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Highlights 

 P95th of DFs in EGMs from spectral AR100 is the best estimator of DFdriver 

during AF  

 Concentric ring electrodes (CRE) can detect AF in surface ECG signals 

 CRE-ECG signals surpass conventional recordings in surface AF 

characterization 

 CRE body surface Laplacian Mapping could be helpful in AF diagnosis 

 

Abstract 

Background and objective: The prevalence of atrial fibrillation (AF) has tripled in the 

last 50 years due to population aging. High-frequency (DFdriver) activated atrial regions 

lead the activation of the rest of the atria, disrupting the propagation wavefront. Fourier 

based spectral analysis of body surface potential maps have been proposed for DFdriver 

identification, although these approaches present serious drawbacks due to their limited 

spectral resolution for short AF epochs and the blurring effect of the volume conductor. 

Laplacian signals (BC-ECG) from bipolar concentric ring electrodes (CRE) have been 

shown to outperform the spatial resolution achieved with conventional unipolar 

recordings. Our aimed was to determine the best DFdriver estimator in endocardial 

electrograms and to assess the BC-ECG capacity of CRE to quantify AF activity non-

invasively.  

Methods: 31 AF episodes were simulated using realistic tridimensional models of the 

atria electrical activity and torso. Periodogram and autoregressive (AR) spectral 

estimators were computed and the percentile (P90th, P95th and P98th) to impose on the 

dominant frequencies (DFs) across whole atria to define the best DFdriver estimator 
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evaluated. The identification of DFdriver on DFs from BC-ECG and unipolar surface 

signals with conventional disc electrodes was compared.  

Results: The best DFdriver estimator was P95th and AR order 100. BC-ECG signals 

allowed better detection of AF activity than unipolar signals, with a significantly greater 

percentage of electrode locations in which DFdriver was identified (p-value 0.0095).  

Conclusions: The use of BC-ECG signals for body surface Laplacian potential mapping 

with CRE could be helpful for better AF diagnosis, prognosis and ablation procedures 

than those with conventional disk electrodes 

Keywords: Atrial fibrillation, AF driver, Surface Laplacian potential, Concentric Ring 

Electrodes 

Glossary 

AF: Atrial fibrillation 

BC-ECG: Bipolar signals from concentric ring electrodes 

CRE: Concentric ring electrodes 

AR: Autoregressive spectral estimators 

PD: Periodogram 

DF: Dominant frequency 

FEM: Finite element method 

BEM: Boundary element method 

EGC: Electrical activity recording of the cardiac cells recorded on the chest and the electrograms 

EGM: Electrical activity on the heart surface  

DFdriver: Dominant frequency of the atrial fibrillation driver 

BSPM: Body surface potential maps 

HDF: High dominant frequency associated to atrial fibrillation 

MSE: Mean squared error 

LA: Left atrium 

RA: Right atrium 



 

4 
 

1. Introduction 

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with 

increased morbidity and mortality and a large economic burden [1] estimated to account 

for up to 2% of the total healthcare expenditure in European countries [2] and affecting 

about 46.3 million people worlwide in 2016 [3]. An aging population is a risk factor for 

AF, which can be explained on the one hand by the fact that structural and electrical 

remodeling of the atrial myocardium occurs with age: structurally aged atrial bundles 

increase the fibrous tissue spread between myocytes in is an age-dependent 

cardiomyocyte loss process [4]. On the other hand, age-related electrical changes due to 

ionic current alterations have been observed, including modifications in the cellular action 

potential shape and duration as well as a higher dispersion of cardiac repolarization [5][6]. 

Ederly people also present other comorbilities such as arterial stiffness, diastolic 

dysfunction, diabetes mellitus, coronary artery disease or valvular disease [7][8]. 

Moreover literature also stated that a progression of AF from paroxysmal to persistent is 

quicker in geriatric patients and those with underlying heart disease [9]. Therefore, an 

increase in the prevalence of this disease, which has already tripled in the last 50 years, 

can be expected [3]. 

