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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) has caused a massive disaster in every human life field, including health, 
education, economics, and tourism, over the last year and a half. Rapid interpretation of COVID-19 patients’ X- 
ray images is critical for diagnosis and, consequently, treatment of the disease. The major goal of this research is 
to develop a computational tool that can quickly and accurately determine the severity of an illness using COVID- 
19 chest X-ray pictures and improve the degree of diagnosis using a modified whale optimization method (WOA). 
To improve the WOA, a random initialization of the population is integrated during the global search phase. The 
parameters, coefficient vector (A) and constant value (b), are changed so that the algorithm can explore in the 
early stages while also exploiting the search space extensively in the latter stages. The efficiency of the proposed 
modified whale optimization algorithm with population reduction (mWOAPR) method is assessed by using it to 
segment six benchmark images using multilevel thresholding approach and Kapur’s entropy-based fitness 
function calculated from the 2D histogram of greyscale images. By gathering three distinct COVID-19 chest X-ray 
images, the projected algorithm (mWOAPR) is utilized to segment the COVID-19 chest X-ray images. In both 
benchmark pictures and COVID-19 chest X-ray images, comparisons of the evaluated findings with basic and 
modified forms of metaheuristic algorithms supported the suggested mWOAPR’s improved performance.   

1. Introduction 

A new virus, severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), was discovered in late December 2019 as the cause of a severe 
pneumonia infection outbreak identified as coronavirus disease 2019 
(COVID-19). The disease reportedly arose in Wuhan City, Hubei Prov-
ince, China, and was later labeled a pandemic by the World Health 
Organization on March 11, 2020. (WHO) [1,2]. Due to SARS-highly 
CoV-2’s human-to-human contagious nature, the disease has affected 
186.0849 million people across the world, with 4.0213 million deaths in 
222 nations and territories, as well as international transportation, in the 
last year and a half (https://www.worldometers.info/coronavirus/). To 
regulate or prevent COVID-19, Li et al. [3] suggested vaccinations, 
monoclonal antibodies, oligonucleotide-based therapeutics, peptides, 
interferon therapy, and small-molecule medicines. Early identification 

of the disease and degree of infection, i.e., the severity of the patients, is 
another significant factor in combating COVID-19. The diagnosis op-
tions on the market are based on the detection of viral genes, human 
antibodies, and viral antigens [4]. Currently, the detection techniques of 
COVID-19 are real-time reverse transcription-polymerase chain reaction 
(RT-PCR), reverse-transcription loop-mediated isothermal amplification 
(RT-LAMP), specific high-sensitivity enzymatic reporter unlocking 
(SHERLOCK) assay, CT scan, antigen test, and serology tests [5]. The 
concentration of numerous biomarkers, including C-reactive protein, 
D-dimer, lymphocytes, leukocytes, and blood platelets, may also be 
useful in detecting infection and measuring illness severity [6]. In 
radiology, most of the literature concentrated on CT manifestations of 
COVID-19 [7,8]. However, because CT is not widely available, has 
problems with sterilization thereafter, reduces infection, and is more 
expensive than X-ray, portable chest X-ray is more appropriate, despite 
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being less sensitive. 
COVID-19 might be difficult to identify in some individuals due to 

hazy pulmonary opacities on portable chest radiography (CXR). Irreg-
ular, patchy, hazy, reticular, and extensive ground-glass opacities have 
been seen on the CXR of probable COVID-19 sufferers [9]. To reduce the 
death rate of COVID-19 patients, a faster quantitative evaluation of 
disease severity is essential. The interpretation of X-ray scans is one of 
the most challenging aspects of COVID-19 diagnosis. Several studies 
used artificial intelligence on X-ray images to detect COVID-19 early and 
accurately to tackle these challenges. Artificial intelligence has made 
significant progress in COVID-19 diagnostic imaging in the latest days 
[10,11]. Several researches have investigated to increase the diagnostic 
quality of COVID-19 based on X-ray picture segmentation using swarm 
intelligence, deep learning, deep neural networks, and neural network 
optimization methods [12–19]. When a patient’s RT-PCR test for 
COVID-19 is negative early on, the other diagnosis tool, chest imaging, 
will play a critical role. Early detection with COVID-19 requires a 
high-resolution CT scan of the patient’s chest. The chest CT has better 
sensitivity for COVID-19 diagnosis than the RT-PCR [20,21]. As a result, 
diagnosing COVID-19 patients from CT or X-ray pictures is critical, and 
tremendous advances in imaging utilizing Artificial Intelligence (AI) 
have been accomplished in recent years [22,23]. 

Swarm-based methods have shown significant performance in solv-
ing numerous practical issues [24]. Segmentation of medical images 
using swarm-based optimization methods is a popular application. 
Complex feature spaces, especially in the medical image, are often 
highly challenging to handle [25]. Clinical analysis is regularly inspired 
by just a particular segment of a medical image, while different parts are 
of optional significance [26]. Hence more emphasis is required on the 
accuracy and efficiency of the method used to handle the issue [27]. A 
swarm-based optimization method with efficacy can be highly effective 
in segmentation medical images [24]. Li et al. [28] proposed a 
dynamic-context cooperative quantum-behaved particle swarm opti-
mization algorithm to segment medical images with enhanced search-
ability. Turajlić [29] applied firefly and bat algorithms to segment X-ray 
images with multilevel thresholding strategy. Abdel-Basset et al. [30] 
developed a new algorithm named HSMA_WOA integrating slime mould 
algorithm and WOA, also segmented COVID-19 chest X-ray images 
applying multilevel thresholding strategy. Zhao et al. [26] proposed an 
improved slime mould algorithm (DASMA) with a diffusion mechanism 
and an association strategy to increase solution diversity and faster 
convergence speed, respectively. They applied the method to segment 
the CT image of chronic obstructive pulmonary disease (COPD) using 
multilevel thresholding approach. Liu et al. [12] modified the ant colony 
optimization (ACO) algorithm using Cauchy mutation to enhance the 
searching ability and convergence speed of ACO. Greedy Levy mutation 
was used to avoid the local solution. The authors segmented the 
COVID-19 X-ray images applying the method with Kapur’s 
entropy-based multilevel thresholding approach. Murillo-Olmos et al. 
[31] segmented X-ray images of pneumonia with whale optimization 
algorithm. Abualigah et al. [32] proposed differential evolution-based 
arithmetic optimization algorithm (DAOA). Differential evolution was 
used to enhance the local search, COVID-19 CT images segmented using 
multilevel thresholding strategy. Thus, segmentation of the COVID-19 
chest X-ray images to separate the background and target by classi-
fying image pixels can be very important to diagnose and examine the 
severity of a patient infected with COVID-19. This can help specialists to 
make a suitable conclusion and give a treatment plan. Moreover, the 
segmented image can be used to train the machine learning algorithms 
and generate decisions effectively. 

Mirjalili and Lewis devised the whale optimization algorithm in 2016 
while researching humpback whale feeding behavior. With only a few 
algorithm-specific parameters, WOA is a simple yet powerful system. 
Despite a few limitations, the effectiveness of WOA outperforms a few 
other well-known algorithms in terms of exploitation and avoiding the 
local optimal solution [33]. However, the conventional WOA may be 
trapped into a local solution due to low exploration capacity, and the 
best optimal solution may not be attained while solving complex prob-
lems [34]. Moreover, in WOA, global and local search phases are not 
well-balanced because exploitation gets higher preference in the second 
half of the search process [28]. As a result, this study offers mWOAPR, a 
novel variant of WOA that increases the algorithm’s exploration capa-
bility while balancing global and local search features. In furthermore, 
the proposed technique has been successfully used to tackle the image 
segmentation problem. 2D histograms made of greyscale images are 
used as the fitness function to achieve an ideal threshold set, and 2D 
Kapur’s entropy is being used as a fitness function. Hereunder are the 
study’s main contributions:  

(i) A new traversing parameter β is introduced to balance between 
exploration and exploitation.  

(ii) Instead of the search prey phase of WOA, random initialization of 
solution is performed to increase exploration.  

(iii) In the encircling prey and bubble-net attack phases, the value of 
co-efficient vector A and constant b is altered. It facilitates the 
exploration of the search space at the start of the process, and as 
iteration advances, a thorough local search is executed. 

Fig. 1. Pseudo code of the proposed mWOAPR.  
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(iv) A population reduction mechanism minimizes the algorithm’s 
computational complexity and enhances the exploitation ability.  

(v) Six benchmark images and three COVID-19 X-ray images are 
segmented using different thresholds, and evaluated results are 
compared with several metaheuristic algorithms.  

(vi) Friedman’s test, a nonparametric statistical test, has been used to 
validate the suggested algorithm’s statistical performance. 
Convergence graphs are also used to assess the algorithm’s so-
lution searching capability. 

The remainder of the paper is structured as follows: The description 
of the classic WOA is presented in Section 2. In Section 3, the proposed 
algorithm mWOAPR is described. In Section 4, the image segmentation 
problem is defined. Section 5 compares and analyses the evaluated 
outcomes. The algorithm’s computing complexity, statistical analysis of 
the findings, and convergence analysis are all shown in Section 6. The 
research comes to a close with Section 7. 

2. Whale optimization algorithm 

For constructing the algorithm, the whale optimization algorithm 
(WOA) mimics the foraging behavior of humpback whales. WOA’s 
execution procedure, like that of other population-based algorithms, 
begins with the generation of a set of random solutions. WOA’s search 

technique is primarily divided into three stages: searching the prey, 
encircling the prey, and spiral bubble-net attack. WOA employs these 
three approaches to achieve an appropriate equilibrium between both 
the exploratory and exploitative processes. Finally, the search procedure 
ends when a pre-defined condition is met and the optimization results 
are produced. 

2.1. Searching the prey phase 

Whales randomly search the target in the search space based on their 
current location. The program uses the food-finding mechanism of 
whales to explore the search region. The mathematical formulation of 
this behavior is given by: 

Dis=
⃒
⃒C. S(t)

rnd − S(t)
⃒
⃒ (1)  

S(t+1) = S(t)
rnd − A.Dis (2)  

where, S represents the solution vector, Srnd is a randomly chosen so-
lution from the current solutions, and t represents the present iteration 
number. Dis represents the distance of random and the current solution. 
(.) characterizes the element-by-element multiplication, and | | signifies 
absolute value. 

Parameters A, and C in Eqns. (1) and (2) are said to be co-efficient 

Fig. 2. Images used in the experiment of image segmentation.  
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vectors and are obtained by the following equations: 

A= 2a1 × rnd − a1 (3)  

C= 2 × rnd (4)  

where, a1 declines linearly from 2 to 0 with each iteration, and rnd is a 
random number between 0 and 1. 

2.2. Encircling the prey 

The algorithm employs this whale hunting method for the aim of 
exploitation. The current best solution is anticipated to be the solution 
closest to the ideal value during this phase. The population’s other so-
lutions change their places concerning the current best option. The 
mathematical expressions to formulate this behavior are given below: 

Dis=
⃒
⃒C. S(t)

best − S(t)
⃒
⃒ (5)  

S(t+1) = S(t)
best − A.Dis (6)  

where Sbest characterizes the best solution based on the fitness value 

among the whales till the present iteration. 

