducted to explore the models that can be generated using the 

many different combinations of the presented hyperparameters. The purpose of the grid search was 

to find the best performing models out of the combinations. Similar to the early stopping, the 

performance of the models on the validation set was used as a search criterion.  

Table 5 Hyperparameters potential values. 

No. of Hidden Layers 1 2 3   

No. of Hidden Units 6 10 20 40 100 

Learning Rate 0.0001 0.0005 0.001 0.005 0.01 

Momentum 0.6 0.7 0.8 0.9 1 

Table 6 presents the best performing models found based on the search criteria in the one-

layered, two-layered, and three-layered ANNs. As seen in Table 6, the two-layered network 

resulted in a better model performance on the validation set.  Table 7 shows the chosen model with 

the best hyperparameters. Figure 3 presents the training of the optimal model. After each training 

epoch, the model was tested on the validation set, generating the validation accuracy and loss. 

Early stopping was frequently used in training the models, the optimal model stopped training after 

3000 epochs as the validation loss started to slightly increase (Figure 3).  
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Table 6 The best performing models in each of the one-layered, two-layered, and three-layered ANNs. 

Hidden Inputs 

Per Layer 
Hidden Layers 

SGD Learning 

Rate 

SGD 

Momentum 

Validation 

Accuracy 
Validation Loss 

20 1 0.001 0.8 75% 0.56 

40 2 0.001 0.7 100% 0.33 

20 3 0.0001 0.8 75% 0.4 

Table 7 Best performing model found within the grid search. 

Hidden Inputs Per Layer Hidden Layers SGD Learning Rate SGD Momentum 

40 2 0.001 0.7 

  

Figure 3 The performance of the chosen optimal model at each training epoch: (a) the accuracy of the model on the 

training and validation sets at each training epoch; (b) the value of the loss function on the training and validation sets at each 

training epoch. 

The Connection Weights Algorithm, originally developed by Olden and Jackson [17], was 

used to understand and quantify the relative impact of each metric on the classification task. The 

algorithm was developed for one-hidden layer networks and assigns a distinct weight for each 

feature-class pair by summing the products of all the connection weights that relate an input to an 

output, as demonstrated by Figure 4 and Equation 1. 

(a) (b) 
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Figure 4 Schematic of a one hidden layer network demonstrating the weights that connect the first input node to the first 

output node. 

𝐶𝑊𝑃𝑥,𝑧 = ∑ 𝑤𝑥𝑚𝑞𝑚𝑧

 

𝑚= 

 Eq (1) 

In this work, the Algorithm was adapted to a multilayer neural network to calculate the 

Connection Weights Product (CWP) as recently suggested by multiple studies [24, 25]. More 

specifically, this study adapted the algorithm to a two hidden layer network as demonstrated by 

Figure 5 and Equation 2: 
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Figure 5 Schematic of a two hidden layer network demonstrating the weights that connect the first input node to the first 

output node. To simplify the illustration, the connection weights are broken into multiple schematics (a-d) by varying the last 

hidden layer m from 1 to M. 

𝐶𝑊𝑃𝑥,𝑧 = ∑∑𝑤𝑥𝑛𝑣𝑛𝑚𝑞𝑚𝑧

𝑁

𝑛= 

 

𝑚= 

 Eq (2) 

Where 𝐶𝑊𝑃𝑥,𝑧 is the connection weight product of an input metric   to a class output  , 𝑤𝑥𝑛 

is the weight connecting an input metric   to a first hidden layer neuron 𝑛, 𝑣𝑛𝑚 is the weight 

connecting a first hidden layer neuron 𝑛 to a second hidden layer neuron 𝑚, and 𝑞𝑚𝑧 is the weight 

connecting a second hidden neuron 𝑚 to an output  . As demonstrated in Figure 5 and Equation 

2, the new adaptation of the algorithm can be seen as computing and subsequently adding the 

original algorithm M times. As with the original algorithm, the CWP can attain both positive and 
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negative values, outlining the relative contribution of each input feature to each output in both 

magnitude and sign. The sign of the CWP indicates whether a high or a low feature value results 

in a higher probability of a certain class. CWPs can be further leveraged to obtain the relative 

importance of the features to each class by determining the ratio of the magnitude of a feature 

CWP to the sum of the magnitudes of all the features CWPs for that certain class. 