The presence of high-frequency (6-12 Hz) regions driving the fibrillatory process in the 

rest of the atria has been observed in both animal models and human intracardiac 

recordings [10][11]. In these cases, rapidly activated atrial regions lead the activation of 

the rest of the atria, activated at lower frequencies due to the disruption of the propagation 

wavefront. These high frequency sources can be located either in the pulmonary vein area 

or elsewhere and their isolation by catheter ablation can terminate the arrhythmia. 

Identification of these high frequency sources prior to the ablation procedure would help 
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therapy planning by allowing the prediction of the region maintaning AF that needs to be 

ablated [12][13].  

The identification of high frequency sources in endocardial electrograms (EGM) during 

invasive electrophysiological procedures has been accomplished by applying Fourier 

Transform-based approaches[12][13]. However, Fourier based spectral analysis has the 

disadvanteg of poor resolution for time varying spectra computed in short analysis 

windows [14]. In some works autoregressive spectral analyses were used as an alternative 

to Fourier Transform with good spectral resolution in short electrograms segments [15] 

but so far no available method can identify unambigously the dominant frequency of the 

AF driver (DFdriver). 

Non-invasive electrocardiogram (ECG) recording systems with high spatial resolution 

would be helpful in non-invasive AF diagnosis. To this end, body surface potential maps 

(BSPM) have been proposed in the literature; these consists of placing ECG signals from 

disc electrodes in tens or even a hundred positions on the torso. BSPM offer additional 

diagnostic information to that in 12-lead standard systems [16][17][18]. Nevertheless, the 

smearing effect caused by the torso volume conductor still limits the spatial resolution 

obtained by simply increasing the number of recording electrodes on the torso [19].  

Atrial electrical activity is projected onto the torso surface and thus noticeable on the 

ECG, although generally masked by the ventricular content, which appears with a larger 

amplitude [20]. Atrial sources can thus be better observed on the ECG after cancellation 

of the QRST complex or when the ventricular activity is interrupted by administration of 

drugs, such as adenosine. In this context, we have previously shown that high frequency 

sources appear localized on the most proximal torso regions [21]. However, even in 

surface signals selected on the torso close to these sources, such activity can be masked 
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by the activity of more distant but larger atrial regions due to poor spatial resolution in 

cardiac signal sensing [22][23].  

In this regard, surface Laplacian, as the second spatial derivative of the surface potentials 

[24], could enhance the high spatial frequency components improving the spatial 

resolution in locating high rate sources. Laplacian electrodes can be interpreted as a filter 

that allocates more weight to the bioelectrical dipoles adjacent to the recording points and 

provide more detail in differentiating multiple concurrent dipole sources [25]. Initially, 

Hjorth proposed a five-point method numerical approximation technique to analyze and 

apply the surface Laplacian in electroencephalographic (EEG) studies, after which He 

and Cohen [26] developed a bipolar concentric ring electrode (CRE) to directly obtain an 

approximation to the body surface cardiac Laplacian potential. A CRE consists of an inner 

disk and at least one outer ring recording pole [27] and has the advantage over 

conventional unipolar electrodes that it can diminish far-field activity [28] and therefore 

the contribution of distant atrial sources, thus enhancing local electrical components. This 

reduction of the volume conductor effect may ultimately better localize the atrial 

electrical components reaching the torso surface and identify these high frequency 

components for better plannning of ablation therapies. In fact, studies in the literature 

have shown that CREs are able to discern between the P1 and P2 waves associated with 

each atrium, which usually manifest together in a single P wave in the precordial 

recordings [29]. 

The present work aims to overcome the limitations of the aforementioned previous 

studies: A) to determine the best spectral estimator of the DFdriver in endocardial 

electrograms. Our intention was to compare non parametric (periodogram, PD) and 

parametric (autoregressive, AR) spectral estimation techniques and identify the 

percentiles (90th, 95th or 98th) to be imposed on the DFs estimated across whole atria to 
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define the highest dominant frequency, quantifying the estimation errors with respect to 

annotations made by experts; B) To assess the capcity of BC-ECG signals from CRE to 

improve the spatial resolution associated with the use of unipolar recordings by disc 

electrodes, enhancing the ability to non-invasively characterize atrial fibrillation activity. 

In this regard, we used realistic tridimensional electrophysiological models of the atria to 

compute electrical potentials on the torso, on which unipolar and CREs were placed 

during different simulated AF episodes. 