2.3. Bubble-net attack 

To approach their target, humpback whales employ a spiral-shaped 
route of bubbles. For local search, the bubble-net attacking technique 
is used. The bubble-net procedure is carried out as follows: 

D* = |S(t)
best − S(t)| (7)  

S(t+1) =D* ⋅ ebl ⋅ cos(2πl) + S(t)
best (8)  

where b denotes the shape of the logarithmic spiral path and is kept 
constant; l is a random number calculated using the following equation: 

l=(a2 − 1) rnd + 1 (9) 

In Eqn. (9), a2 decreases linearly from (− 1) to (− 2) with each iter-
ation and rnd ∈ [0, 1]. 

The coefficient parameter A is used to make the transition between 
the algorithm’s explorative and exploitative phases. When |A| ≥ 1, the 
exploratory process is chosen, and the global search is started through 

Table 1 
Comparison of results using image airport.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR a 3 93 165 256    17.7462 1.39E-05 13.1548 0.3229 17.7462 
WOA 93 165 256    17.746 6.15E-04 13.1548 0.3229 17.7462 
ACWOA 93 165 256    17.7407 0.0122 13.1548 0.3229 17.7462 
AWOA 93 165 256    17.7446 0.0034 13.1548 0.3229 17.7462 
HIWOA 93 165 256    17.7318 0.0173 13.1548 0.3229 17.7462 
ESSAWOA 95 165 256    17.6291 0.1021 13.0568 0.314 17.7417 
WOAmM 93 165 256    17.7462 1.08E-14 13.1548 0.3229 17.7462 
m-SDWOA 93 165 256    17.7462 1.08E-14 13.1548 0.3229 17.7462 
MPBOA 91 165 256    17.7253 0.0125 15.2759 0.073 17.7461 
HBO 91 163 242    17.366 0.2128 15.2809 0.0733 17.6363 
HGS 93 165 256    17.7443 0.0046 15.2426 0.0713 17.7462 
SMA 93 165 256    17.7462 0 15.2426 0.0713 17.7462 
mWOAPR a 4 90 153 199 256   22.1706 0.0033 13.384 0.3442 22.1729 
WOA 90 153 199 256   22.1704 0.003 13.384 0.3442 22.1729 
ACWOA 89 153 199 256   22.1375 0.0283 13.4404 0.3479 22.1717 
AWOA 90 153 199 256   22.1683 0.0066 13.384 0.3442 22.1729 
HIWOA 91 153 199 256   22.123 0.0356 13.3329 0.3438 22.172 
ESSAWOA 95 153 203 256   21.847 0.2767 13.1235 0.3219 22.1356 
WOAmM 90 153 199 256   22.1701 0.0021 13.384 0.3442 22.1729 
m-SDWOA 90 153 199 256   22.1692 0.0034 13.384 0.3442 22.1729 
MPBOA 90 153 199 256   22.1702 0.0091 15.319 0.0762 22.1729 
HBO 84 157 199 250   21.383 0.3399 15.4471 0.0801 22.0295 
HGS 90 153 199 256   22.1614 0.0203 15.319 0.0762 22.1729 
SMA 90 153 199 256   22.1701 0.002 15.319 0.0762 22.1729 
mWOAPR a 5 82 121 160 204 256  26.2943 0.0031 14.4122 0.4181 26.2972 
WOA 82 121 160 204 256  26.293 0.006 14.4122 0.4181 26.2972 
ACWOA 82 126 165 207 256  26.2417 0.0545 14.3483 0.4133 26.2917 
AWOA 82 121 160 204 256  26.2914 0.0048 14.4122 0.4181 26.2972 
HIWOA 82 126 165 207 256  26.2391 0.0468 14.3483 0.4173 26.2917 
ESSAWOA 82 129 166 204 256  25.6354 0.47 14.3081 0.4098 26.2443 
WOAmM 82 121 160 204 256  26.2937 0.002 14.4122 0.4181 26.2972 
m-SDWOA 82 121 160 204 256  26.2922 0.0032 14.4122 0.4181 26.2972 
MPBOA 82 121 160 204 256  26.2939 0.001 15.6618 0.0908 26.2972 
HBO 81 135 161 199 255  25.3102 0.4337 15.6276 0.089 26.1144 
HGS 82 121 160 204 256  26.2644 0.0375 15.6618 0.0908 26.2972 
SMA 82 121 160 204 256  26.2944 0.002 15.6618 0.0908 26.2972 
mWOAPR a 6 41 85 127 165 207 256 30.0772 0.0788 20.8625 0.7944 30.1577 
WOA 41 85 127 165 207 256 30.068 0.0673 20.8625 0.7944 30.1577 
ACWOA 41 80 121 167 206 256 29.8909 0.0908 21.4447 0.8057 30.0789 
AWOA 41 85 126 165 208 256 30.0166 0.0379 20.9127 0.7944 30.1547 
HIWOA 41 80 122 160 204 256 29.8993 0.0878 21.4234 0.7526 30.1442 
ESSAWOA 75 122 153 183 211 256 29.3352 0.4269 15.2383 0.459 29.8886 
WOAmM 41 82 121 160 204 256 30.0764 0.0713 21.374 0.8056 30.1552 
m-SDWOA 41 85 127 165 207 256 30.0677 0.0825 20.8625 0.7944 30.1577 
MPBOA 41 85 127 165 207 256 30.01 0.0683 17.8119 0.1141 30.1577 
HBO 40 82 145 162 203 247 28.8162 0.4284 17.4326 0.1067 29.4463 
HGS 41 85 122 165 208 256 29.9346 0.1072 17.8884 0.1149 30.14 
SMA 41 84 124 165 207 256 30.0555 0.0756 17.8822 0.1144 30.1566  
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Eqn. (1) and Eqn. (2). If |A| < 1, the candidate whales upgrade positions 
by Eqn. (6) or Eqn. (8) depending on a probability value α, which is 
constant (α = 0.5), and based on the value of α, the search process 
transits between encircling prey or bubble-net attacking strategy. The 
mathematical representation of the same is given below: 
{

S(t+1) = St
best − A. Dis if α < 0.5

S(t+1) = D*⋅ebl cos(2πl) + St
best if α ≥ 0.5

(10)  

3. Proposed modified WOA with population reduction 
(mWOAPR) 

The humpback whale’s hunting behavior inspired the development 
of whale optimization algorithm. The whales migrate while hunting for 
food, selecting a random solution from the population; this phase has 
been termed the search for prey phase. The algorithm’s global search 
phase led this phase. Local searches were conducted by encircling the 
target and using the whale’s bubble-net attack strategy. The solutions in 
both of these phases were updated using the current best value. To 
search away from the current solution, two co-efficient vectors A and C, 
are employed. In basic WOA, selection between exploration and 

exploitation were performed using the value of co-efficient vector A, and 
an arbitrary number p. The arrangement steered the search process only 
to the exploitation phase during the second part of the search [35], 
decreasing diversity in the solution. 

In the proposed mWOAPR, a new selection parameter β is intro-
duced, which varies between 1 and 0. Selection between the exploration 
and exploitation phase is achieved using the value of β. The parameters 
Aand b used in classical WOA are also modified here. An arbitrary 
number is subtracted from β to get the value of A. While exploiting the 
search space using the bubble-net method, the value of β is used instead 
of 1 in WOA. β is calculated using the equation below: 

β= 1 − iter/maxiter (11) 

In the above equation, iter and maxiter represent the present iteration 
value and the maximum number of iterations, respectively. 

Like other metaheuristic algorithms, mWOAPR starts with initial-
izing a random population. If the value of β is greater than a random 
number and another random number is less than 0.5, the exploration 
phase is selected. Unlike the WOA search for prey phase in the explo-
ration phase, the present solution is regenerated to increase the explo-
ration. Otherwise, the encircling prey phase in Eqn. (6) is used. The 

Table 2 
Comparison of results using image bridge.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR b 3 102 179 256    18.6516 0 12.9608 0.4051 18.6516 
WOA 102 179 256    18.6515 3.8572e-04 12.9608 0.4051 18.6516 
ACWOA 102 179 256    18.6498 0.0022 12.9608 0.4051 18.6516 
AWOA 102 179 256    18.6516 4.1353e-05 12.9608 0.4050 18.6516 
HIWOA 102 179 256    18.6494 0.0021 12.9608 0.4039 18.6516 
ESSAWOA 106 180 256    18.5940 0.0980 12.6903 0.3900 18.6469 
WOAmM 102 179 256    18.6516 2.4744e-05 12.9608 0.4051 18.6516 
m-SDWOA 102 179 256    18.6516 0 12.9608 0.4051 18.6516 
MPBOA 103 179 256    18.6361 0.0108 13.1722 0.0699 18.6514 
HBO 94 172 255    18.3728 0.1687 13.4228 0.0767 18.6140 
HGS 102 179 256    18.6515 0.0003 13.1944 0.0706 18.6516 
SMA 102 179 256    18.6516 0 13.1944 0.0706 18.6516 
mWOAPR b 4 63 130 195 256   23.4015 3.3610e-04 16.7992 0.6241 23.4017 
WOA 63 130 195 256   23.4014 0.0013 16.7992 0.6241 23.4017 
ACWOA 63 131 195 256   23.3845 0.0174 16.7661 0.6218 23.4006 
AWOA 63 130 195 256   23.4006 0.0020 16.7992 0.6241 23.4017 
HIWOA 63 130 195 256   23.3835 0.0164 16.7992 0.6194 23.4017 
ESSAWOA 64 127 194 256   23.1809 0.1933 16.9415 0.6317 23.3916 
WOAmM 63 130 195 256   23.4013 7.1123e-04 16.7992 0.6241 23.4017 
m-SDWOA 63 130 195 256   23.4014 5.4523e-04 16.7992 0.6241 23.4017 
MPBOA 64 130 193 256   23.3571 0.0376 14.4922 0.0955 23.3954 
HBO 6 129 195 254   22.8525 0.2589 14.3361 0.0934 23.2965 
HGS 63 130 195 256   23.3946 0.0094 14.4739 0.0954 23.4017 
SMA 63 130 195 256   23.4015 0.0005 14.4739 0.0954 23.4017 
mWOAPR b 5 55 103 150 199 256  27.7540 0.0011 19.0347 0.7366 27.7545 
WOA 55 103 150 199 256  27.7537 0.0012 19.0347 0.7366 27.7545 
ACWOA 55 103 151 199 256  27.7059 0.0659 19.0226 0.7356 27.7540 
AWOA 55 103 150 199 256  27.7534 0.0011 19.0347 0.7356 27.7545 
HIWOA 57 106 153 201 256  27.6765 0.0590 18.9485 0.7349 27.7492 
ESSAWOA 54 116 165 207 256  27.2720 0.3224 18.1740 0.6958 27.6681 
WOAmM 55 103 150 199 256  27.7533 0.0011 19.0347 0.7366 27.7545 
m-SDWOA 55 103 150 199 256  27.7529 0.0017 19.0347 0.7366 27.7545 
MPBOA 55 107 154 204 256  27.6921 0.0418 15.1572 0.1030 27.7404 
HBO 48 100 169 211 253  26.8619 0.3619 14.8889 0.1023 27.4814 
HGS 54 101 149 199 256  27.7259 0.0236 15.2325 0.1033 27.7522 
SMA 55 103 150 199 256  27.7531 0.0024 15.2190 0.1031 27.7545 
mWOAPR b 6 52 92 132 172 211 256 31.7673 7.3212e-04 20.4208 0.7857 31.7680 
WOA 52 92 132 172 211 256 31.7670 8.2313e-04 20.4208 0.7857 31.7680 
ACWOA 53 94 135 179 217 256 31.6674 0.0907 20.1722 0.7754 31.7559 
AWOA 52 92 132 172 211 256 31.7668 0.0013 20.4208 0.7857 31.7680 
HIWOA 49 92 135 173 211 256 31.6397 0.1091 20.2724 0.7813 31.7617 
ESSAWOA 50 85 141 187 217 256 31.0189 0.3644 19.6431 0.7545 31.5843 
WOAmM 52 92 132 172 211 256 31.7667 0.0013 20.4208 0.7857 31.7680 
m-SDWOA 52 92 132 172 211 256 31.7657 0.0026 20.4208 0.7857 31.7680 
MPBOA 52 92 134 174 209 256 31.6845 0.0472 15.6622 0.1060 31.7455 
HBO 20 52 65 121 161 237 30.6683 0.4360 15.2443 0.1011 31.4979 
HGS 49 93 135 175 212 256 31.6841 0.0628 15.6150 0.1067 31.7589 
SMA 52 92 132 172 211 256 31.7600 0.0159 15.6811 0.1062 31.7680  
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value of A is restricted within the range [− 1, 1] only to exploit the po-
sitions around the best value. While β is less than an arbitrary value, then 
the bubble-net attack phase is selected. The radius of the spiral path 
decreases gradually, and the variable bdefines the shape of the spiral 
path, considering that value of b is taken within [− 1, 1] instead of 1 in 
WOA. After updating solutions in an iteration, the population for the 
next iteration is calculated using the formula given in Eqn. (12). 