To further support the new adaptation of the Connection Weights Algorithm on a multilayer 

neural network performed in this study, feature importance was also evaluated using the 

permutation feature importance method and subsequently compared to the results of the 

Connection Weights Algorithm. The permutation feature importance algorithm captures the 

importance of a feature by measuring the change in the model score after permuting that feature’s 

values [26, 27]. The loss function along with the prediction accuracy were used in this study as a 

measure of the model’s performance. A feature is important if the model behaves poorly following 

the permutation of that feature’s values, whereas an unimportant feature would not cause the 

performance of the model to deteriorate significantly. This study used both the training and testing 

sets when implementing the permutation feature importance. In a sense, the permutation feature 

importance is similar to a sensitivity study used in a typical finite element analysis.  

3 Results 

3.1 Surgical Performance Metrics 

Surgical performance metrics generated for the incision component were divided into three 

categories: motion, safety, and efficiency. Initially, 157 surgical performance metrics were 

generated for each participant. Following the SFS (sequential forward selection) algorithm, only 

nine important metrics remained, as demonstrated in Table 4. Similar to the data from the 
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discectomy but unlike the osteophyte removal study, the nine most significant metrics spanned all 

three categories [6, 18]. These nine surgical performance metrics were used as inputs to the 

developed ANN. More specifically, the trained model had the following architecture: 

 

Figure 6 Model architecture of the final developed ANN model demonstrating the input surgical metrics, the number of 

hidden units and layers, as well as the output variables. 

3.2 Accuracy in Classification of Surgical Performance 

The final model was trained for 3000 epochs. The classification accuracies of the trained 

model are highlighted in Table 8 and confusion matrices (Figure 7 (a) to (c)). A confusion matrix 

is a table that allows the visual analysis of the performance of an ANN. Three confusion matrices 

were generated – on the training (14 participants), validation (4 participants), and testing sets (5 

participants) – achieving accuracies of 100%, 100%, and 80% respectively.  

Table 8 Accuracy performance of the trained model on the training set, validation set, and testing set. 

No. of Training Epochs Training Accuracy (%) Validation Accuracy (%) Testing Accuracy (%) 

3000 100 100 80 
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Figure 7 Confusion matrices highlighting the performance of the trained model on the: (a) training set, (b) validation set, 

and (c) testing set. 

3.3 Surgical Performance Metrics Importance 

Each input feature within an ANN has a certain impact on the response output of the 

algorithm. This study adapted the Connection Weights Algorithm to a multilayered ANN and 

subsequently compared the results to the permutation feature importance method. Table 9, Table 

10, and Table 11 present the nine surgical performance metrics along with their CWPs and the 

corresponding relative importance for the post-resident, senior-resident and junior-resident groups. 

It is to be noted that the order of feature importance, presented by the relative importance column 

in the tables, varies for each class of surgical level. Table 12 and Table 13 present the permutation 

feature importance applied to the training and testing sets, respectively. Figure 8 presents the 

learning patterns that are exhibited in each input feature. The figure presents the CWPs of each 

feature for the three surgical levels. 

(a) (b) (c) 
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Table 9 Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Post-Residents. 

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 8.8201 23.91% 

2 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4 6.9817 18.93% 

3 Motion 𝑣𝑧𝑚𝑎𝑥 -6.1178 16.59% 

4 Motion 𝑣𝑦𝑁𝑚𝑒𝑎𝑛
 -5.8321 15.81% 

5 Safety 𝐹𝑚𝑎𝑥𝑆𝐶𝑁 -2.2951 6.22% 

6 Safety 𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝐶𝑁 -2.2766 6.17% 

7 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝑅𝑖𝑔ℎ𝑡 -2.1945 5.95% 

8 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝐿𝑒𝑓𝑡 -1.3218 3.58% 

9 Safety 𝐹𝑚𝑎𝑥𝑅𝑉𝐴 -1.0443 2.83% 

Table 10 Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Senior-

Residents. 

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Motion 𝑣𝑦𝑁𝑚𝑒𝑎𝑛
 4.8357 30.75% 

2 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 3.8694 24.61% 

3 Motion 𝑣𝑧𝑚𝑎𝑥 3.3675 21.41% 

4 Safety 𝐹𝑚𝑎𝑥𝑆𝐶𝑁 -1.6055 10.21% 

5 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝐿𝑒𝑓𝑡 -1.0675 6.79% 

6 Safety 𝐹𝑚𝑎𝑥𝑅𝑉𝐴 0.3224 2.05% 

7 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝑅𝑖𝑔ℎ𝑡 0.3095 1.97% 

8 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4 -0.2959 1.88% 

9 Safety 𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝐶𝑁 0.0525 0.33% 

Table 11 Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Junior-

Residents. 

