
1 

 

 1 

SAFNet: a deep spatial attention network with classifier fusion for breast 2 

cancer detection 3 

 4 

Si-Yuan Lu1, Shui-Hua Wang1,*, Yu-Dong Zhang1,*, 5 

 6 

1 School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK 7 

 8 

* Correspondence should be addressed to Shui-Hua Wang & Yu-Dong Zhang 9 

Email: Si-Yuan Lu (sl672@le.ac.uk), Shui-Hua Wang (shuihuawang@ieee.org), Yu-Dong Zhang (yudongzhang@ieee.org) 10 

 11 

Abstract: Breast cancer is a top dangerous killer for women. An accurate early diagnosis of breast cancer is the 12 

primary step for treatment. A novel breast cancer detection model called SAFNet is proposed based on ultrasound 13 

images and deep learning. We employ a pre-trained ResNet-18 embedded with the spatial attention mechanism as the 14 

backbone model. Three randomized network models are trained for prediction in the SAFNet, which are fused by 15 

majority voting to produce more accurate results. A public ultrasound image dataset is utilized to evaluate the 16 

generalization ability of our SAFNet using 5-fold cross-validation. The simulation experiments reveal that the SAFNet 17 

can produce higher classification results compared with four existing breast cancer classification methods. Therefore, 18 

our SAFNet is an accurate tool to detect breast cancer that can be applied in clinical diagnosis. 19 

 20 
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 23 

1. Introduction 24 

 25 

Various factors can cause breast cancer, including radiation, family history, etc. There are millions of women 26 

diagnosed with breast cancer annually, and approximately fifty percent of them would eventually lose their lives 27 

because of late diagnosis [1]. Therefore, accurate detection of breast cancer at its initial stage plays a crucial part in 28 

treating this deadly disease. Ultrasound imaging is one of the most prevailing imaging modalities in clinical diagnosis 29 

that can generate clear images of the organs inside bodies [2]. Hence, ultrasound images (USIs) can be used for breast 30 

cancer diagnosis.  31 

Nevertheless, manual interpretation of the rich information in USIs suffers from low reproducibility and low 32 

efficiency, so developing automatic USI analysis systems is necessary, which can make accurate predictions based on 33 

the USIs. Due to the unprecedented development of deep learning and computer vision, computer-aided diagnosis 34 

(CAD) has gained significant improvements, such as classification and segmentation [3-6]. Researchers and 35 

practitioners have proposed a bunch of breast cancer detection models in the past decade. 36 
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Rouhi, Jafari, Kasaei and Keshavarzian (2015) [7] proposed a segmentation and recognition system for breast 37 

cancer detection based on mammograms. A cellular neural network was trained to segment the mammograms. Then, 38 

they extracted a group of handcrafted image features and trained several classical artificial neural networks for 39 

classification. Amrane, Oukid, Gagaoua and Ensari (2018) [1] used the k-nearest neighbors (k-NN) algorithm and 40 

naïve Bayesian classifier (NBC) to classify breast cancer from healthy samples using clinical data. They discovered 41 

that the k-NN performed better than the NBC. Gao, Wu, Li, Zheng, Ruan, Shang and Patel (2018) [8] presented a 42 

CNN-based model for breast cancer classification. They designed a shallow CNN model to learn latent representations 43 

from the medical images. Aslan, Celik, Sabanci and Durdu (2018) [9] employed four different classification models 44 

to diagnose breast cancer with blood statistics, including k-NN, extreme learning machine (ELM), artificial neural 45 

network (ANN), and support vector machine (SVM). They also utilized an optimization method to find the optimal 46 

hyper-parameters in the four classification models. Dai, Chen, Zhu and Zhang (2018) [10] trained a random forest to 47 

diagnose breast cancer in clinical data. The Wisconsin Diagnostic Breast Cancer dataset was utilized in the 48 

experiments to evaluate the classification ability of their method. Ghasemzadeh, Sarbazi Azad and Esmaeili (2018) 49 

[11] put forward a breast cancer classification approach using mammograms. A Gabor wavelet transform was 50 

employed to generate the image representations from the mammograms, and several machine learning (ML) 51 

algorithms were trained for classification, including SVM, ANN, decision tree (DT), etc. A public mammogram 52 

dataset (DDSM) was employed in their evaluation experiments. Gupta and Gupta (2018) [12] also trained a group of 53 

heterogeneous ML classifiers to detect breast cancer using the Wisconsin Diagnostic Breast Cancer dataset. Through 54 

their experiments, they found that the multi-layer perceptron was better than other classification models. Heidari, 55 