Newpop = round
{(

minpop − pop
maxnfes

)

* nfes+ pop
)}

(12) 

In Eqn. (12), pop signifies the population value, minpop is the mini-
mum number of solutions the population may decrease. nfes is the cur-
rent value of function evaluation, and maxnfes is the maximum number 
of function evaluations. While experimenting, we have fixed minpop 
value to 15. Reduction of the population reduces complexity and in-
creases convergence speed and local search ability of the algorithm. The 
best fitness value is returned as output. The pseudo-code of the proposed 
algorithm is given in Fig. 1. 

3.1. Steps involved in mWOAPR 

The stepwise execution process of mWOAPR is given below:  

1. Initialize the random population and other related parameters.  
2. Evaluate each solution’s fitness and find the present best fitness 

and the best solution.  
3. Calculate the traversing parameter β.  
4. Evaluate update value of A, C, b and l  
5. If the value of A is greater than a random value and also a random 

value is greater than 0.5 then reinitialize the current solution.  
6. If the value of A is greater than a random value and also a random 

value is less than or equal to 0.5 then update the current solution 
using the encircling prey strategy.  

7. If the value of A is less than or equal to a random value, update 
the current solution using the bubble-net attack method.  

8. Update each solution in the population using either step 5, step 6, 
or step 7.  

9. Evaluate the value of the new population after reduction using 
equation (12). 

Table 3 
Comparison of results using image boat.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR c 3 109 180 256    18.1487 5.81E-04 14.7695 0.5468 18.1488 
WOA 109 180 256    18.1482 0.0018 14.7695 0.5468 18.1488 
ACWOA 109 180 256    18.1449 0.0067 14.7695 0.5468 18.1488 
AWOA 109 180 256    18.1476 0.0026 14.7695 0.5468 18.1488 
HIWOA 109 180 256    18.1433 0.0074 14.7695 0.5468 18.1488 
ESSAWOA 105 181 256    18.0577 0.0852 14.5654 0.5459 18.1435 
WOAmM 109 180 256    18.1483 3.51E-05 14.7695 0.5468 18.1488 
m-SDWOA 109 180 256    18.1487 2.64E-14 14.7695 0.5468 18.1488 
MPBOA 107 180 254    18.1396 0.0083 13.242 0.0548 18.1486 
HBO 102 179 247    17.8082 0.2466 13.155 0.0549 18.1208 
HGS 109 180 256    18.1483 0.0023 13.2674 0.0549 18.1488 
SMA 109 180 256    18.1487 0 13.2674 0.0549 18.1488 
mWOAPR c 4 65 122 181 256   22.8344 9.47E-04 17.8699 0.6682 22.8346 
WOA 65 122 181 256   22.8341 0.0011 17.8699 0.6682 22.8346 
ACWOA 64 122 181 256   22.8201 0.0111 17.8736 0.6681 22.8344 
AWOA 65 122 181 256   22.8342 0.0014 17.8699 0.6682 22.8346 
HIWOA 65 122 181 256   22.8209 0.0143 17.8699 0.6682 22.8346 
ESSAWOA 61 122 182 256   22.6667 0.1195 17.8266 0.6668 22.8156 
WOAmM 65 122 181 256   22.8342 1.19E-04 17.8699 0.6682 22.8346 
m-SDWOA 65 122 181 256   22.8341 1.36E-04 17.8699 0.6682 22.8346 
MPBOA 64 122 181 256   22.8177 0.0159 14.3021 0.0619 22.8344 
HBO 66 114 179 250   22.2441 0.3373 14.0333 0.0599 22.777 
HGS 65 122 181 256   22.8304 0.0067 14.3009 0.0618 22.8346 
SMA 65 122 181 256   22.834 0.0002 14.3009 0.0618 22.8346 
mWOAPR c 5 51 92 130 181 256  26.9507 0.025 20.0294 0.7344 26.9576 
WOA 51 92 130 181 256  26.9477 0.0262 20.0294 0.7344 26.9576 
ACWOA 52 91 130 181 254  26.8855 0.0629 19.9857 0.7321 26.9559 
AWOA 51 92 130 181 256  26.927 0.0511 20.0294 0.7344 26.9576 
HIWOA 52 91 130 181 256  26.8948 0.0582 19.9857 0.731 26.9559 
ESSAWOA 51 97 131 180 248  26.5258 0.2742 20.2102 0.7388 26.921 
WOAmM 51 92 130 181 256  26.9507 0.0044 20.0294 0.7344 26.9576 
m-SDWOA 51 92 130 181 256  26.9502 0.0018 20.0294 0.7344 26.9576 
MPBOA 53 92 130 181 256  26.9247 0.0215 15.0047 0.0646 26.9554 
HBO 61 99 132 190 240  26.0944 0.3704 14.9467 0.0626 26.7732 
HGS 53 92 130 181 256  26.8567 0.0704 15.0047 0.0646 26.9554 
SMA 51 92 130 181 256  26.9501 0.0015 15.0207 0.0651 26.9576 
mWOAPR c 6 50 90 128 166 195 256 30.8696 0.0058 21.0599 0.7595 30.8762 
WOA 50 90 128 166 195 256 30.8683 0.0093 21.0599 0.7595 30.8762 
ACWOA 50 89 128 166 195 256 30.827 0.0474 21.0384 0.7587 30.8752 
AWOA 50 91 128 166 195 256 30.8663 0.0085 21.0782 0.7595 30.8757 
HIWOA 49 88 125 166 195 256 30.7777 0.1017 20.7002 0.764 30.8658 
ESSAWOA 50 92 129 172 205 256 30.1745 0.3845 20.6883 0.7457 30.8456 
WOAmM 50 90 128 166 195 256 30.869 0.0115 21.0599 0.7595 30.8762 
m-SDWOA 50 90 128 166 195 256 30.8676 0.0116 21.0599 0.7595 30.8762 
MPBOA 52 91 128 166 196 256 30.8417 0.0161 15.3534 0.0671 30.8696 
HBO 58 85 128 165 190 254 29.8476 0.4058 15.2249 0.0657 30.6438 
HGS 50 90 125 166 195 256 30.8126 0.0448 15.2461 0.0671 30.8652 
SMA 50 90 128 166 195 256 30.867 0.0063 15.3643 0.0676 30.8762  
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10. Move in between step 2 to step 9 as long as the termination 
condition is not true.  

11. Return the final best fitness and the corresponding solution as 
output. 

4. Image segmentation 

Segmentation of images has been motivating researchers from 
various areas for years, owing to the advent of computer vision appli-
cations. In today’s world, digital cameras are ubiquitous and linked to 
multiple devices for a variety of applications that require specific 
treatment for reasons such as medical diagnostics, monitoring, com-
mercial deployments, and so on. The process of dividing a digital image 
into non-overlapping areas or segments and finding objects and 
boundaries in images is known as segmentation. The intensities of pixels 
within a region are homogenous or comparable in terms of properties 
such as grey level, texture, color, and brightness [36]. Image segmen-
tation is regarded as a vital component in the study of computer vision 
and image processing systems; it impacts the entire image or a collection 
of object outlines in a succession of pieces and isolates the image into 
groups of pixels, and divides the parts along these lines in such a way 

that it is extremely precise [37]. Each pixel in a region is comparable in 
specific unique or calculated properties, such as color, texture, or in-
tensity. Image segmentation produces many divisions that distribute the 
main image or collection of forms ejected from the image. The goal of 
segmentation is to pre-process an image to expedite future processing 
chores by improving the look of the original image [38]. It is critical to 
note that each segmentation procedure has two primary goals: decom-
posing the target picture into sub-images to aid in a more comprehensive 
analysis and modify the representation. The segmented section of a 
picture should be homogenous and uniform in color, grey level, texture, 
and simplicity. Similarly, neighboring pixels should have considerably 
different values. The objective of segmentation is to simplify or trans-
form a picture into a meaningful representation that can be analyzed 
further. 