Rank Category Metric Connection Weights Product Relative Importance (%)  

1 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 -12.3433 36.47% 

2 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4 -6.4255 18.99% 

3 Safety 𝐹𝑚𝑎𝑥𝑆𝐶𝑁 3.7846 11.18% 

4 Motion 𝑣𝑧𝑚𝑎𝑥 3.0317 8.96% 

5 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝐿𝑒𝑓𝑡 2.2582 6.67% 

6 Safety 𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝐶𝑁 2.1596 6.38% 

7 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝑅𝑖𝑔ℎ𝑡 1.8638 5.51% 

8 Motion 𝑣𝑦𝑁𝑚𝑒𝑎𝑛
 1.1712 3.46% 

9 Safety 𝐹𝑚𝑎𝑥𝑅𝑉𝐴 0.8065 2.38% 
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Table 12 Permutation Feature Importance on the training set. 

Rank Category Metric Difference in Loss function Prediction Accuracy(%) 

1 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 5.08 40.07% 

2 Motion 𝑣𝑧𝑚𝑎𝑥 3.28 63.91% 

3 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4 2.32 56.27% 

4 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝑅𝑖𝑔ℎ𝑡 1.58 78.57% 

5 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝐿𝑒𝑓𝑡 1.58 78.57% 

6 Safety 𝐹𝑚𝑎𝑥𝑆𝐶𝑁 1.51 71.43% 

7 Safety 𝐹𝑚𝑎𝑥𝑅𝑉𝐴 1.51 71.43% 

8 Safety 𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝐶𝑁 1.51 71.43% 

9 Motion 𝑣𝑦𝑁𝑚𝑒𝑎𝑛
 1.21 84.13% 

Table 13 Permutation Feature Importance on the testing set 

Rank Category Metric Difference in Loss function Prediction Accuracy(%) 

1 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 4.37 15.62% 

2 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝑅𝑖𝑔ℎ𝑡 2.58 20% 

3 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑃𝐿𝐿𝐿𝑒𝑓𝑡 2.53 20% 

4 Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4 2.10 52.32% 

5 Safety 𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝐶𝑁 1.97 60% 

6 Motion 𝑣𝑦𝑁𝑚𝑒𝑎𝑛
 1.52 76.02% 

7 Safety 𝐹𝑚𝑎𝑥𝑅𝑉𝐴 1.44 63.82% 

8 Motion 𝑣𝑧𝑚𝑎𝑥 1.42 80% 

9 Safety 𝐹𝑚𝑎𝑥𝑆𝐶𝑁 1.27 80% 

 
Figure 8 Learning patterns of the Connection Weights Products for each input feature. 
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4 Discussion 

4.1 Performance of the ANN 

The first objective of the study was to leverage an ANN algorithm in the assessment of 

surgical performance on an ACDF virtual reality simulated scenario. This study focused on the 

annulus incision step of the ACDF simulation, in which nine features were identified as the most 

important and subsequently utilized in the development of the neural network. The use of early 

stopping in model training helped in preventing overfitting. The utilized methodology was 

successful in developing and training a two-hidden layer neural network that performs well on all 

three datasets (100% training accuracy, 100% validation accuracy, and 80% testing accuracy). Due 

to the limited data size used in this study, the accuracy results on the testing set were within the 

acceptable range. Analysis of the one misclassified individual revealed that the performance 

associated with this junior resident not only diverged from the junior group, but also resembled 

the post-resident performance in the most important features that were related to both the junior 

and post-resident groups (Table 9, Table 11, and Table 14). The participant had positive scores in 

the contact length (z-score of 0.43) and time (z-score of 0.95) with the C4 vertebra, and a negative 

score (-0.34) for the maximum velocity in the z-direction. The z-scores specify the number of 

standard deviations the surgical performance is from the mean values of each feature. Thus, this 

individual used longer than average contact length and contact time with the C4 vertebra, while 

utilizing slower than average movements. Based on the CWPs, one interpretation is that these 

values might increase the likelihood of a post resident classification while they reduce the 

likelihood of a junior resident classification (Table 14). However, this interpretation might not 
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directly hold true without additional analyses, such as the use of other feature importance 

algorithms as discussed in the next sections. 