Khuzani, Hollingsworth, Danala, Mirniaharikandehei, Qiu, Liu and Zheng (2018) [13] presented a locally preserving 56 

projection to reduce the dimension of image feature vectors from the mammograms, which were extracted based on 57 

the bilateral asymmetry of the breasts. Two classical machine learning algorithms were selected as the classifiers, 58 

including SVM and k-NN. The leave-one-out validation method was employed to obtain the testing results of their 59 

model. Hussain, Aziz, Saeed, Rathore and Rafique (2018) [14] proposed to calculate a group of different features 60 

using the mammograms based on the texture analysis, Fourier transform, scale-invariant feature transform (SIFT), etc. 61 

Then, combined features were used to train an SVM and a DT using 10-fold cross-validation. Wang, Li, Wang, Jiang, 62 

Yao, Zhang and Xin (2019) [15] put forward a mass detection algorithm based on the deep CNN and ELM. They 63 

extracted the deep features and fused them with classical handcrafted features to form the feature vectors. Finally, an 64 

ELM was trained to distinguish the benign and malignant samples. Islam, Haque, Iqbal, Hasan, Hasan and Kabir (2020) 65 

[16] conducted a comparison of the classification results of the ANN and SVM on the Wisconsin Breast Cancer dataset 66 

for breast cancer detection. They found that the ANN outperformed the SVM marginally. Lahoura, Singh, Aggarwal, 67 

Sharma, Mohammed, Damasevicius, Kadry and Cengiz (2021) [17] provided a breast cancer classification system 68 

based on cloud computing. A gain ratio feature selection algorithm was used to eliminate the excessive features, and 69 

an ELM served as the classifier for remote breast cancer detection. The Wisconsin Diagnostic Breast Cancer was 70 

employed in their experiments. Zuluaga-Gomez, Al Masry, Benaggoune, Meraghni and Zerhouni (2021) [18] 71 

presented a breast cancer diagnosis framework using ResNet and thermal images. The trained model can achieve good 72 
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classification performance in their experiments. Rehman, Zhuang, Muhamed Ali, Ibrahim and Li (2019) [19] 73 

attempted to find out the correlation between microRNAs and breast cancer. They proposed to utilize a bunch of 74 

feature selection algorithms to obtain the refined microRNA set which were the most related to breast cancer. A random 75 

forest and an SVM were trained for breast cancer classification with the refined microRNAs as the inputs. Singh and 76 

Singh (2020) [20] presented a systematic review on the breast cancer diagnosis using thermography. Stark, Hart, 77 

Nartowt and Deng (2019) [21] used personal healthcare data to predict breast cancer risk. The input features included 78 

age, ethnicity, etc. For classification, multiple machine learning models were trained, including ANN, SVM, NBC, 79 

etc. However, their accuracies were relatively low. Tapak, Shirmohammadi-Khorram, Amini, Alafchi, Hamidi and 80 

Poorolajal (2019) [22] implemented the survival prediction of breast cancer using clinical data and classical machine 81 

learning classifiers, including SVM, ANN, random forest, etc. however, the sensitivity of their best model was only 82 

36%. Zheng, Lin, Gao, Wang, He and Fan (2020) [23] developed a breast tumor classification model using a 83 

convolutional neural network (CNN) and Adaboost algorithms. They gathered images of different modalities, 84 

including mammograms, USIs, and magnetic resonance images (MRIs). Their model can accurately classify the 85 

samples as normal, benign, and malignant after training. Khuriwal and Mishra (2018) [24] firstly exploited watershed 86 

segmentation to remove the background in the mammograms. Then, they extracted 12 texture and statistical features 87 

from the segmented images, including entropy, energy, mean value, standard deviation, etc. Finally, an ANN model 88 

was trained to classify breast cancer from normal controls. Kadam, Jadhav and Vijayakumar (2019) [25] employed a 89 

sparse autoencoder to identify malignant breast cancer from benign breast cancer. Mercan, Mehta, Bartlett, Shapiro, 90 

Weaver and Elmore (2019) [26] proposed a breast cancer classification framework based on biopsy images. They 91 

generated small patches from the images and trained a CNN model to generate patch-level tissue labels. Then, the 92 

image-level tissue labels can be obtained based on the fusion of patch-level tissue labels. Finally, an SVM was trained 93 

to identify the breast cancer subtypes. Turkki, Byckhov, Lundin, Isola, Nordling, Kovanen, Verrill, von Smitten, 94 