The most popular approach for segmenting digital pictures based on 
histograms is the thresholding technique for image segmentation. 
Thresholding-based methods classify or group features based on the 
intensity range of the pixels. It is one of the simplest but most effective 
methods for segmenting images that can differentiate between objects 
and other parts of an image by establishing image thresholds. The most 
sophisticated, relevant, and fascinating image analysis and pattern 

Table 4 
Comparison of results using image couple.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR d 3 99 182 255    18.0654 3.61E-15 14.3523 0.5021 18.0654 
WOA 99 182 255    18.065 5.90E-04 14.3523 0.5021 18.0654 
ACWOA 99 182 255    18.0496 0.0156 14.3523 0.5021 18.0654 
AWOA 99 182 255    18.0651 4.57E-04 14.3523 0.5021 18.0654 
HIWOA 99 180 255    18.0405 0.0105 14.3402 0.5025 18.0644 
ESSAWOA 97 183 255    17.936 0.1061 14.3134 0.5013 18.0572 
WOAmM 99 182 255    18.065 0.0016 14.3523 0.5021 18.0654 
m-SDWOA 99 182 255    18.0653 2.57E-04 14.3523 0.5021 18.0654 
MPBOA 99 182 255    18.0654 0 13.4599 0.053 18.0654 
HBO 106 177 250    17.6444 0.2063 13.4308 0.0552 17.9184 
HGS 99 182 255    18.0374 0.0229 13.4599 0.053 18.0654 
SMA 99 182 255    18.0652 0.0006 13.4599 0.053 18.0654 
mWOAPR d 4 93 159 201 254   22.6356 0.0161 15.1245 0.551 22.6542 
WOA 93 159 201 254   22.6349 0.017 15.1245 0.551 22.6542 
ACWOA 94 162 201 254   22.576 0.0569 14.9996 0.546 22.6369 
AWOA 93 159 201 254   22.6355 0.0148 15.1245 0.551 22.6542 
HIWOA 99 161 201 254   22.5618 0.0598 15.0251 0.6659 22.6379 
ESSAWOA 99 161 206 254   22.4293 0.1321 15.0225 0.5445 22.5963 
WOAmM 93 159 201 254   22.6348 0.015 15.1245 0.551 22.6542 
m-SDWOA 93 159 201 254   22.6278 0.013 15.1245 0.551 22.6542 
MPBOA 60 113 180 255   22.5493 0.0464 14.6775 0.0636 22.6122 
HBO 70 100 173 253   21.8734 0.2706 14.2903 0.0573 22.2631 
HGS 93 160 201 254   22.5954 0.0411 13.701 0.0581 22.6536 
SMA 93 159 201 254   22.6238 0.01 13.7173 0.0584 22.6542 
mWOAPR d 5 60 107 160 201 254  27.1485 0.0168 18.8267 0.7067 27.1603 
WOA 60 107 160 201 254  27.1369 0.0402 18.8267 0.7067 27.1603 
ACWOA 60 107 160 201 254  27.1467 0.0183 18.8267 0.7067 27.1603 
AWOA 60 108 160 201 254  27.1392 0.0184 18.8917 0.7076 27.1587 
HIWOA 63 107 162 204 254  26.9531 0.1156 18.6986 0.7021 27.129 
ESSAWOA 60 109 156 201 253  26.5557 0.3309 19.242 0.7129 27.0798 
WOAmM 60 107 160 201 254  27.1442 0.0193 18.8267 0.7067 27.1603 
m-SDWOA 60 107 160 201 254  27.1467 0.0109 18.8267 0.7067 27.1603 
MPBOA 58 108 160 202 254  27.0105 0.0681 14.9586 0.0658 27.1348 
HBO 57 112 155 194 254  25.9079 0.4622 15.0946 0.0682 26.8265 
HGS 62 111 162 201 254  26.9607 0.1686 14.9925 0.066 27.1412 
SMA 60 107 160 201 254  27.1477 0.0064 14.9513 0.0651 27.1603 
mWOAPR d 6 59 96 130 166 203 254 31.0215 0.0079 21.5266 0.7782 31.0285 
WOA 59 97 131 166 203 254 31.0203 0.0086 21.387 0.7781 31.0283 
ACWOA 58 101 131 165 202 254 30.8016 0.1378 21.5236 0.783 30.9914 
AWOA 59 97 131 166 203 254 31.0142 0.0177 21.387 0.78 31.0283 
HIWOA 58 102 137 166 203 254 30.7805 0.1087 21.107 0.778 30.9881 
ESSAWOA 59 97 136 168 200 254 30.2168 0.5064 20.8817 0.7605 30.9676 
WOAmM 58 97 131 166 203 254 31.0103 0.0169 21.3918 0.7783 31.0242 
m-SDWOA 59 98 131 166 203 254 31.0125 0.0118 21.4316 0.78 31.0264 
MPBOA 57 95 129 167 201 254 30.8519 0.092 15.7885 0.066 31.0099 
HBO 58 100 134 163 198 239 29.593 0.3732 15.8458 0.0672 30.4203 
HGS 59 103 137 170 204 254 30.7546 0.179 15.7111 0.0671 31.0086 
SMA 59 96 129 166 203 254 31.0093 0.0184 15.8104 0.0658 31.0264  
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detection approach is automatic image separation [39]. Image seg-
mentation methods are classified into two types based on their thresh-
olds: parametric and nonparametric [40]. Because they involve the 
analysis of a probability density function, parametric methods are 
time-demanding. On the other hand, nonparametric methods are more 
precise and dependable and do not involve estimating any probability 
function. The techniques for nonparametric strategies are established 
based on statistical skills that aid in analyzing histogram data; these 
tools include intra-class variance, entropy, error rate, and so on. When 
using an optimization strategy, such statistical approaches might be 
employed as objective functions [41]. Threshold values can be 
computed when the parameter is being maximized or minimized based 
on its characteristics. The precision of segmentation is determined by the 
threshold values chosen. A histogram for the image can help with 
threshold selection. 

Bi-level and multilevel thresholding are two different forms of 
thresholding [42]. In bi-level thresholding, the image pixels are cate-
gorized into two groups: (i) pixels with intensities less than the threshold 
and (ii) pixels greater than the threshold. On the other hand, image 
pixels are split into many classes in multilayer thresholding. Each class 
has a grey level value that is defined by several threshold values. Otsu’s 

between class variance [43] and Kapur’s entropy method [44] are two 
widely used techniques for image segmentation via thresholding. Otsu’s 
between-class variance is a popular method called a global strategy due 
to its simplicity and efficacy. However, because it is one-dimensional 
and only examines information at the grey level, it does not provide a 
superior segmentation result [45]. On the other hand, the notion of 
maximizing Kapur’s entropy as a metric for object segmentation is based 
on the premise that an image comprises a foreground and a background 
area with values contributing to the distribution of object intensity [45]. 
Both areas are computed independently to maximize their amount. The 
best limit value is then determined to maximize the entropy amount. 

4.1. Problem formulation of multilevel thresholding 

Thresholding can be bi-level or multilevel. Bi-level thresholding uses 
only one threshold value thld and two classes CL0 and CL1 are created on 
this threshold value. While in multilevel thresholding threshold values 
of n numbers are used { thld1, thld2 … … …,thldn} and splits the image (I)
into (n+1) classes of { CL0, CL1, CL2,… …. ,CLn). 

In an image I of P grey levels, bi-level thresholding can be written as: 

Table 5 
Comparison of results using image cameraman.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR e 3 128 196 256    17.5842 3.76E-13 13.6257 0.5342 17.5842 
WOA 128 196 256    17.5842 4.29E-05 13.6257 0.5342 17.5842 
ACWOA 128 196 256    17.5827 0.0031 13.6257 0.5342 17.5842 
AWOA 128 196 256    17.5842 4.54E-05 13.6257 0.5342 17.5842 
HIWOA 128 196 256    17.5723 0.0316 13.6257 0.5342 17.5842 
ESSAWOA 127 196 256    17.3457 0.2257 13.7172 0.5374 17.584 
WOAmM 128 196 256    17.5842 4.19E-13 13.6257 0.5342 17.5842 
m-SDWOA 128 196 256    17.5842 3.27E-05 13.6257 0.5342 17.5842 
MPBOA 133 196 255    17.5314 0.039 13.1195 0.5183 17.5743 
HBO 117 192 255    16.7845 0.3637 14.2737 0.562 17.5034 
HGS 128 196 256    17.5841 0.0002 13.6257 0.5342 17.5842 
SMA 128 196 256    17.5842 0 13.6257 0.5342 17.5842 
mWOAPR e 4 44 103 196 256   21.9771 0.0483 14.4602 0.6247 22.0073 
WOA 44 103 196 256   21.9669 0.0504 14.4602 0.6247 22.0073 
ACWOA 44 103 196 255   21.9163 0.1129 14.4602 0.6247 22.0073 
AWOA 44 103 196 256   21.9704 0.048 14.4602 0.6247 22.0073 
HIWOA 44 103 196 256   21.9414 0.0591 14.4602 0.6246 22.0073 
ESSAWOA 47 102 196 256   21.6785 0.2572 14.3565 0.6206 21.9929 
WOAmM 44 103 196 256   21.975 0.0325 14.4602 0.6247 22.0073 
m-SDWOA 44 103 196 256   22.0027 0.0195 14.4602 0.6247 22.0073 
MPBOA 43 102 196 256   21.9422 0.0588 14.3425 0.6215 22.0028 
HBO 28 100 199 253   21.2211 0.3588 14.0102 0.6084 21.822 
HGS 44 103 196 256   21.9623 0.0464 14.4602 0.6247 22.0073 
SMA 44 103 196 256   22.007 0.001 14.4602 0.6247 22.0073 
mWOAPR e 5 44 96 146 196 256  26.5831 0.0039 20.1531 0.687 26.5863 
WOA 44 96 146 196 256  26.5694 0.0243 20.1531 0.687 26.5863 
ACWOA 40 96 146 196 255  26.4391 0.2042 20.1357 0.6883 26.577 
AWOA 44 96 146 196 256  26.5753 0.0119 20.1531 0.687 26.5863 
HIWOA 44 98 147 196 256  26.442 0.1708 20.2857 0.6886 26.5812 
ESSAWOA 32 95 135 198 253  25.8792 0.3325 19.0687 0.7129 26.4087 
WOAmM 44 96 146 196 256  26.5814 0.004 20.1531 0.687 26.5863 
m-SDWOA 44 96 146 196 256  26.5831 0.0041 20.1531 0.687 26.5863 
MPBOA 45 96 144 196 255  26.4959 0.0605 20.068 0.6973 26.5781 
HBO 3 52 139 154 229  25.4632 0.4509 17.2685 0.6847 26.3201 
HGS 43 96 145 196 256  26.5491 0.0235 20.1136 0.6925 26.582 
SMA 44 96 146 196 256  26.5822 0.0021 20.1531 0.687 26.5863 
mWOAPR e 6 24 60 98 146 196 256 30.5274 0.0506 20.6608 0.7081 30.56 
WOA 24 60 98 146 196 256 30.5262 0.0459 20.6608 0.7081 30.56 
ACWOA 26 67 102 146 196 256 30.357 0.105 20.9413 0.7165 30.5272 
AWOA 24 60 98 146 196 256 30.5145 0.0577 20.6608 0.713 30.56 
HIWOA 22 60 98 145 196 255 30.349 0.1944 20.5972 0.7194 30.5524 
ESSAWOA 22 45 98 158 199 254 29.6313 0.3481 19.6474 0.6504 30.15 
WOAmM 24 61 98 146 196 256 30.5264 0.052 20.6618 0.7077 30.5599 
m-SDWOA 24 60 98 146 196 256 30.5196 0.0471 20.6608 0.7081 30.56 
MPBOA 23 61 100 142 197 255 30.4354 0.0548 20.4607 0.7294 30.5255 
HBO 31 85 129 200 224 255 29.065 0.4983 18.1932 0.7092 29.9247 
HGS 22 59 100 148 197 256 30.3791 0.0901 20.8259 0.7025 30.5345 
SMA 24 61 98 146 196 256 30.5062 0.0727 20.6618 0.7077 30.5599  
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CL0 ={ f (x, y) ∈ I | 0≤ f (x, y)≤ thld1 − 1}