2. Materials and Methods 

2.1 Modeling 

2.1.1 Epicardial activation models 

Previously validated and published 3D realistic models of the atrial anatomy composed 

of 284,578 nodes (673 ± 130 µm inter-node) and 1,353.783 tetrahedra were used to 

simulate atrial electrical activity during AF episodes [24-26]. Each node was simulated 

as a single atrial cell using the cellular model described by Koivumaki et al. [31]. 

Heterogeneity in the electrophysiological properties of the atrial myocardium was 

introduced in the form of changes in ion currents (up to +110% IK1, -59% ICaL, +100% 

INa) and distribution of fibrosis (0 to 60% of disconnected nodes) to generate AF episodes 

maintained by reentrant activity with non-uniform propagation patterns and different 

shapes and extents of the dominant region [32]. 31 different models of AF episodes of 10 

second-lengths driven by a single and spatially-stable reentrant driver in different 

locations were used in this work. The last 4 s of each episode was studied when AF 

simulation was stabilised. For each simulation, a uniform mesh of 2048 nodes (5.3 ± 3.2 
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mm inter-node) of unipolar electrograms (EGM) was calculated at 1 mm from the surface 

of the epicardium under the assumption of a homogeneous, unlimited and quasi-static 

conductive medium adding all effective dipole contributions over the entire model. The 

computed electrograms were stored for processing at a sampling frequency of 500 Hz 

[32] to identity AF driver sources, thus reducing the computational cost associated with 

higher sampling rates (above 1kHz), used in epicardial ECG recordings or simulations 

and being especially advisable when analysing abnormal ventricular electrical 

conduction. 

2.1.2 Torso modeling and surface electrocardiograms 

To simulate the surface electrocardiographic activity of an AF patient we used a realistic 

3D torso model on which we projected atrial activity. Our torso model was a non-

homogeneous mesh to account for the higher spatial resolution in the position of the 

unipolar (disc) and concentric ring electrodes (16412 nodes). The distance between 

vertices was 0.3421±0.1283 cm (mean ± deviation) in the refined region (where surface 

electrodes were simulated) and 2.5857±0.3522 cm elsewhere. In Figure 1 it can be seen 

how denser meshing was used in the different regions where the electrodes were 

simulated. Figure 1 also shows the placement of the atria in the refined torso model. The 

ECG potentials on the torso surface were calculated by solving the Boundary Elements 

Method (BEM) in the proposed torso mesh [35][36].  
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Figure 1 Model representation of the refined torso (right) and model of the atrium (left). 

 

27 electrodes were simulated to be placed on the front, back and sides of the torso, similar 

to previous works with conventional disk electrodes [37], see Figure 2.  

Two types of electrode, disc and concentric, were simulated. To that commercial bipolar 

concentric (BC) electrodes with an outer and inner ring diameter of 42 mm and 28 mm, 

and a central disk diameter of 16 mm (CODE501526, Spes Medica, Italy) were 

considered. Simulated disc electrodes coincide with the inner pole of BC electrodes. Disc 

and ring BC electrodes were represented on the mesh determined by the number of nodes 

that belonged to each pole (see Figure 2).  

 

Figure 2 Location and identification of the electrodes in the simulated torso. 
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Firstly, the averaged potential of the nodes on the torso surface covered by the 

conductive area of each pole (disk or ring) of the electrode was determined to obtain the 

ECG in each electrode. To do this, nodes belonging to the different electrodes were 

identified from a file that contained their central location in the mesh and considering the 

electrode area and configuration. 

Secondly, the ‘conventional’ ECG recordings from the disc electrodes were referenced to 

the Wilson Central Terminal (from now on referred to as ‘unipolar recordings’), which 

was also simulated as the average of the potentials of the nodes in disc recordings at the 

right shoulder, left shoulder and the farthest point in the torso on the left side (S1, S2 and 

S5). The recordings with concentric electrodes were bipolar, obtaining the bipolar 

concentric ECG signals (BC-ECG) as the difference between the potential captured by 

the peripheral ring and the central disc.  