Joensuu, Lundin and Linder (2019) [27] employed a CNN to generate features from the tissue microarray images. 95 

Then, the principal component analysis (PCA) and Fisher vector were used for feature reduction. An SVM was trained 96 

to predict the input as high breast cancer risk and low breast cancer risk. Zeebaree, Haron, Abdulazeez and Zebari 97 

(2019) [28] put forward a segmentation method using USI. They separated the USIs into small patches and extracted 98 

several features from the patches to train a back propagation neural network (BPNN), which was used to classify the 99 

patches as region of interest (ROI) and non-ROI. Finally, a region growing algorithm was used to refine the segmented 100 

results. Sharma and Mehra (2020) [29] developed a new method to recognize breast cancer in histopathological images. 101 

They employed two different approaches to extract image features. One is the classical handcrafted features, including 102 

Hu moment, texture analysis. The other is the features based on deep CNN models, including VGG-16, VGG-19, and 103 

ResNet-50. In the classification stage, the SVM, linear discriminant analysis (LDA), random forest were trained to 104 

distinguish benign cancer from malignant ones. Zuluaga-Gomez, Al Masry, Benaggoune, Meraghni and Zerhouni 105 

(2020) [30] trained a deep CNN model to detect breast cancer in thermal images. In experiments, they tested a bunch 106 

of different backbone models. The best accuracy of their model was 92%. Mahmood, Arsalan, Owais, Lee and Park 107 

(2020) [31] tried to implement breast cancer detection by mitotic cell counting. A faster region CNN (FR-CNN) was 108 
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developed to detect mitotic cells in the images based on ResNet-50 and DenseNet-201. The FR-CNN achieved an F1-109 

score of 85.8% on a public dataset. 110 

The above analysis shows that CAD systems for breast cancer detection using either clinical data or medical 111 

images are becoming more and more effective. However, we believe that the performance of automatic breast cancer 112 

detection classification can be further improved because most current methods are developed based on either deep 113 

CNN models or classical machine learning models with handcrafted features. This paper presented a novel and simple 114 

breast cancer detection model called spatial attention fusion network (SAFNet) based on USIs. The main contributions 115 

are three-fold:  116 

1) A spatial attention deep CNN model was designed based on the spatial attention module and the ResNet-18 117 

backbone, pre-trained on the ImageNet dataset, and fine-tuned with the USIs for image feature extraction. 118 

2) Three randomized neural networks (RNNs) were employed as the classifiers to prevent the overfitting 119 

problem because they are all shallow networks with simple structures and are easy and fast to train. 120 

3) We proposed a late fusion mechanism to fuse the output labels using majority voting to stabilize the 121 

classification results of our breast cancer classification system. 122 

The rest of this paper is arranged as follows. The introduction of the dataset for evaluation experiments is given 123 

in Section 2. The detailed presentation of the proposed SAFNet is demonstrated in Section 3. Section 4 presents the 124 

experiment results, and the discussion is demonstrated in Section 5. Finally, the conclusion of this study is provided 125 

in Section 6. 126 

 127 

2. Materials 128 

 129 

We utilized a public USI dataset to evaluate the generalization ability of our SAFNet [32]. The USI dataset can 130 

be downloaded from Kaggle (https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset). We 131 

finally obtained 437 benign USIs, 210 malignant USIs, and 166 normal USIs, which were approximately in size of 132 

500 × 500 pixels. The ages of the women in the USIs ranged from 25 to 75. We focused on breast cancer detection in 133 

this study. We regarded both the benign and malignant samples as breast cancer USIs. Some samples in the USI dataset 134 

are shown in Figure 1. 135 

 136 

Breast 

cancer 

    

https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
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Normal 

    

Figure 1: Samples in the USI dataset (The four USIs in the first row are breast cancer, and the four USIs in 137 

the second row are normal.) 138 

 139 

3. Methodology 140 

 141 

We proposed a spatial attention fusion network (SAFNet) to diagnose breast cancer in USIs. The SAFNet was 142 

designed using both deep learning and classical machine learning. The overview of the SAFNet is presented in Figure 143 