Table 14 Surgical performance metric scores of the misclassified junior resident participant. The performance of this 

individual diverged from the junior group and resembled the senior group performance, which is evident when comparing the 

scores to the CWPs of the Junior and Senior resident groups. 

Category Metric Score Junior: CWP (%Importance) Senior: CWP (%Importance) 

Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 0.43 -12.3433 (36.47%) 8.8201 (23.91%) 

Efficiency 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4 0.95 -6.4255 (18.99%) 6.9817 (18.93%) 

Motion 𝑣𝑧𝑚𝑎𝑥 -0.34 3.0317 (8.96%) -6.1178 (16.59%) 

4.2 Insights and Surgical Performance Patterns Revealed by the ANN 

The second objective of the study focused on revealing hidden insights identified by the 

developed neural network model in classifying the ACDF surgical performance level using a new 

adaptation of the Connection Weights Algorithm. The “black box” analogy has been frequently 

cited when using deep neural networks, as capturing the true importance of input features can 

become tedious [15]. In surgical training applications it is important to identify the impact and the 

relative importance of input features. In a multi-classification task, a useful method of revealing 

the importance of input features is the Connection Weights Algorithm, which quantifies the impact 

of each input feature (surgical performance metric) to each class (surgical level) [15]. The 

algorithm assigns a distinct weight for each feature-class pair by summing the products of all the 

connection weights that relate an input to an output. The calculated values, termed as the CWPs, 

can be further leveraged to identify the relative importance of the features to each surgical class. . 

To the best of the author’s knowledge, previous studies implemented this algorithm on simple one-

hidden layer neural networks [13, 15-17]. As such, the current study is the first to explore the 

usefulness of the method on multilayered neural networks and subsequently validate the approach 

using the permutation feature importance method.  The significance of the Connection Weights 

Algorithm lies in its ability to capture the relative contribution of each input feature to each output 
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in both magnitude and sign. For instance, a positive (or a negative) CWP implies that a higher (or 

a lower) than average feature value is related to a certain class. The use of the CWPs combined 

with the feature relative importance helps surgical educators design surgical training programs to 

help guide individual surgical trainees to enhance specific aspects of their skill sets that may need 

to be improved. This type of personalized residency technical skills training program could 

maximize trainee bimanual psychomotor training dependent on initial and ongoing information 

from simulation studies. Our group has proposed a conceptual framework  referred to as 

“Technical Abilities Customized Training” (TACT) [28]. Surgical TACT programs could focus 

on accelerating top performers, improving areas of weakness in average performers and early 

identification of trainees with poor surgical performance, while initiating multiple validated 

methods to enhance and to maintain the bimanual performance of all groups.   

4.2.1 Insights of the ANN Classifications 

The Connection Weights Algorithm provides a detailed description of the differences in 

the surgical performance metrics of the incision task between groups. Differences in the surgical 

performances are highlighted by the differing values of the CWPs and their relative importance 

for each input feature among the three groups. Obtaining the relative importance of the features 

for each of the surgical level groups identifies the most impactful metric that defines a certain 

surgical level. Consider Tables 8-10, the most impactful metrics that distinguish level of surgical 

performance between the junior, senior, and post-resident groups are efficiency and motion metrics 

– mainly the C4 vertebra contact length and time (𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4 & 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝐶4) and the 

maximum velocity in the z direction (𝑣𝑧𝑚𝑎𝑥). Junior group surgical performance differs from the 

senior and the post-resident groups with respect to the C4 contact length and time metrics, 

pinpointing the main aspects of the surgical performance that uniquely distinguishes the junior 
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group. Even though the senior and post-resident groups behave similarly in their interactions with 

the C4 vertebra (𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐶4), their surgical performance diverges in the motion metrics 

resulting in a unique performance signature for each group. This might imply that for a new 

participant, the values scored in these most impactful metrics would influence the likelihood of 

the surgical performance classifications. For instance, there is an increased likelihood of 

classifying an individual as a post-resident, as opposed to a junior or a senior resident, when the 

participant uses relatively slow movements and interacts with the C4 vertebra using relatively long 

paths and time. This is exemplified by the misclassified junior resident participant in the testing 

set discussed in the previous section. These results are consistent with the construct validity 

findings of  Ledwos, et al., which found that post-residents utilize longer contact paths and time 

as compared to the junior group during the incision step [5].  