2.2 Signal processing 

2.2.1 Preprocessing 

The pre-processing of the epicardial EGMs for the identification of the atrial 

depolarisation rate consisted of the standard approach with a bandpass filtering between 

40 Hz and 250 Hz (zero-phase, Butterworth order 8), a signal rectification and then a low-

pass filtering with a cut-off frequency of 20 Hz (zero-phase, Butterworth order 8) [38]. 

These preprocessing steps enhance the fundamental frequency of the signal while 

diminishing the power of its harmonics. 

Since the bandwidth requirement for dominant frequency identification in human atrial 

fibrillation is in the range from 3 to 13 Hz [21][39], our preprocessing of simulated 

surface ECG signals consisted of subtracting their mean value and subsequent 5-order 

high pass zero phase Butterworth filter, with a cut-off frequency of 1 Hz and 5-order low 

pass zero phase Butterworth filter with a cut-off frequency of 15 Hz. These cutoff 
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frequencies were chosen considering the physiological range of the atrial activation [21]. 

It must be taken into account that simulated signals only contain information of atrial 

activity but no ventricular information (without QRS and T waves). Despite the fact that 

surface ECG distributes its energy between 0.05 and 150 Hz, we would like to emphasise 

that we did not attempt to preserve the signal morphology of the physiological P wave. 

Previous studies that attempted to determine the DFdriver from real-world ECG data 

usually set a high-pass filter with a cut-off frequency at 3 Hz, which is more restrictive 

than the one used in the present study. 

2.2.2 Identification of atrial fibrillation driver frequency 

In order to obtain a gold standard for the dominant frequency of the AF driver 

(DFdriver), firstly the transmembrane potential signal from the raw simulation was 

manually checked on the position of the reentrant driver for every AF model, defined by 

the S1-S2 pacing pattern. The number of action potentials were measured as the number 

of activations per second. This value was used as DFdriver to compare with that extracted 

from the EGMs and ECGs. To further characterize each AF model, the percentage of 

atrial nodes at that frequency, DFdriver ± 0.25 Hz, were computed to estimate the size of 

the DFdriver region [32]. 

The performance of non-parametric (periodogram, Hamming window) and parametric 

(autoregressive AR model, covariance) spectral estimation methods for the identification 

of the driver activation frequency of the atrial activity on 4s of EGM were analysed. 

Parametric AR models with order N consist of predicting the actual sample by taking into 

account the last N samples. Too high AR orders will produce spurious peaks in the power 

spectral density. In general, it is strongly recommended to have one signal cycle to 

realiably capture its frequency. Since DFdriver usually presents a dominant frequency 
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around 5-8 Hz, we tested AR parametric models with orders of 60, 80, 100 and 120 

(equivalent to 120 ms, 160 ms, 200 ms and 240 ms with a sampling rate of 500 Hz).  

Dominant frequency (DF) was obtained by considering the frequency of the maximum 

peak of the spectral power and possible significant peaks with power > 35% of maximum 

peak on the AF physiological band (1 to 15 Hz). Subsequently it was checked whether 

this maximum peak corresponds to a harmonic of a lower fundamental frequency; it was 

considered a harmonic if it was between 1.9 and 2.1 times the frequency of a lower 

frequency significant peak. 

The dominant frequency obtained from EGM at the 2048 atrial nodes reflects the 

activation frequency at different atrial sites and will include high and low frequency 

activities over the atria. The next step was to estimate the DFdriver from these 

measurements. For this, we defined (and computed) the high dominant frequency (HDF) 

as the frequency associated with the 90th, 95th and 98th percentiles of the DFs (P90th, P95th 

and P98th) in all atria nodes from periodogram and AR estimations. These percentiles may 

allow us to determine a robust estimator of the HDF against outliers that can be associated 

with the maximum value of the dominant frequency. Then Bland-Altman plots and mean 

squared errors were obtained to select the best estimator of the DFdriver out of the nine 

versions of HDF (HDF90_PD, HDF90_AR100, HDF90_AR120, HDF95_PD, ... , HDF98_AR120) as 

well as statistical differences analysed by the Wilcoxon signed rank (paired) test. 

Dominant frequencies from parametric (AR model, covariance) and nonparametric 

(periodogram) spectral estimation methods for surface ECG signals were calculated in 

the same way as for EGMs. The percentage of unipolar and BC electrodes at DFdriver ± 

0.25Hz [32] were computed for both PD and AR spectral estimators. Subsequently a 

Wilcoxon signed rank (paired) test was worked out to determine whether the percentage 



 

13 
 

corresponding to BC surface records was significantly higher than in simultaneous 

unipolar records. 