2. Firstly, the backbone model for the SAFNet was a pre-trained ResNet-18, which was modified with a spatial 144 

attention module and fine-tuned on the USI dataset. Afterward, the fine-tuned backbone generated image 145 

representations using the training and testing USIs. Afterward, three RNNs were trained using the image 146 

representations and the labels, including ELM, random vector functional-link net (RVFL), and Schmidt neural network 147 

(SNN). Finally, the prediction labels of the SAFNet were calculated by the majority voting-based fusion of the 148 

predictions from the three RNNs. The spatial attention module can improve the image representation learning ability 149 

of the pre-trained ResNet-18 backbone. The RNNs were simple three-layered networks, which can effectively avoid 150 

the overfitting problem. The late fusion of the RNNs was designed to handle the negative effects of randomly 151 

initialized parameters in the RNNs and improve the classification performance of the SAFNet. 5-fold cross-validation 152 

was employed in our evaluation experiments.  153 

 154 
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 155 

Figure 2: Overview of the proposed SAFNet for breast cancer detection (A pre-trained ResNet-18 was 156 

combined with the spatial attention module for representation learning, three RNNs were trained for 157 

classification, and the final output of the SAFNet was obtained by ensemble learning.) 158 

 159 

3.1. Feature learning based on spatial attention network 160 

 161 

During the recent ten years, deep CNN architectures can be the first choice for computer vision tasks. Among the 162 

various CNN models, ResNet can be one of the most significant inventions designed with residual connections to 163 

make it easy to approximate identity mappings [33]. The residual connection can directly link two layers that are not 164 

adjacent, which skips the hidden layers between the two layers, as is shown in Figure 3. Given X as the activation 165 

maps of the previous layer, the training target was G(X). with the residual connection, the target now becomes 166 

 𝐅(𝐗) ∶= 𝐆(𝐗) − 𝐗 (1) 167 

In this way, the original learning target can be expressed as  168 

 𝐆(𝐗) = 𝐅(𝐗) + 𝐗 (2) 169 
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The function F(X) is the residual between the training target and identity mapping. Instead of learning the target 170 

mapping directly, the model was trained to approximate the residual function so that the identity mappings could be 171 

trained more effectively. 172 

 173 

 174 

Figure 3: An example of a residual connection (A shortcut connection is added to skip the middle layers.) 175 

 176 

The attention modules in the recent networks were inspired by human vision, which often focuses on specific 177 

regions of images. Researchers discovered that the attention mechanism could be embedded in current CNN models 178 

to boost their classification ability [34], and the implementation of attention modules can be plug-and-play [35]. 179 

Therefore, we proposed to embed the spatial attention module with the pre-trained ResNet-18 for feature learning 180 

from the breast USIs. A detailed presentation of the spatial attention module with ResNet-18 is illustrated in Figure 4. 181 

The spatial attention module was inserted between the rectified linear unit (ReLU) layer and the multiplication layer. 182 

In the spatial attention module, an average pooling layer and a max pooling layer were employed to generate two sets 183 

of feature maps. Then, the two groups of feature mappings were concatenated and passed to a convolution layer to 184 

fuse them together. Finally, a ReLU served as the activation function. The feature mappings of the spatial attention 185 

module were multiplied with the activation matrix of the top ReLU layer. We also modified the densely connected 186 

layers before the final layer of the ResNet-18 according to our breast USI dataset. The ‘Fully connected layer 256’ 187 

contained 256 nodes, which served as the feature layer in this study. As the breast cancer diagnosis is a binary 188 

classification problem, the dimension of the output layer was set as 2. 189 

The pre-trained ResNet-18 with spatial attention mechanism was fine-tuned on the USI dataset for only four total 190 

epochs before the feature extraction from the ‘Fully connected layer 256’. 191 

 192 

Weighting layer

Weighting layer

Weighting layer

X

F(X)

F(X)+X +
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 193 

Figure 4: The spatial attention module with ResNet-18 (The spatial attention module was inserted into the 194 

ResNet-18. In The spatial attention module, the activations were processed with average pooling and max 195 

pooling, respectively. Then, the two activation maps were concatenated and sent into a convolution layer with 196 

ReLU activation function.) 197 

 198 

3.2. Training and fusion of classifiers 199 

 200 

As for the classifier in our SAFNet, we utilized three RNNs, including ELM [36], random vector functional-link 201 