4.2.2 Educational Learning Patterns Revealed by the ANN 

The CWP not only allows for a better understanding of the insights behind the ANN 

classifications, but it also may help guide trainees in their progression towards surgical expertise. 

Figure 8 demonstrates a visualization of the CWP trends between the junior, senior, and post-

resident groups for each feature. Two main learning patterns have been identified using ANN to 

assess the surgical performance of post-residents, senior and junior residents during the simulated 

ACDF procedure on the Sim Ortho Platform [6, 18]. These two patterns have been identified as 

continuous and discontinuous learning. More specifically, continuous learning is associated with 

sequential improvements of skills as the surgical training level evolves from junior to senior then 

finally to post-resident surgical level. Discontinuous learning pattern is characterized with non-

sequential progression of skills while progressing from the junior resident to the post-resident 

surgical level, passing through an inconsistent senior resident level. The CWPs of all the safety 
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and efficiency metrics exhibit a continuous learning pattern, while the motion metrics show a 

discontinuous one. 

In all three of the safety metrics, the junior resident group utilizes higher forces on both the 

right vertebral artery and the spinal cord nerves as well as removes larger volumes of the spinal 

cord nerves as compared to the senior and post-resident groups. The post-residents use less forces 

and remove the smallest volumes among the three groups. Hence, a trainee might aim to use lower 

forces and remove smaller volumes of critical anatomical structures to improve their surgical 

incision performance. It is to be noted, however, that the incision step would not usually result in 

significant forces being translated to the right vertebral artery and spinal cord nerves. Nevertheless, 

the patterns identified in this analysis still underly differences in surgical performances.  Efficiency 

metrics also display continuous learning patterns; however, the direction of the trends differ. Post-

residents employ longer paths and more time when interacting with the C4 vertebra compared to 

senior and junior residents, while junior residents use more time when interacting with both the 

right and left posterior longitudinal ligaments as compared to the senior and post-resident groups. 

To improve surgical performance, a trainee would want to limit the interactions to the C4 vertebra 

while minimizing interactions with the posterior longitudinal ligaments.  

The CWPs of the motion features presented in Figure 8 exhibit a discontinuous learning 

pattern that passes through an inconsistent senior surgical training level. Both the junior and post-

residents are associated with slower movements as compared to the senior group, with the post-

residents using substantially slower controlled movements than the other two resident groups. A 

dilemma exists for the discontinuous learning patterns, as it is not directly clear from the data 

generated by the Connection Weights Algorithm whether junior trainees should be trained to the 

senior resident surgical level or alternatively to the expert post-resident surgical level. Studies are 
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needed to determine the appropriate training approach when discontinuous learning patterns are 

identified when utilizing VR intelligent tutoring systems.  

Rao, et al. provides a detailed description of the ACDF operation [29]. In the annulus 

incision step, the surgeon is required to perform the incision by using the borders of the vertebra 

along with the vertebral joint as a guide to avoid injuries to anatomical structures [29]. This 

description is consistent with the expert performance extracted from the CWPs of post-residents. 

Their performance is characterized by patient safety related considerations: controlled movements, 

long paths along the C4 vertebra, low exerted forces on both the right vertebral artery and the 

spinal cord nerves, and minimal interactions with the posterior longitudinal ligaments. The 

consistency of the post-resident surgical performance to that described by Rao, et al. increases the 

confidence in classifying the post-residents as “experts”. Our group has developed a performance 

model for virtual reality procedures which focuses on the expert surgeon primary concern being 

the safety and efficiency of procedures.  It appears reasonable to speculate that for the incision step 

of the ACDF it may be appropriate to train junior residents to mirror expert level of performance 

rather than that of the senior group [9, 30].  

Unveiling the patterns generated by the neural network and using the Connection Weights 

Algorithm illuminates some aspects of the “black box” principally focused on safety and efficiency 

providing new insights on these crucial characteristics of surgical performance. 

4.2.3 Permutation Feature Importance 

To further support the novel application of the Connection Weights Algorithm on a multiple 

hidden ANN, this study further analyzed the importance of the surgical performance metrics by 

applying the permutation feature importance algorithm. The algorithm was applied on both the 
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training and testing sets, as each can give different insights on aspects of surgical performance and 

the associated classifications. Using the training set, the permutation feature importance 

underscores the metrics that are seen important during the learning phase of the model. It highlights 

the features that the model used in building the connections between surgical performance metrics 

and surgical classifications. Utilizing the testing set, the algorithm highlights the critical features 

for the model to perform well on unseen data. It highlights the features that the model relies on 

when making new predictions. Furthermore, applying the algorithm on both the training and 

testing sets allows for a comparison of metrics that overlap between the two analyses, thus 

underscoring the true importance of metrics in both the model’s learning and prediction phases. 