CL1 ={ f (x, y) ∈ I | thld ≤ f (x, y)≤ P − 1}

where f(x, y) denotes the intensity of pixels of the image I. 
For multilevel image thresholding, the same equations can be 

stretched to 

CL0 ={ f (x, y) ∈ I | 0≤ f (x, y)≤ thld1 − 1}

CL1 ={ f (x, y) ∈ I | thld1 ≤ f (x, y)≤ thld2 − 1}

CL3 ={ f (x, y) ∈ I | thld2 ≤ f (x, y)≤ thld3 − 1}

CLn ={ f (x, y) ∈ I | thldn ≤ f (x, y)≤P − 1}

4.2. Kapur’s entropy method 

Kapur’s function measures the separability of the class and calculates 
entropy measurement using the probability distribution of the image’s 
grey level values. The threshold’s optimal values are gained whenever 
entropy measure in segmented classes has the highest value. The process 

aims to find the highest entropy value, which returns the best threshold 
value. Kapur’s entropy was initially developed for bi-level thresholding 
of images. The procedure can be extended to multilevel thresholding. 
For bi-level thresholding, the fitness function can be written as, 

F1(thld) = ET0 + ET1 (13)  

where, 

ET0 = −
∑thld − 1

i=0

xi

ω0
ln
(

xi

ω0

)

, ω0 =
∑thld − 1

i=0
xi  

ET1 = −
∑P− 1

i=thld

xi

ω1
ln
(

xi

ω1

)

, ω1 =
∑P− 1

i=thld

xi 

In the above equations ET0 and ET1 signify the entropies, ω0 and ω1 

represent the class probabilities of the segmented classes CL0 and CL1, 
respectively. xi is the probability of grey level i. xi is calculated as fol-
lows, 

xi =
h(i)

∑P− 1
i=0 hg(i)

, i = 0, 1,…….P − 1 

Table 6 
Comparison of results using image clock.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR f 3 110 186 256    17.6289 1.45E-14 14.7191 0.7599 17.6289 
WOA 110 186 256    17.6289 2.47E-14 14.7191 0.7599 17.6289 
ACWOA 110 186 256    17.6264 0.004 14.7191 0.7599 17.6289 
AWOA 110 186 256    17.6289 1.50E-04 14.7191 0.7599 17.6289 
HIWOA 110 186 256    17.6267 0.0034 14.7191 0.7599 17.6289 
ESSAWOA 110 185 256    17.5937 0.0336 14.6565 0.7606 17.6283 
WOAmM 110 186 256    17.6289 1.45E-14 14.7191 0.7599 17.6289 
m-SDWOA 110 186 256    17.6289 1.58E-04 14.7191 0.7599 17.6289 
MPBOA 111 186 256    17.5949 0.0143 11.2156 0.0338 17.6283 
HBO 9 90 174    17.4228 0.1006 11.1056 0.04 17.5943 
HGS 110 186 256    17.6251 0.0104 11.2289 0.034 17.6289 
SMA 110 186 256    17.6289 0 11.2289 0.034 17.6289 
mWOAPR f 4 27 110 186 256   22.3195 0.0917 15.8086 0.808 22.3838 
WOA 27 110 186 256   22.31 0.0987 15.8086 0.808 22.3838 
ACWOA 27 108 186 256   22.255 0.0954 15.8221 0.8089 22.3827 
AWOA 27 110 186 256   22.3166 0.0114 15.8086 0.808 22.3838 
HIWOA 27 112 186 256   22.2141 0.0922 15.7815 0.8076 22.3825 
ESSAWOA 27 108 188 256   22.0843 0.2429 15.9541 0.8075 22.3766 
WOAmM 27 110 186 256   22.3189 0.0641 15.8086 0.808 22.3838 
m-SDWOA 27 110 186 256   22.3149 0.0413 15.8086 0.808 22.3838 
MPBOA 26 95 162 225   22.1435 0.0884 12.0939 0.0437 22.2875 
HBO 85 135 200 250   21.7855 0.214 12.2293 0.039 22.0638 
HGS 27 110 186 256   22.2538 0.098 11.5921 0.0409 22.3838 
SMA 27 110 186 256   22.3037 0.0004 11.5921 0.0409 22.3838 
mWOAPR f 5 27 89 142 196 256  26.9146 0.0247 18.437 0.8534 26.9269 
WOA 27 89 142 196 256  26.901 0.1207 18.437 0.8534 26.9269 
ACWOA 59 112 161 202 254  26.9124 0.1408 18.9517 0.7049 27.1236 
AWOA 27 89 141 196 256  26.9023 0.0249 18.4264 0.8526 26.9256 
HIWOA 27 89 138 196 256  26.5345 0.3021 18.3765 0.8529 26.9152 
ESSAWOA 27 75 140 202 256  26.3557 0.3368 18.7322 0.8445 26.7965 
WOAmM 27 89 142 196 256  26.8979 0.121 18.437 0.8534 26.9269 
m-SDWOA 27 89 142 196 256  26.9083 0.0396 18.437 0.8534 26.9269 
MPBOA 27 83 143 197 256  26.7304 0.1294 12.4954 0.0426 26.9017 
HBO 26 79 138 179 222  25.7674 0.3446 13.2152 0.0442 26.5713 
HGS 27 91 144 196 256  26.7359 0.2311 12.4643 0.0426 26.9246 
SMA 27 89 142 196 256  26.9135 0.0023 12.4682 0.0426 26.9269 
mWOAPR f 6 27 77 119 160 202 256 30.9996 0.0247 20.1882 0.8725 31.018 
WOA 27 77 119 160 202 256 30.9782 0.1793 20.1882 0.8725 31.018 
ACWOA 27 78 115 153 201 256 30.7691 0.2263 19.9151 0.8703 30.9812 
AWOA 27 79 120 158 202 256 30.9106 0.1282 20.1388 0.8714 31.0091 
HIWOA 27 82 121 162 202 256 30.6499 0.3629 20.1659 0.8724 31.0045 
ESSAWOA 27 80 102 152 205 256 30.1325 0.4942 19.9865 0.8559 30.682 
WOAmM 27 77 119 160 202 256 30.998 0.0191 20.1882 0.8725 31.018 
m-SDWOA 27 77 119 160 202 256 30.9916 0.031 20.1882 0.8725 31.018 
MPBOA 27 85 125 162 206 256 30.8151 0.1093 13.1671 0.0433 30.9463 
HBO 25 61 89 131 184 229 29.3527 0.5744 12.9582 0.0439 30.3689 
HGS 27 78 119 163 203 256 30.7718 0.1887 13.098 0.0432 31.0039 
SMA 27 77 119 160 202 256 31.0077 0.0113 13.0519 0.043 31.018  
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where h(i) is the histogram value of the pixel in ith position. 
Stretching the formula for multilevel thresholding into (n+1) clas-

ses, the objective function of multilevel thresholding can be written as, 

F1
(
thld1,thld2,……………,thld1,

)
= ET0 + ET1 + .....+ ETn = (14)  

where, 

ET0 = −
∑thld1 − 1

i=0

xi

ω0
ln
(

xi

ω0

)

, ω0 =
∑thld1 − 1

i=0
xi  

ET1 = −
∑thld2 − 1

i=th1

xi

ω1
ln
(

xi

ω1

)

, ω1 =
∑thld2 − 1

i=th1

xi  

ETn = −
∑P− 1

i=thldn

xi

ωn
ln
(

xi

ωn

)

, ωn =
∑P− 1

i=thldn

xi 

ET0, ET1,…. ETn are the entropies, ω0, ω1, …….. ωn represents the class 
probabilities of the segmented classes CL0, CL1, …. CLnrespectively. 

4.3. Image quality measurement 

Multilevel image threshold segmentation performance can be 
measured in several ways. This study uses peak signals to noise ratio 

Table 7 
Algorithms with maximum mean fitness in different levels of benchmark images.  

Image Level Algorithm 

a 3 mWOAPR, WOAmM, m-SDWOA, SMA 
4 mWOAPR 
5 mWOAPR 
6 mWOAPR 

b 3 mWOAPR, AWOA, WOAmM, m-SDWOA, SMA 
4 mWOAPR, SMA 
5 mWOAPR 
6 mWOAPR 

c 3 mWOAPR, m-SDWOA, SMA 
4 mWOAPR 
5 mWOAPR, WOAmM 
6 mWOAPR 

d 3 mWOAPR, MPBOA 
4 mWOAPR 
5 mWOAPR 
6 mWOAPR 

e 3 mWOAPR, WOA, AWOA, WOAmM, m-SDWOA, SMA 
4 mWOAPR 
5 mWOAPR, m-SDWOA 
6 mWOAPR 

f 3 mWOAPR, WOA, AWOA, WOAmM, m-SDWOA, SMA 
4 mWOAPR 
5 mWOAPR 
6 mWOAPR  

Fig. 3. Segmented images of image airport using Kapur’s entropy at level 4.  
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Fig. 4. Segmented images of image cameraman using Kapur’s entropy at level 5.  

Fig. 5. COVID-19 X-ray images used for segmentation.  
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(PSNR) and structural similarity index measure (SSIM) to measure 
performance. 

4.3.1. Peak signals to noise ratio (PSNR) 
Degree of segmented image quality measured in decibels (DB) by 

PSNR. Mathematically, it can be written as, 

PSNR= 10 log 10

(
2552

MSE

)

(15)  

where MSE represents the mean square error. MSE is evaluated as fol-
lows, 

MSE =
i

MN
∑M

i=1

∑N

j=1
[I(i, j) − I

′

(i, j)]2 (16) 

In Eqn. (16), the variables M and N are the sizes of the images. I and I′

represents the original and segmented image individually. 

4.3.2. Structural similarity index measure (SSIM) 
SSIM is used to gauge the picture’s structural uprightness, and it is 

another metric used for assessing performance. Expecting that I is the 

unsegmented picture and I′ is the segmented picture, the primary 
similitude between them can be determined as follows 

SSIM =
(2μIμI , + c1)

(
2σI,I , + c2

)

(μ2
I + μ2

I′ + C1)(σ2
I + σ2

I′ + C2)
(17) 

In Eqn. (17), μI, μI, are the average greyscale of images I and I′ . The 
variance of images I and I′ is represented by σ2

I and σ2
I′ respectively. σI,I, is 

the covariance of the images I and I′ , constants c1 and c2 are used for 
maintaining the stability of the system. 