(RVFL) [37], and Schmidt neural network (SNN) [38]. The three RNNs are all shallow networks with merely three 202 

layers, so the overfitting problem can be alleviated effectively, which often occurs when training deep CNN 203 

architectures with a small training set. Meanwhile, the training of RNNs is considerably faster compared with BPNNs 204 

benefiting from the randomized weights and biases in the hidden layer. Though RNNs can be trained fast, their 205 

classification performance is promising. Therefore, RNNs have been employed in a variety of machine learning tasks 206 

[39-41]. 207 

The architecture of an ELM is demonstrated in Figure 5. The parameters to be trained include the hidden weights 208 

wi, hidden biases bi, and output weights βi. The training algorithm of an ELM consists of only three steps, as is given 209 

in Algorithm 1. Suppose we get the training representation from the fine-tuned backbone and their labels as 210 
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 𝑺𝒕𝒓𝒂𝒊𝒏 = [(𝒇𝟏, 𝒕𝟏), (𝒇𝟐, 𝒕𝟐), (𝒇𝟑, 𝒕𝟑), … , (𝒇𝑵, 𝒕𝑵)] (3) 211 

where the 𝒇𝒋 = (𝑓𝑗1, 𝑓𝑗2, 𝑓𝑗3, … , 𝑓𝑗𝑛)
T denotes the j-th image feature vector, the 𝒕𝒋 = (𝑡𝑗1, 𝑡𝑗2, 𝑡𝑗3, … , 𝑡𝑗𝑚)

T represents 212 

the label of the j-th USI, and N stands for the entire number of training USIs. Then, the activation matrix of the hidden 213 

Hact can be calculated as 214 

 𝐇𝒂𝒄𝒕 = ∑ 𝑔(𝒘𝒊𝒇𝒋 + 𝑏𝑖) = [
𝑔(𝒘𝟏𝒇𝟏 + 𝑏1) ⋯ 𝑔(𝒘�̂�𝒇𝟏 + 𝑏�̂�)

⋮ ⋱ ⋮
𝑔(𝒘𝟏𝒇𝑵 + 𝑏1) ⋯ 𝑔(𝒘�̂�𝒇𝑵 + 𝑏�̂�)

]

𝑁×�̂�

�̂�
𝑖=1 , 𝑗 = 1, … , 𝑁 (4) 215 

in which the g(x) denotes the activation function, and �̂� stands for the dimension of the hidden space. Finally, the 216 

prediction of the ELM is 217 

 𝐎 = 𝐇𝒂𝒄𝒕𝛃 (5) 218 

where 𝛃 = (𝜷𝟏, 𝜷𝟐, 𝜷𝟑, … , 𝜷�̂�)
T is the output weights, and the 𝐎 = (𝒐𝟏, 𝒐𝟐, 𝒐𝟑, … , 𝒐N)

T denotes the prediction matrix 219 

of the ELM. The learning purpose is to make the predictions of the ELM equal to the ground-truth labels, so we can 220 

have 221 

 𝐇𝒂𝒄𝒕𝛃 = 𝐓 (6) 222 

where 𝐓 = (𝒕𝟏, 𝒕𝟐, 𝒕𝟑, … , 𝒕𝑵)
T means the ground-truth labels. In this way, the output weights β can be obtained based 223 

on the Moore-Penrose pseudo-inverse as 224 

 𝛃 = 𝐇𝒂𝒄𝒕
† 𝐓 (7) 225 

where the 𝐇𝒂𝒄𝒕
†

 denotes the Moore-Penrose pseudo-inverse of 𝐇𝒂𝒄𝒕. With random initialization and pseudo-inverse, 226 

all the parameters in the ELM are decided within three steps. ELM training is much faster than vanilla BPNN, which 227 

is trained with iterations. Yet, the classification performance of the ELM is usually promising because it is likely to 228 

obtain smaller weight norms [42]. 229 

As a type of randomized neural network, ELM leverages the random projection to project the input features into 230 

the random hidden space, and only the output weights are trained. This random feature projection has also been used 231 

in deep networks in recent years [43]. ELM is a popular classification model in the last decade, which has been used 232 

in a variety of machine learning tasks, such as geography [44], big data analysis [45], clustering [46], chemistry [47], 233 

food safety [48], etc. 234 

 235 
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 236 

Figure 5: The architecture of an ELM 237 

 238 

Algorithm 1: ELM training steps 239 

Step 1: assign the hidden weights wi, hidden biases bi with randomized values. 

Step 2: generate the activation matrix of the hidden nodes using the training set. 

Step 3: calculate the output weights βi using the pseudo-inverse. 