Using both the training and the testing sets, the most impactful metrics outlined by the 

permutation feature importance algorithm fall under the efficiency category (Table 12 and Table 

13). More specifically, the contact length and time with the C4 vertebra are seen to be among the 

top metrics, with the C4 contact length being the most important metric, conforming to the results 

obtained using the CWPs. The results obtained from the use of the training set (Table 12) reached 

a higher conformity with the results of the CWPs, which is expectable since both utilize the 

information stored by the final model during training. Similar to the results of the CWPs for the 

three different classes, the permutation algorithm on the training set found the top three features 

to be the contact length and contact time with the C4 vertebra, and the maximum velocity in the z-

direction. Furthermore, among the safety category, the top feature was the maximum force applied 

on the spinal cord nerves, similar to the results of the CWPs. While basing the analysis on the 

training set might be discouraged, the results shed some insights on aspects of surgical 

classifications that aid in the study’s objectives of understanding the most impactful metrics that 

differentiate surgical performances. 
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Similarly, the results obtained from applying the algorithm on the testing set demonstrate 

that the contact length and time with the C4 vertebra to be among the most impactful metrics 

(Table 13). However, there are some discrepancies among the remaining feature rankings when 

compared to the results of the CWPs, highlighting some of the limitations in interpreting feature 

importance. While using the trained model to highlight important features might give insights on 

surgical performance, the identified features might not be directly transferrable to be impactful in 

the prediction of unseen data. For the current study, two of the most important features found using 

the permutation feature importance algorithm on the testing set coincided with both the results on 

the training set and the results of the CWPs. This further supports the findings and analysis of the 

CWPs and the associated impact of CWP values on predictions, such as the analysis made on the 

misclassified individual.  

4.3 ACDF Surgical Simulation 

The ACDF simulation is a four-part surgical scenario allowing each step to be independently 

validated and used for training. Each component of the ACDF simulation was previously validated 

by Ledwos, et al. [5]. The second and third steps of the surgical simulation, concerning the 

discectomy and osteophyte removal components, have been outlined [6, 18]. These studies utilized 

some of the same participant data to generate metrics and extract CWPs from developed ANNs, 

employing similar methodology. These studies only used a single layer ANN with a different 

optimization technique and included 2 less post-operative participants. Table 15 presents a 

comparison between the analysis conducted on the three simulation components. The discectomy 

component of the simulation is more complex since three different surgical instruments can be 

used to complete the task and sixteen metrics to distinguish surgical performance spanning four 

metric categories. The annulus incision step is the least complex only requiring one surgical 
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instrument and nine metrics spanning three categories to distinguish performance. The osteophyte 

removal component employs an active drill but can be considered intermediate in complexity using 

six metrics arising from one category. The discectomy and osteophyte removal requires more 

expertise to safely complete these tasks, which is consistent with the increased number of safety 

metrics outlined (Table 15). The current study identified nine metrics spanning three categories 

with the efficiency metrics being more important in distinguishing surgical performance for the 

annulus incision step. 

Table 15 Comparison Between the Annulus Incision Step, the Discectomy Step, and the Osteophyte Removal Step of the 

ACDF surgical Simulation.  
 Annulus Incision Discectomy Osteophyte Removal 

No. of Instruments Used 1 (No. 15 Blade) 
3 (Bone Curette, Pituitary 

Rongeur and Disc 
Rongeur) 

1 (Burr) 

No. of Metrics Identified 9 16 6 

Metrics Categories 
Motion, Safety & 

Efficiency 
Motion, Safety, Efficiency 

& Cognitive 
Safety 

Top 3 Ranked Metrics Motion & Efficiency Safety & Cognitive Safety 

Most Important Category 
of Metrics 

Efficiency Safety Safety 

Accuracy of the Model 80% 83.3% 83.3% 

Lowest & Highest 
Magnitude of CWP 

0.05 & 12.34 0.02 & 5.24 0.08 & 1.5 

Hidden Learning Patterns 
Continuous & 
Discontinuous 

Continuous & 
Discontinuous 

Continuous & 
Discontinuous 

5 Limitations  

5.1 ANN Limitations  

The development of the MLP artificial neural network model in this study followed a 