5. Experimental results and analysis 

The suggested method’s performance is validated in this section by 
segmenting two sets of images using Kapur’s entropy-based multilevel 
thresholding approach. The benchmark images are given in Fig. 2 
together with their associated histogram. The COVID-19 X-ray images 
from the Kaggle data collection are the second. The evaluated outcomes 
are compared to the original metaheuristic algorithms and modified 
algorithms. The WOA is one of the basic metaheuristics used for com-
parison. The other fundamental algorithms are those that have lately 

Table 8 
Comparison of results using image C1.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR C1 3 97 170 256 18.2830 1.4424e-14 14.9556 0.4004 18.2830 
WOA 97 170 256 18.2830 3.6678e-05 14.9556 0.4004 18.2830 
ACWOA 97 170 256 18.2824 6.4541e-04 14.9556 0.4004 18.2830 
AWOA 97 170 256 18.2830 3.6678e-05 14.9556 0.4004 18.2830 
HIWOA 97 170 256 18.2827 4.7091e-04 14.9556 0.3707 18.2830 
ESSAWOA 95 171 253 18.2252 0.0825 14.0285 0.4039 18.2815 
WOAmM 97 170 256 18.2830 3.6678e-05 14.9556 0.4004 18.2830 
m-SDWOA 97 170 256 18.2829 8.1730e-05 14.9556 0.4004 18.2830 
MPBOA 97 170 252 18.2821 0.0007 14.9556 0.4004 18.2830 
HBO 98 181 253 18.0402 0.1601 14.5199 0.3978 18.2656 
HGS 97 170 256 18.2827 0.0004 14.9556 0.4004 18.2830 
SMA 97 170 256 18.2830 0.0000 14.9556 0.4004 18.2830 
mWOAPR C1 4 70 125 182 256 22.8257 0.0029 17.7907 0.5080 22.8263 
WOA 70 125 182 256 22.8252 2.5645e-04 17.7907 0.5080 22.8263 
ACWOA 70 125 182 254 22.8132 0.0111 17.7907 0.5080 22.8263 
AWOA 70 125 182 256 22.8247 0.0040 17.7907 0.5080 22.8263 
HIWOA 70 125 182 256 22.8128 0.0131 17.7907 0.5080 22.8263 
ESSAWOA 70 128 182 255 22.7271 0.0891 17.8071 0.5081 22.8213 
WOAmM 70 125 182 256 22.8238 0.0055 17.7907 0.5080 22.8263 
m-SDWOA 70 125 182 256 22.8254 0.0030 17.7907 0.5080 22.8263 
MPBOA 70 126 182 254 22.8212 0.0072 17.7929 0.5082 22.8262 
HBO 56 112 181 249 22.4824 0.2043 17.8247 0.5339 22.7380 
HGS 70 125 182 256 22.8181 0.0081 17.7907 0.5080 22.8263 
SMA 70 125 182 256 22.8236 0.0060 17.7907 0.5080 22.8263 
mWOAPR C1 5 65 115 165 215 256 27.1895 0.0018 18.7213 0.5189 27.1904 
WOA 65 115 165 215 256 27.1891 0.0023 18.7213 0.5189 27.1904 
ACWOA 64 114 163 215 256 27.1549 0.0355 18.7616 0.5236 27.1895 
AWOA 65 115 165 215 256 27.1881 0.0042 18.7213 0.5189 27.1904 
HIWOA 63 114 165 215 253 27.1413 0.0598 18.7858 0.5147 27.1892 
ESSAWOA 62 118 169 214 256 26.8709 0.2209 18.7067 0.5185 27.1621 
WOAmM 65 115 165 215 256 27.1892 0.0015 18.7213 0.5189 27.1904 
m-SDWOA 65 115 165 215 256 27.1889 0.0026 18.7213 0.5189 27.1904 
MPBOA 64 114 164 215 252 27.1507 0.0325 18.7634 0.5224 27.1904 
HBO 74 125 170 210 245 26.4360 0.3223 18.2756 0.4932 26.9687 
HGS 65 115 165 215 256 27.1667 0.0204 18.7213 0.5189 27.1904 
SMA 65 115 165 215 256 27.1893 0.0017 18.7213 0.5189 27.1904 
mWOAPR C1 6 54 94 133 174 215 256 31.2096 0.0039 20.4227 0.5700 31.2123 
WOA 54 94 133 174 215 256 31.2074 0.0051 20.4227 0.5700 31.2123 
ACWOA 54 96 138 178 215 253 31.1378 0.0905 20.3763 0.5682 31.2055 
AWOA 54 93 133 173 215 253 31.2051 0.0058 20.4495 0.5705 31.2119 
HIWOA 52 95 135 175 215 256 31.0939 0.0800 20.5033 0.5783 31.2035 
ESSAWOA 54 88 131 175 214 253 30.5006 0.4470 20.4034 0.5699 31.1726 
WOAmM 54 94 133 174 215 256 31.2086 0.0045 20.4227 0.5700 31.2123 
m-SDWOA 54 94 133 174 215 256 31.2075 0.0055 20.4227 0.5700 31.2123 
MPBOA 53 93 134 177 215 256 31.1589 0.0516 20.4145 0.5722 31.2076 
HBO 60 95 126 159 202 253 30.0098 0.5681 20.3634 0.5712 30.9151 
HGS 53 93 132 172 215 256 31.1118 0.1015 20.4911 0.5752 31.2105 
SMA 54 94 133 174 215 255 31.1909 0.0674 20.4227 0.5700 31.2123  
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been published, including heap-based optimizer (HBO) [46], hunger 
games search (HGS) [47], and slime mould algorithm (SMA) [48]. 
Modified variants used for the comparison are A-C parametric whale 
optimization algorithm (ACWOA) [49], adaptive whale optimization 
algorithm (AWOA) [50], hybrid improved whale optimization algo-
rithm (HIWOA) [51], enhanced Whale optimization algorithm inte-
grated with salp swarm algorithm (ESSAWOA) [52], Whale 
optimization algorithm with modified mutualism (WOAmM) [33], 
Modified whale optimization algorithm hybridized with DE and SOS 
(m-SDWOA) [53], and Butterfly optimization algorithm modified with 
mutualism and parasitism (MPBOA) [54]. The advantages and disad-
vantages of the algorithms employed for comparison are given in sub-
section 5.1. Among these methods, HBO, HGS, and SMA are the very 
recently published algorithms. ACWOA, AWOA, HIWOA, ESSAWOA, 
WOAmM, and m-SDWOA are the recently published WOA variants. 
WOA is the component algorithm of mWOAPR. All the algorithms 
mentioned proved their ability to solve numerous optimization issues. 
MPBOA is a recently published method that has solved the image seg-
mentation problem with greater efficacy. The parameters of all the al-
gorithms used for assessment are set as suggested in the respective study. 
The termination condition for all algorithms is 5000 function 

evaluations. A fixed population of size 50 is used during evaluation. The 
mean, standard deviation, and best values for each image are calculated 
from 30 independent runs at various threshold levels, given the best 
values of image quality measuring matrices, such as PSNR and SSIM. All 
the experiments have been executed on MATLAB R2015a on a Windows 
2010 PC with an Intel Core i3 processor and 8 GB RAM. 

5.1. Advantage and disadvantages of the compared algorithms 

Every technique has some advantages and disadvantages, and thus 
the algorithms considered in this study for comparison have certain 
advantages and disadvantages. In this subsection, we mention the ad-
vantages and disadvantages of the employed methods. 

WOA can be implemented quickly and require only a few parameters to 
fine-tune. But the algorithm has a slow convergence rate and is easily stuck 
into local solutions [55]. In HBO, high exploration ability while early it-
erations, the emergence of exploitation ability, and balance between the 
global and local search are implemented [46]. Still, the algorithm stuck into 
local solutions [56]. The algorithm HGS was proposed with a simple 
structure, executed with a unique stability feature [47]. HGS employs 
several parameters. In runtime, HGS may take a longer time to search the 

Table 9 
Comparison of results using image C2.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR C2 3 90 145 256 17.2245 4.0978e-05 16.6228 0.6226 17.2245 
WOA 90 145 256 17.2245 4.1866e-05 16.6228 0.6226 17.2245 
ACWOA 90 145 256 17.2235 0.0017 16.6228 0.6226 17.2245 
AWOA 90 145 256 17.2242 7.5523e-04 16.6228 0.6213 17.2245 
HIWOA 90 145 256 17.2233 0.0018 16.6228 0.6195 17.2245 
ESSAWOA 91 146 249 17.2143 0.0156 16.6205 0.6201 17.2240 
WOAmM 90 145 256 17.2245 1.1765e-14 16.6228 0.6226 17.2245 
m-SDWOA 90 145 256 17.2245 1.7768e-05 16.6228 0.6226 17.2245 
MPBOA 90 145 254 17.2239 0.0009 16.6228 0.6226 17.2245 
HBO 90 146 250 17.1351 0.0818 16.6554 0.6206 17.2236 
HGS 90 145 256 17.2244 0.0004 16.6228 0.6226 17.2245 
SMA 90 145 256 17.2245 0.0000 16.6228 0.6226 17.2245 
mWOAPR C2 4 74 117 160 256 21.4175 0.0018 19.4197 0.6671 21.4182 
WOA 74 117 160 256 21.4161 6.3623e-05 19.4197 0.6671 21.4182 
ACWOA 74 117 160 256 21.4116 0.0124 19.4197 0.6671 21.4182 
AWOA 74 117 160 256 21.4146 0.0068 19.4197 0.6587 21.4182 
HIWOA 74 117 160 256 21.4108 0.0168 19.4197 0.6627 21.4182 
ESSAWOA 72 115 160 219 21.2785 0.1491 19.4845 0.6685 21.4074 
WOAmM 74 117 160 256 21.4175 0.0035 19.4197 0.6671 21.4182 
m-SDWOA 74 117 160 256 21.4172 4.7195e-05 19.4197 0.6671 21.4182 
MPBOA 73 117 160 256 21.4132 0.0032 19.4717 0.6679 21.4180 
HBO 69 117, 164 240 21.1007 0.1652 19.6535 0.6600 21.3782 
HGS 74 117 160 256 21.4098 0.0117 19.4197 0.6671 21.4182 
SMA 74 117 160 256 21.4171 0.0002 19.4197 0.6671 21.4182 
mWOAPR C2 5 74 117 160 211 256 25.5571 0.0557 19.4291 0.6672 25.5731 
WOA 74 117 160 211 256 25.5567 0.0218 19.4291 0.6672 25.5731 
ACWOA 74 118 160 211 256 25.4913 0.0814 19.4465 0.6673 25.5719 
AWOA 74 117 160 211 256 25.5352 0.0839 19.4291 0.6598 25.5731 
HIWOA 74 117 160 211 256 25.4748 0.0773 19.4291 0.6617 25.5731 
ESSAWOA 65 113 156 211 252 25.1423 0.2800 19.5578 0.6828 25.5338 
WOAmM 74 117 160 211 256 25.5557 0.0068 19.4291 0.6672 25.5731 
m-SDWOA 74 117 159 211 256 25.5365 0.0405 19.4038 0.6696 25.5728 
MPBOA 54 92 129 164 256 25.2533 0.0055 21.6189 0.7184 25.2628 
HBO 55 87 136 169 247 24.7263 0.2588 21.3398 0.6929 25.1413 
HGS 72 117 160 211 256 25.4029 0.1459 19.5372 0.6689 25.5705 
SMA 74 117 160 211 256 25.5361 0.1047 19.4291 0.6672 25.5731 
mWOAPR C2 6 6 60 99 149 242 256 29.3914 0.0738 19.0259 0.7189 29.5190 
WOA 55 93 129 165 211 256 29.3677 0.0572 21.6542 0.7157 29.4173 
ACWOA 5 55 102 156 209 256 29.3676 0.0926 19.3451 0.7067 29.5184 
AWOA 5 57 102 160 256 256 29.3373 0.1309 19.2933 0.7021 29.5184 
HIWOA 7 44 85 148 243 256 29.1854 0.2041 18.2031 0.7011 29.3950 
ESSAWOA 6 64 110 149 256 256 28.8745 0.4247 19.2485 0.7231 29.5088 
WOAmM 5 57 112 158 244 256 29.3763 0.0954 19.7313 0.7054 29.5789 
m-SDWOA 7 58 108 145 226 256 29.3561 0.0703 18.8495 0.7308 29.4787 
MPBOA 49 82 113 155 211 250 28.9858 0.1205 20.5749 0.7301 29.2399 
HBO 34 69 98 156 212 255 28.3496 0.3083 19.5088 0.7163 29.0105 
HGS 9 50 104 160 256 256 29.1273 0.2325 19.3374 0.7016 29.4210 
SMA 5 56 100 151 249 256 29.4776 0.1141 19.1503 0.7156 29.5754  
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region effectively. SMA guarantees the act of explorations while accom-
plishing exploitations; this balances the algorithm’s global and local search 
[48]. But the algorithm is often trapped in local solutions while solving 
continuous global optimization issues [57]. In ACWOA and AWOA of pa-
rameters, exploration and exploitation ability of the algorithms increased 
modifying parameters of WOA. Despite modifications performance of the 
algorithms while solving high dimensional problems is not satisfactory. 
HIWOA has a higher exploration ability than WOA; it diminishes the 
chance of the algorithm being trapped into the local solution [51]. How-
ever, the introduction of a feedback mechanism in HIWOA increases the 
complexity of the algorithm. ESSAWOA has increased exploration and 
exploitation ability than WOA by introducing the strategies like SSA and 
LOBL, which enlarged the computational cost of the algorithm. In 
WOAmM, m-SDWOA, and MPBOA, the exploration and exploitation ability 
of the algorithms were balanced by amplifying the diversity of the algo-
rithms. However, the computational complexity of these algorithms was 
increased with the modification. 