 240 

The architecture of an RVFL is demonstrated in Figure 6. There is an obvious difference between the architecture 241 

of RVFL and ELM. There is a shortcut connection between the input nodes and the output space [49]. In an RVFL, 242 

the input representations are randomly mapped into the hidden space (the green nodes), and the randomly mapped 243 

features are concatenated with the input feature vectors [50]. This extra shortcut connection from the input to the 244 

output layer can effectively stabilize the classification performance of the RVFL and improve the robustness of the 245 

system [51, 52]. 246 

 247 
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 248 

Figure 6: The structure of a RVFL 249 

 250 

The training algorithm of RVFL is summarized in Algorithm 2. The activation matrix of the hidden layer with �̂� 251 

nodes can be formulated the same as equation (4). Then, the activation matrix of the hidden space is concatenated with 252 

the input features to generate the combined features F: 253 

 𝐅 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐇𝒂𝒄𝒕, 𝐅𝒕𝒓𝒂𝒊𝒏) (8) 254 

where 𝐅𝒕𝒓𝒂𝒊𝒏 = (𝒇𝟏, 𝒇𝟐, 𝒇𝟑, … , 𝒇𝐍)
T stands for the features from the feature layer in the backbone, and concat() 255 

is the matrix concatenation function. The training purpose is to achieve that the predictions of the RVFL are equal to 256 

the ground-truth labels: 257 

 𝐎 = 𝐓 (9) 258 

where 𝐎 = (𝒐𝟏, 𝒐𝟐, 𝒐𝟑, … , 𝒐N)
T is the predictions of the RVFL, and 𝐓 = (𝒕𝟏, 𝒕𝟐, 𝒕𝟑, … , 𝒕𝑵)

T means the ground-truth 259 

labels of the training set. Therefore, we have 260 

 𝐅𝛃 = 𝐓 (10) 261 

Consequently, the output weights can be determined as: 262 

 𝛃 = 𝐅†𝐓 (11) 263 

where 𝛃 = (𝜷𝟏, 𝜷𝟐, 𝜷𝟑, … , 𝜷�̂�)
T is the output weights, and 𝐅† represents the pseudo-inverse of the F. 264 

 265 

Algorithm 2: RVFL training steps 266 

Step 1: assign the hidden weights wi, hidden biases bi with randomized values. 

Step 2: compute the activation matrix of the hidden layer using the training set. 

Step 3: concatenate the input features with the activation matrix of the hidden layer. 

Step 4: determine the output weights βi using the pseudo-inverse. 

 267 
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We also employ an SNN as the classifier in our SAFNet. SNN is a feedforward neural network proposed by 268 

Schmidt, Kraaijveld and Duin (1992) [38] thirty years ago. The structure of the SNN is almost the same as the ELM, 269 

which is shown in Figure 7. There are learnable output biases in the output layer, which is the only difference between 270 

the architecture of SNN and ELM. Therefore, the training algorithm of SNN is the same as ELM, which is illustrated 271 

in Algorithm 3. With the training features and labels, the prediction matrix of the SNN with �̂� nodes in the hidden 272 

layer is  273 

 𝐎 = [∑ 𝑔(𝒘𝒊𝒇𝒋 + 𝑏𝑖)
�̂�
𝑖=1 ] × 𝑐𝑜𝑛𝑐𝑎𝑡(𝛃, 𝑪) (12) 274 

where 𝑪 = (𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚)
T is the output biases. The output weights and biases can be generated using close-formed 275 

solutions similar to the ELM and RVFL. In the original SNN, the standard numerical methods were employed to 276 

calculate the output weights and biases. 277 

 278 

 279 

Figure 7: The structure of an SNN 280 

 281 

Algorithm 3: SNN training steps 282 

Step 1: assign the hidden weights wi, hidden biases bi with randomized values. 

Step 2: calculate the activation matrix of the hidden layer using the training set. 

Step 3: determine the output weights βi and biases ci using the pseudo-inverse. 