systematic approach that is based on best practices of utilizing machine learning algorithms for 

surgical performance assessments (Figure 1) [10, 31]. The methodology used in building and 

training the model focused on avoiding common pitfalls related to overfitting and computational 

cost. A two-layer network MLP was trained with early stopping to improve the model 
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generalizability and save computational time. Several limitations are associated with the model 

developed in this study. First, the generalizability of the model is restricted due to the limited 

available data from only one center. Training the model on larger datasets that span multiple 

institutions is necessary to develop a more robust model. Second, most studies utilizing Connection 

Weights Algorithm were based on one-hidden layer neural networks rather than the multiple 

hidden layer network used in this study [6, 13, 18]. This study adapted the algorithm to be 

applicable on multiple hidden layer networks and further studies are necessary to support this 

application. Nevertheless, this study re-analyzed the feature importance using the permutation 

method to further support the novel adaptation of the Connection Weights Algorithm. The findings 

of the permutation algorithm suggests that features found important using the training set are not 

necessarily transferrable to metrics that aid in new predictions. However, metrics that overlapped 

between the training and testing sets supported the findings of the Connection Weights Algorithm. 

In the current study, the top two impactful metrics coincided between the training, testing, and the 

CWPs results, therefore further supporting the current analysis. 

5.2 ACDF Surgical Simulation Limitations 

          The ACDF simulator utilized in this study does not encompass the many complex 

interactions that occur in the performance of a patient ACDF procedure. Several important 

components of the procedure are automated preventing an assessment of important aspects of 

surgical exposure of the appropriate cervical disc space.  The OSSimTech simulator used was 

developed for right-handed users limiting both its applicability to left-handed participants and the 

ability to quantitate bimanual performance. Previous studies in our group have demonstrated 

differences in right-and left- handed ergonomics and modifications in the platform are necessary 
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to allow bimanual skills performance to be assessed and provide a more holistic understanding of 

the expertise necessary to safely carry out an ACDF [30, 32].  

The simulator utilizes an advanced voxel-based gaming engine that generates the graphical 

representation of the anatomical structures and instrument interactions and leverages haptic and 

auditory feedback to augment the experiential realism of the simulation. Recent studies have 

highlighted the importance of using physics-based haptics to ensure the accuracy and reliability of 

the generated force feedback and the importance of extracting and implementing realistic physics-

driven feedback using data from cadaveric experiments [3, 33, 34]. Forces generated using 

simulators with discrete or heuristic approaches, not based on constitutive modeling from the 

continuum mechanical method, may not accurately provide or, consequently, record the forces 

experienced in real patient operations which might tend participants to respond with forces not 

used in reality. Naturally, this error presents a further limitation when utilizing the force metrics 

in surgical training, as the benchmark values identified by the simulator might be different to 

reality and thus resulting in training junior residents to wrong skill levels. On a similar note, the 

simulator used in the current study has detected and identified interactions with anatomical 

structures that usually are not experienced during the incision step. The results indicate that 

applying pressure on the annulus resulted in forces being translated to the vertebral arteries, the 

posterior ligaments, and the spinal cord nerves. Although this might be a misrepresentation of the 

actual surgical step, the main outcomes of the analysis still hold. Indeed, multiple studies including 

the present one has found that more experienced surgeons tend to use lower and more controlled 

forces as compared to junior trainees [6, 18, 32]. Moreover, the expert surgeons in the current 

study were able to avoid unnecessary interactions with the mentioned anatomical structures by 

following the path of the vertebral body, indicating that expert performance would not generate 
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forces on irrelevant anatomical structures. This result further supports the validity of the simulator 

in successfully differentiating between surgical levels. The development of smart operative 

instruments capable of measuring force application during patient procedures, as being developed 

in the Musculoskeletal Biomechanics Research Lab, to the forces assessed in identical scenarios 

utilized in virtual reality simulators will allow educators to more accurately assess the formative 

role of these platforms.  

6 Conclusion 

This study demonstrates the use of an ANN to distinguish virtual reality surgical 

performance for assessment and training of surgical performance. Our results outline the 

significant potential of extracting hidden patterns within neural networks to highlight the important 

composites of expert and less skilled surgical performances, and the potential integration of ANNs 

with virtual reality surgical simulator platforms for formative and summative assessment. 
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