Table 10 
Comparison of results using image C3.  

Algorithm Image Level Intensity Mean Std PSNR SSIM Best 

mWOAPR C3 3 88 157 256 18.2020 7.2416e-14 15.0644 0.5109 18.2020 
WOA 88 157 256 18.2020 3.6134e-13 15.0644 0.5109 18.2020 
ACWOA 88 157 256 18.2019 6.3185e-04 15.0644 0.5109 18.2020 
AWOA 88 157 256 18.2020 7.8476e-14 15.0644 0.5103 18.2020 
HIWOA 88 157 256 18.2019 8.9770e-04 15.0644 0.5049 18.2020 
ESSAWOA 88 157 252 18.1918 0.0277 15.0644 0.5109 18.2020 
WOAmM 88 157 256 18.2020 3.6134e-13 15.0644 0.5109 18.2020 
m-SDWOA 88 157 256 18.2020 3.6134e-13 15.0644 0.5109 18.2020 
MPBOA 88 157 254 18.2018 0.0004 15.0644 0.5109 18.2020 
HBO 93 159 255 18.0726 0.1048 14.7865 0.4993 18.1970 
HGS 88 157 256 18.2020 0.0001 15.0644 0.5109 18.2020 
SMA 88 157 256 18.2020 0.0000 15.0644 0.5109 18.2020 
mWOAPR C3 4 72 123 174 256 22.6489 9.3530e-05 18.4500 0.6078 22.6489 
WOA 72 123 174 256 22.6489 1.2746e-04 18.4500 0.6078 22.6489 
ACWOA 72 123 174 256 22.6473 0.0036 18.4500 0.6078 22.6489 
AWOA 72 123 174 256 22.6488 1.3974e-04 18.4500 0.6026 22.6489 
HIWOA 72 123 174 256 22.6486 5.8876e-04 18.4500 0.6022 22.6489 
ESSAWOA 70 122 173 243 22.5534 0.0985 18.5492 0.6144 22.6461 
WOAmM 72 123 174 256 22.6488 1.6908e-04 18.4500 0.6078 22.6489 
m-SDWOA 72 123 174 256 22.6489 1.1249e-04 18.4500 0.6078 22.6489 
MPBOA 72 123 174 254 22.6470 0.0012 18.4500 0.6078 22.6489 
HBO 75 136 175 250 22.2993 0.2131 17.7758 0.5784 22.5725 
HGS 72 123 174 256 22.6440 0.0110 18.4500 0.6078 22.6489 
SMA 72 123 174 256 22.6488 0.0002 18.4500 0.6078 22.6489 
mWOAPR C3 5 66 107 147 186 256 26.6937 2.6062e-04 20.3347 0.6597 26.6939 
WOA 66 107 147 186 256 26.6937 2.6807e-04 20.3347 0.6597 26.6939 
ACWOA 66 107 147 186 253 26.6871 0.0122 20.3347 0.6597 26.6939 
AWOA 66 107 147 186 256 26.6934 7.2364e-04 20.3347 0.6573 26.6939 
HIWOA 66 107 147 186 251 26.6821 0.0458 20.3347 0.6520 26.6939 
ESSAWOA 71 111 147 188 256 26.3930 0.1612 20.0415 0.6456 26.6705 
WOAmM 66 107 147 186 256 26.6936 4.2296e-04 20.3347 0.6597 26.6939 
m-SDWOA 66 107 147 186 256 26.6935 6.3076e-04 20.3347 0.6597 26.6939 
MPBOA 66 107 147 186 247 26.6886 0.0038 20.3347 0.6597 26.6939 
HBO 57 103 148 188 238 26.2281 0.2509 20.2647 0.6630 26.6309 
HGS 67 108 147 186 256 26.6535 0.0627 20.3148 0.6579 26.6932 
SMA 66 107 147 186 256 26.6930 0.0012 20.3347 0.6597 26.6939 
mWOAPR C3 6 64 104 143 182 221 256 30.4888 0.0031 20.5418 0.6639 30.4935 
WOA 67 108 147 186 242 256 30.4879 0.0051 20.3148 0.6579 30.5006 
ACWOA 68 107 149 189 242 256 30.4701 0.0395 20.1720 0.6505 30.4930 
AWOA 66 106 147 186 242 256 30.4784 0.0442 20.3105 0.6621 30.5000 
HIWOA 34 69 109 149 187 252 30.4106 0.0965 20.4647 0.6592 30.4868 
ESSAWOA 63 99 143 183 222 250 30.0777 0.3081 20.4117 0.6624 30.4686 
WOAmM 64 104 143 181 221 256 30.4879 0.0038 20.5315 0.6643 30.4932 
m-SDWOA 66 107 149 188 242 256 30.4881 0.0042 20.2753 0.6546 30.4930 
MPBOA 63 105 141 178 217 255 30.4701 0.0157 20.6468 0.6642 30.4853 
HBO 40 82 119 153 194 248 29.8208 0.2780 21.5414 0.6965 30.3395 
HGS 63 107 144 181 217 256 30.4259 0.0542 20.6511 0.6611 30.4815 
SMA 64 104 143 181 221 252 30.4575 0.0560 20.5315 0.6643 30.4936  

Table 11 
Algorithms with maximum mean fitness in different levels of COVID-19 X-ray 
images.  

Image Level Algorithm 

C1 3 mWOAPR, WOA, AWOA, WOAmM, SMA 
4 mWOAPR 
5 mWOAPR 
6 mWOAPR 

C2 3 mWOAPR, WOA, WOAmM, m-SDWOA, SMA 
4 mWOAPR, WOAmM 
5 mWOAPR 
6 mWOAPR 

C3 3 mWOAPR, WOA, AWOA, WOAmM, m-SDWOA, HGS, SMA 
4 mWOAPR, WOA, m-SDWOA 
5 mWOAPR, WOA 
6 mWOAPR  
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5.2. Analysis of experimental results on benchmark images 

The threshold levels 3, 4, 5, and 6 are used to evaluate the test images in 
Fig. 2. Tables 1–6 provide the mean, standard deviation (std), and the 
optimum value of image quality matrices. Columns 5, 6, and 9 represent 
the mean, standard deviation, and best fitness value, respectively. Columns 
7 and 8 of the tables contain the optimum PSNR and SSIM values. Table 1 
depicts that the algorithms mWOAPR, WOAmM, m-SDWOA, and SMA 
evaluate similar fitness at threshold level 3. SMA has the smallest standard 
deviation of all the models. The fitness values achieved by mWOAPR at 
threshold levels 4, 5, and 6 are superior to those obtained by the other 
algorithms. In Table 2, at threshold level 3, mWOAPR, AWOA, WOAmM, 
m-SDWOA, and SMA acquire similar optimal results. However, the stan-
dard deviation value obtained by mWOAPR, m-SDWOA, and SMA is equal. 
At threshold level 4, mWOAPR and SMA achieve the same optimal value, 
and mWOAPR’s standard deviation is the lowest of all. The assessed 
optimal values of mWOAPR are maximum than the comparable algorithms 
for threshold levels 5 and 6. Table 3 shows that at threshold level 3, 
mWOAPR, m-SDWOA, and SMA all achieve the same optimal value, with 
SMA’s standard deviation being the lowest of all. mWOAPR can locate the 
highest optimal outcome at threshold levels 4, 5, and 6. Table 4 shows the 
maximum and equal optimal values calculated by mWOAPR and MPBOA 
at level 3; the standard deviation value calculated by MPBOA is the 
smallest. Compared to the employed algorithms, the fitness outcomes of 
mWOAPR are best at threshold levels 4, 5, and 6. Table 5 shows that WOA, 
AWOA, WOAmM, m-SDWOA, SMA, and mWOAPR calculate the same 

optimal fitness at threshold level 3. At this threshold level, the estimated 
standard deviation value of SMA is the lowest of all the algorithms. 
mWOAPR analyses maximal optimal fitness at threshold levels 4 and 6. The 
evaluated optimal fitness of mWOAPR and m-SDWOA are similar at 
threshold level 5 and the maximum. Among all the algorithms used in this 
experiment, the proposed technique had the lowest standard deviation. 
Table 6 shows that WOA, AWOA, WOAmM, m-SDWOA, SMA, and 
mWOAPR all have the same optimal fitness at threshold level 3. At this 
threshold level, SMA has the lowest estimated standard deviation value 
among the algorithms. mWOAPR determines the greatest optimal fitness 
among the compared algorithms at threshold levels 4, 5, and 6. Table 7 
shows the algorithms achieved the highest mean fitness in the benchmark 
images used in the study with various threshold settings. Fig. 3 and Fig. 4 
show segmented images from several algorithms using images of an airport 
and a cameraman at threshold levels 4 and 5. After comparing the findings 
of all of the tables, it can be determined that at threshold level 3, the ma-
jority of the algorithms evaluate optimal fitness in the same way. At 
threshold level 3, SMA emerges as the algorithm with the lowest standard 
deviation. At image airport threshold levels 3 and 4, MPBOA, HBO, HGS, 
and SMA have higher PSNR values than mWOAPR. The efficacy of 
mWOAPR improves as the threshold level is raised. mWOAPR maintains 
the leading place in most threshold levels throughout all test images 
evaluating estimated maximum optimal fitness. 