 283 

Now, we have presented three classifiers for breast cancer detection. The randomly initialized parameters in the 284 

RNNs can reduce the training time of our models, but ill-conditioned input weights and biases can worsen the 285 

classification performance of our breast cancer detection model, which can cause serious results in real-world 286 

applications. Therefore, we proposed to utilize late fusion to further improve our system's generalization performance 287 

and robustness, which directly fuses the predictions of the three RNNs by majority voting. Compared with swarm 288 

optimization methods, majority voting works more efficiently. The final model with this majority voting-based fusion 289 
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is termed as SAFNet. The classifiers: ELM, RVFL, and SNN are heterogeneous RNNs, so the late fusion of their 290 

predictions can receive diversified information so that the fused results can be better. 291 

 292 

4. Experimental results 293 

 294 

Our SAFNet was developed using MATLAB 2021a. The training and testing experiments are run on a laptop 295 

with CPU i7 7700HQ, 16 GB memory, and GPU GTX1060 (6GB). The trained models can be deployed in other 296 

environments with appropriate configurations. 297 

 298 

4.1. Hyper-parameter settings 299 

 300 

The hyper-parameters in the proposed SAFNet are illustrated in Table 1. We set the mini-batch size as only 64 301 

according to the capability of our GPU. The learning rate was set as 1×10-4, which is a conventional value. The 302 

optimizer for fine-tuning the spatial attention backbone was Adam. We fine-tuned the backbone for only four epochs 303 

in order to prevent overfitting. The dimension of the hidden space in the three RNNs was 1000, as the feature 304 

dimension was 256. The random mapping from the input space to the hidden space of high dimension is beneficial to 305 

improve the classification performance. 306 

 307 

Table 1: Hyper-parameters in the proposed SAFNet 308 

Hyper-parameter Value 

Mini-batch size 64 

Learning rate 1×10-4 

Optimizer Adam 

Max epochs 4 

Number of hidden neurons in the three RNNs 1000 

 309 

4.2. Classification performance 310 

 311 

The classification performance of the proposed SAFNet is listed in Table 2. We employed sensitivity, precision, 312 

F1-score, and accuracy as the performance metrics in the evaluation experiments. 313 

 314 

Table 2: Classification results of the SAFNet (F: fold) 315 

 Sensitivity Precision F1-score Accuracy 

F1 93.38% 98.45% 95.85% 92.95% 

F2 95.59% 100.00% 97.74% 96.15% 

F3 93.94% 96.12% 95.02% 91.67% 

F4 94.78% 98.45% 96.58% 94.23% 

F5 96.95% 97.69% 97.32% 95.51% 

Average 94.93% 98.14% 96.50% 94.10% 

 316 
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4.3. Effects of the spatial attention mechanism 317 

 318 

To obtain the effects of the spatial attention mechanism, we tested the performance of the proposed SAFNet with 319 

and without the spatial attention module using 5-fold cross-validation. The backbone for the SAFNet without the 320 

spatial attention mechanism was the vanilla pre-trained ResNet-18. The results are shown in Table 3 and Figure 8.  321 

 322 

Table 3: Effects of the spatial attention mechanism in the SAFNet 323 

Model Sensitivity Precision F1-score Accuracy 

SAFNet (without spatial attention) 94.68% 97.84% 96.22% 93.59% 

SAFNet (with spatial attention) 94.93% 98.14% 96.50% 94.10% 

 324 

 325 

Figure 8: Effects of the spatial attention mechanism in the SAFNet 326 

 327 

4.4. Effects of the late fusion 328 

 329 

We also tested the effects of the late fusion of classifiers using 5-fold cross-validation. The classification results 330 

of the SAFNet with the ELM classifier, RVFL classifier, SNN classifier, and the fusion of the three RNNs are given 331 

in Table 4 and Figure 9. 332 

 333 

Table 4: Effects of the late fusion of classifiers 334 

Model Sensitivity Precision F1-score Accuracy 

SAFNet (ELM) 94.24% 98.30% 96.22% 93.59% 

SAFNet (SNN) 94.76% 96.76% 95.73% 92.82% 

SAFNet (RVFL) 94.50% 97.99% 96.20% 93.59% 

SAFNet (fusion of the three RNNs) 94.93% 98.14% 96.50% 94.10% 

 335 

91.00% 92.00% 93.00% 94.00% 95.00% 96.00% 97.00% 98.00% 99.00%

Sensitivity

Precision

F1-score

Accuracy

SAFNet (with spatial attention) SAFNet (without spatial attention)
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 336 

Figure 9: Effects of the late fusion of classifiers 337 

 338 

4.5. Visual explanation 339 

 340 

We utilized the Gradient-weighted class activation mapping (Grad-CAM) [53] for a visual explanation of the 341 

proposed SAFNet. Some Grad-CAMs of the breast cancer USIs based on the SAFNet were presented in Figure 10. 342 

The regions in red and orange are considered the most significant for the predictions by the SAFNet.  343 