Finally, it was determined whether the location of the rotor in the left (LA) or right 

(RA) atrium affected its identification for both unipolar and concentric bipolar surface 

recordings. To do so, the number of models in which at least one electrode captured the 

rotor frequency in the RA and LA was determined, as well as the average percentage of 

electrodes at the rotor frequency for both unipolar and BC-ECG signals. 

3 Results 

3.1 Intracardiac DFdriver estimation 

Figure 3 shows an example of the distribution of the DFs in the atrial nodes when 

computed with the PD and AR100 together with the DFdriver for AF model 30. It can be 

seen that the distribution of DF values estimated by both non-parametric and parametric 

methods were very similar. When we also computed DF and HDF with AR orders 60, 80 

and 120 the Results were very similar but little worse than AR 100 and therefore are not 

reported here and there was practically no difference between dominant frequencies at 

the P95th and P98th percentiles. In the 90th percentile, although in most cases similar 

values were obtained as for the 95th and 98th percentiles, in certain models such as 15, 28, 

29 and 30 (this last shown in Figure 3), the 90th percentile of DF was not clearly related 

to the driver activation frequency.  

To assess the best DFdriver estimation for internal EGMs between those worked out, 

Bland-Altman plots and the mean squared errors between DFdriver and the HDFs for 

each model and spectral estimator were computed (see Figure 4). It can be seen that the 

frequency differences between the HDFs and the DFdrivers are greater for P98th than for 

P95th for both AR and PD estimations. The best results were from the P95th and parametric 

AR100 estimator, (MSE of 0.005 Hz) followed by the P95th from PD (MSE of 0.010 Hz), 
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with no significant differences between them (p<0.001, Wilcoxon signed test), but with 

significantly different results from the P98th. 

 

 

Figure 3 Example (Model 30) of distribution of atrial nodes’ dominant frequencies using 

periodogram (PD), and parametric AR estimation order 100 (AR100). Green stars show the 90th 

percentile of the internal node frequency, blue diamonds show the 95th percentile and the red cross 

the 98th percentile. Horizontal dashed line is the driver dominant frequency (DFdriver). 

 

 

 

 

 

Figure 4 Bland-Altman plots corresponding to the HDF, estimated with the 95th and 98th 

percentiles of the periodogram (PD) and parametric (AR 100) estimators, when compared to 

DFdriver, and table with HDFs root mean squared errors (MSE) with respect to DFdriver. 
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3.2 Surface DFdriver estimation 

Parametric (AR 100 and 120) and non-parametric (periodogram, PD) methods were used 

to obtain the DF in the surface signals, as in EGMs. The results were very similar for PD 

and AR100 and slightly worse for AR120. In fact, using either PD or AR100 does not 

affect the number of models in which the DFdriver was detected in at least one electrode 

site. As there are no statistically significant differences (Wilcoxon Signed Rank) between 

the number of electrodes that capture DFdriver with both spectral estimators, either for 

BC-ECG or for unipolar recordings, the AR100 spectral estimator was used for surface 

signals as well as for the EGMs. 

Figure 5 and Figure 6 show detailed examples of the DF distributions in the epicardium 

and those from the abdominal surface. Specifically, Figure 5 depicts an example of an AF 

model (model 11) in which the activity of the atrial rotor is clearly picked up in several 

electrode positions on the surface in both BC and unipolar recordings. In this model the 

amount of atrial tissue with DF inside DFdriver range is quite extensive (about >28%). 

By contrast, Figure 6 shows a model (model 5) in which the anomalous atrial electrical 

activity is quite localised (about 10% of internal nodes at DFdriver), this activity not being 

identified in the unipolar recordings but was identified in 15% of the BC-ECG signals. 