Fig. 6. Segmented images of COVID-19 X-ray image1 (C1) using Kapur’s entropy at level 4.  
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5.3. Analysis of experimental results on COVID-19 chest X-ray images 

The threshold levels 3, 4, 5, and 6 are used to evaluate the test images 
in Fig. 5. Tables 8–10 provide the mean, standard deviation (std), and 
outcomes of image quality matrices. Columns 5, 6, and 9 represent the 
mean, standard deviation, and best fitness values, respectively. Columns 
7 and 8 of the tables show the best PSNR and SSIM values. In Table 8, at 
threshold level 3, the algorithms mWOAPR, WOA, AWOA, WOAmM, 
and SMA evaluate equal fitness; the standard deviation value of SMA is 
minimum than the others. The proposed mWOAPR estimates the second 
lowest standard deviation value after SMA. The fitness values obtained 
by mWOAPR are the highest of the other algorithms for threshold levels 
4, 5, and 6. In Table 9, the optimum values for mWOAPR, WOA, 
WOAmM, m-SDWOA, and SMA are identical at threshold level 3. Among 
the comparison algorithms, SMA obtains the lowest standard value. At 
threshold level 4, mWOAPR and WOAmM have the same optimal value, 
although mWOAPR has a lower standard deviation than WOAmM. The 
assessed optimal values of mWOAPR are the highest of all the compar-
ison algorithms for threshold levels 5 and 6. Table 10 shows that at 
threshold level 3, mWOAPR, WOA, AWOA, WOAmM, m-SDWOA, HGS, 
and SMA all achieve the same optimal value, with SMA’s standard de-
viation being the lowest. WOA and m-SDWOA provide comparable re-
sults as mWOAPR at threshold level 4. When compared to WOA, the 
evaluated standard value for mWOAPR is the smallest. WOA and 

mWOAPR are able to discover the maximum optimal outcome at 
threshold levels 5 and 6. The standard value determined by mWOAPR, 
on the other hand, is the bare minimum. mWOAPR’s optimal fitness, as 
measured by threshold level 6, is the best of all the compared algo-
rithms. The algorithms that achieved the highest mean fitness in 
different threshold levels of the COVID-19 X-ray images examined in this 
work are shown in Table 11. Segmented images of all the algorithms for 
image C1 at threshold level 4, C2 at threshold level 5, and C3 at 
threshold level 6 are given in Fig. 6, Fig. 7, and Fig. 8, respectively. 

Based on the preceding explanation, mWOAPR is the best method for 
segmenting COVID-19 chest X-ray pictures among the compared algo-
rithms. With increasing threshold levels, mWOAPR’s segmentation 
performance improves. 

5.4. Description of the lesion parts in COVID-19 X-ray images and 
comparison with normal chest X-ray image 

Images (a), (b), and (c) in Fig. 9 exhibit COVID-19 X-ray images (C1, 
C2, C3) segmented by mWOAPR using thresholds 4, 5, and 6. The 
damaged area in each picture is the grey-colored portion indicated by a 
red arrow. The black area, indicated by the green arrow, is the unaf-
fected segment. The COVID-19 X-ray images are divided, making it 
simple to identify the infected area and severity. It is clear from images 
(a), (b), and (c) in the given figure that image (c) has the highest 

Fig. 7. Segmented images COVID-19 X-ray image 2 (C2) using Kapur’s entropy at level 5.  
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infection. Even though the original X-ray images C2 and C3 are nearly 
identical, the segmented image reveals a greater disease effect in image 
C3. 

The segmented image of a normal chest scan is shown in the image 
(d) in the figure. The vital organs, namely the lung and heart, are located 
in the upper abdomen areas colored green in the image (d). The black 
region confirms the patient’s normalcy within the designated portion of 
the image. It is clear from the segmented images that image (d) has more 
active parts than other images in the figure. 

6. Computational complexity analysis and statistical analysis 

Here, the first subsection represents the worst-case runtime required 
for the algorithm to run. Here the computational complexity of 
mWOAPR is compared with WOA. In the second subsection, statistical 
analysis of the evaluated results is performed to check the proposed 
algorithm’s performance statistically. 

6.1. Analysis of computational complexity 

The run time of an algorithm is directly related to the computational 
complexity of the algorithm. Here, in this section, the computational 
complexity of the algorithms WOA is evaluated to compare it with 
mWOAPR. Let maxiter is the maximum number of iterations used as 
termination criteria for both the algorithms. 

6.1.1. Comparison of computational complexity with WOA 
The primary strategies related to the computational complexity in 

WOA are:  

(i) Initializing the whale population is O( N ), where N is the size of 
the population.  

(ii) Fitness evaluation of initial population is O( N ).  
(iii) Sorting the population and determining the best solution is 

O(N2).  
(iv) While iteration, updating whale population, and evaluating 

fitness O( 2N ). 

Fig. 8. Segmented images COVID-19 X-ray image 3 (C3) using Kapur’s entropy at level 6.  
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(v) While iteration, sorting the population and determining the best 
solution O(N2). 

Therefore, the total time complexity of WOA is:   
Though WOA and mWOAPR start with population N in mWOAPR, 

with increasing iteration, the population decreases gradually, and lastly, 

the value of population becomes 15 instead of N. Therefore, it is evident 
from the discussion that the complexity of mWOAPR is much lesser than 
that of WOA. 

6.2. Statistical analysis 

Friedman test is employed for statistical comparison. Friedman’s test 
is a nonparametric test used to find differences in treatments (methods) 
across multiple attempts (functions). It is used in place of the ANOVA 
test when the fundamental assumption of ANOVA is violated, i.e., data 
does not come from a normal population. This test extends the ‘Paired 
samples Wilcoxon signed-rank test when there are more than three 
treatments (strategies). In the case of two treatments (strategies), both 
the tests are identical. 

Table 12 depicts the result of Friedman’s rank test. Column 2 of the 
table shows the mean rank of the algorithms used for comparison. In 

Fig. 9. Illustration of the lesion part and unaffected part in COVID-19 and normal X-ray image.  

O (2 N) + O
(

N2 ) + maxiter
(
O (2 N) + O

(
N2 )) == ( max iter + 1)

(
O
(

N2 + 2 N
))

Table 12 
Statistical comparison outcomes of the employed algorithms.  

Algorithm Mean 
rank 

Final 
Rank 

P-value 

mWOAPR 11.18 1 P-value 4.28E-65 < 0.01 indicates that the 
hypothesis is rejected at 1% significance level. 
It implies that there is a significant difference 
in the performance of different algorithms. 

WOA 9 5 
ACWOA 4.99 8 
AWOA 8.07 6 
HIWOA 3.89 10 
ESSAWOA 2 11 
WOAmM 9.39 2 
m- 

SDWOA 
9.21 4 

MPBOA 4.94 9 
HBO 1 12 
HGS 5.04 7 
SMA 9.29 3  
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column 3, the final position is calculated from the evaluated mean rank. 
The evaluated fitness values in threshold levels 3, 4, 5, and 6 of every 
algorithm’s images are utilized to calculate the mean rank. Image seg-
mentation is a maximization problem; hence, the algorithm with the 
highest mean rank is considered the best algorithm. The final rank of the 
other compared algorithms is determined using a similar process. Fig. 10 
shows the graphical representation of the mean rank evaluated by 
Friedman’s test. 

6.3. Convergence analysis 

Convergence graphs are mainly drawn to verify the solution gener-
ating speed of the algorithms. Figs. 11 and 12 show the convergence 
graphs drawn using the benchmark images and COVID-19 X-ray images. 
A population size of 50 and 5000 function evaluations is used as the end 
criteria to draw the graphs. In both, the figure graphs drawn in threshold 
levels 4, 5, and 6 are shown in row1, row2, and row 3, respectively. In 
every diagram, the function evaluation numbers are shown on the X- 
axis. The Y-axis represents the fitness values evaluated by the algorithms 

Fig. 11. Convergence curves of WOA and mWOAPR on benchmark images.  

Fig. 10. Graphical representation of the evaluated mean rank.  

S. Chakraborty et al.                                                                                                                                                                                                                           



Computers in Biology and Medicine 139 (2021) 104984

20

according to the function evaluation. The best value generated by an 
algorithm after every iteration is plotted until the termination criterion 
is satisfied. Among all the lines generated by the algorithms used for 
comparison, the line that touches the horizontal boundary first and its 
corresponding algorithm is considered faster convergence than the 
others. Similarly, the curve w.r.t. to the Y-axis shows the highest eval-
uated optimal value during convergence. The algorithm for which a 
curve touches the horizontal boundary faster and attains the highest 
optimal value on Y-axis is considered more efficient. Convergence 
curves of images including all the algorithms employed in the study 
using threshold 4, 5, and 6 are given in Fig. 1, Fig. 2 and Fig. 3 of Ap-
pendix-I. 

7. Conclusion 

This research introduces a new WOA version that improves the balance 
of the search processes. Basic, the search prey phase in basic WOA is 
eliminated by randomly initializing the solution during the exploration 
phase. The coefficient vector A and constant b parameter values are 
changed to aid exploration and exploitation processes. To increase 
convergence speed and exploitation, the population reduction method is 
used. During execution, a traversal parameter is introduced to pick the 

exploration or exploitation phase. The overall setup considerably improves 
the basic WOA’s performance. The proposed method is used to separate 
benchmark images and COVID-19 X-ray images into two pieces, which may 
aid clinicians in identifying and planning treatment. The advantage of the 
projected mWOAPR algorithm over the comparative methods is confirmed 
by comparing the evaluated outcomes with several metaheuristic 
algorithms. 
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Fig. 12. Convergence curves of WOA and mWOAPR on COVID-19 X-ray images.  
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Appendix-I

Fig. 1. Convergence curves of benchmark images a-f and Covid-19 X-Ray images using threshold-4.   

S. Chakraborty et al.                                                                                                                                                                                                                           



Computers in Biology and Medicine 139 (2021) 104984

22

Fig. 2. Convergence curves of benchmark images a-f and Covid-19 X-Ray images using threshold-5.   
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Fig. 3. Convergence curves of benchmark images a-f and Covid-19 X-Ray images using threshold-6.  
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