 344 

    

    

Figure 10: Grad-CAMs of the breast cancer USIs based on the SAFNet 345 

 346 

4.6. Comparison with state-of-the-art methods 347 

 348 

We compared our SAFNet with other existing breast cancer detection methods, and the statistics were presented 349 

in Table 5 and Figure 11. Our SAFNet produced better classification results than four existing breast cancer 350 

classification methods in terms of sensitivity, precision, F1-score, and accuracy.  351 

 352 

Table 5: Comparison with other state-of-the-art breast cancer detection models 353 

92.00% 93.00% 94.00% 95.00% 96.00% 97.00% 98.00% 99.00%

Sensitivity

Precision

F1-score

Accuracy

SAFNet (fusion of the three RNNs) SAFNet (RVFL)

SAFNet (SNN) SAFNet (ELM)
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Model Sensitivity Precision F1-score Accuracy 

CNN-GTD [15] 85.10% - - 86.50% 

SeResNet18 [18] 90.00% 91.00% 91.00% 90.00% 

FR-CNN [31] - 87.60% - - 

SD-CNN [8] 83.00% - - 90.00% 

SAFNet (ours) 94.93% 98.14% 96.50% 94.10% 

 354 

 355 

Figure 11: Comparison with other state-of-the-art breast cancer detection models 356 

 357 

5. Discussion 358 

 359 

The SAFNet achieved an average sensitivity of 94.93%, an average precision of 98.14%, an average F1 score of 360 

96.50%, and an average accuracy of 94.10% for the 5-fold cross-validation. All four metrics fluctuated around 95%, 361 

which revealed the good generalization performance of the proposed SAFNet for breast cancer detection in USIs. 362 

Meanwhile, the running time for the 5-fold cross-validation of the SAFNet was merely 274.83 seconds, which was 363 

affordable for clinical applications. 364 

We discovered that the spatial attention mechanism could boost the generalization ability of the SAFNet for 365 

breast cancer detection in terms of all four metrics, although the improvement was not considerable. It can be inferred 366 

from the results that the spatial attention module is an effective and simple method to boost the generalization ability 367 

of the proposed model for breast cancer diagnosis. 368 

The SAFNet with the late fusion of the three RNNs achieved better sensitivity, F1-score, and accuracy than the 369 

SAFNets with the three individual RNNs. The precision of the SAFNet with the late fusion was 98.14%, which was 370 

also close to the best precision of 98.30% in the list. Therefore, we held the view that the late fusion mechanism can 371 

be beneficial for the generalization ability of the SAFNet for breast cancer detection in USIs. 372 

From the Grad-CAMs, we can claim that our SAFNet can locate the potential lesion areas in the breast USIs, 373 

which contributes to the promising results. 374 

The potential reasons for the outstanding generalization ability of the SAFNet include that the spatial attention 375 

module improves the representation learning capability of the pre-trained ResNet-18 backbone, the RNN classifiers 376 

80.00% 85.00% 90.00% 95.00% 100.00%

Sensitivity

Precision

F1-score

Accuracy

SAFNet (ours) SD-CNN [4] FR-CNN [27] SeResNet18 [14] CNN-GTD [11]
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can avoid the overfitting problem, and the late fusion of the classifiers can eliminate the bad effects of the random 377 

parameters in the RNNs. 378 

 379 

6. Conclusion 380 

This study put forward a novel breast cancer detection approach called SAFNet based on the ultrasound images. 381 

A pre-trained ResNet-18 was embedded with the spatial attention module to serve as the backbone model in the 382 

SAFNet to extract features from the breast USIs. We trained three RNNs as the classifiers and fused their predictions 383 

as the final output of the SAFNet. A public breast USI dataset was utilized to evaluate the generalization ability of the 384 

SAFNet based on 5-fold cross-validation. Extensive experiments were conducted, and our SAFNet outperformed four 385 

existing approaches in terms of sensitivity, precision, F1 score, and accuracy. The Grad-CAMs also revealed the high 386 

performance of the SAFNet to locate lesion areas. In all, our SAFNet is accurate in detecting breast cancer from USIs. 387 

For future research, we shall collect more breast USIs as the number of normal USIs in the current dataset is 388 

small. In addition, we shall attempt to apply vision transformers for breast cancer detection. We will also try to harness 389 

optimization algorithms to train the RNNs [54-57]. Moreover, image segmentation shall be studied in the future [58-390 

61]. 391 
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