As can be seen in the right hand panels of this figure, in the unipolar recording the peak 

of highest frequency activity is masked by that at lower frequencies from a greater atrial 

area.  
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Figure 5 Lower panels: colour maps of DF (AR100) on the torso (BC-ECG signals) and on the 

atrium for Model 11. Right panels: power spectrum of signals at: one atrial (internal) node with 

DF inside DFdriver range, electrode location A3 (unipolar and BC-ECG). Top central panel: DF 

values of unipolar (crosses) and BC (diamonds) surface signals from electrode locations. Orange 

line shows the frequency of the DFdriver and the broken lines the margins of DFdriver-range 

(DFdriver ± 0.25 Hz) 
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Unipolar (D5)
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Figure 6 Lower panels: color maps of DF (AR100) on the torso (BC signals) and on the atrium 

for Model 5. Right panels: power spectrum of signals at: one atrial node (internal) with DF inside 

DFdriver range, electrode location D5 (unipolar and BC). Top central panel: DF values of 

unipolar (crosses) and BC (diamonds) surface signals from electrode locations. Orange line 

corresponds to the frequency of the DFdriver and the dashed lines the margins of DFdriver-range 

(DFdriver ± 0.25 Hz) 

Figure 7 summarizes the percentage of epicardial nodes and those of the surface unipolar 

and BC recording sites in which a DF, computed with AR100, was in the range of the 

DFdriver ± 0.25 Hz (DFdriver-range) for each of the 31 models. This figure has been 

arranged according to the possibility to identify DFdriver on body surface by means of 

BC and unipolar ECGs. In 18 out of the 31 models DFdriver could be identified (DF 

inside DFdriver range) from both ECG electrode configuration in at least one recording 

site. The percentage of sites where DFdriver was more frequently identified in BC or 

unipolar electrodes greatly varies for different models of this ‘category’. In 7 models the 

DFdriver could only be identified by means of BC electrodes, while detecting DFdriver 

by unipolar ECG only and not by BC was found in only 1 case (model 28). Failure to 
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identify DFdriver by both unipolar and BC ECGs occurred in 5 models. There was no 

apparent relationship between the size of the atrial region at DFdriver and its detectability 

on the body surface with the two different electrode configurations. While it was true that 

in all models with more than 30% of atrial nodes in DFdriver range, the frequency of the 

driver was detected by both configurations, in models with <30% of nodes it could be 

detected by both, only by BC or by none of the electrode configurations. For models with 

abnormally small atrial regions (5-10%), activity at DFdriver was detected on the body 

surface by both, only one or no electrode configuration, which indicates the important 

role of the position of the driving region. However, it should be highlighted that the BC 

configuration succeeded in identifying DFdriver in 25 of the 31 models (80%), while 

unipolar only did so in 19 (61%). Indeed, the Wilcoxon signed rank (paired) test indicated 

that the percentage of electrodes in which the DFdriver was identified in BC surface 

records was significantly higher than in simultaneous unipolar records (p-value 0.0095).  

 

Figure 7 Percentage of epicardial nodes and surface ECG recording sites (BC: bipolar concentric, 

Unipolar: disc) at atrial fibrillation driver frequency per model. 
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We further investigated the influence of the location of the AF driver in the left (14 

models, LA) or right atrium (17 models, RA) in identifying its frequency in unipolar and 

BC-ECG recordings. The results are summarised in Table 1. When rotor activity was in 

the LA, surface rotor activity (DF at DFdriver ± 0.25 Hz) was identified in at least one 

torso position in 57% of the cases for unipolar electrodes and in 71% of those for BC 

electrodes, the average percentage of electrodes at the DFdriver being ± 0.25 Hz of 6.7% 

and 11.0% for unipolar and BC electrodes, respectively. For models with rotor activity in 

the right atrium (RA), surface rotor activity was identified in at least one torso position in 

65% of the cases for unipolar electrodes and in 88% for BC, with an average percentage 

of electrodes at DFdriver of ± 0.25 Hz of 17.9% and 25.6% for unipolar and BC 

electrodes. As expected therefore, BC electrodes presented significantly higher 

detectability of surface rotor activity than unipolar electrodes, regardless of whether the 

rotor was in LA or RA. The detectable percentage of atrial high-frequency activity is 

lower in those with the rotor in LA than those in RA, both for unipolar and BC recordings. 

 

  % of Models  % of Electrodes (mean) 

  LA  RA  LA  RA 

Unipolar  57%  65%  6.7%  17.9% 

BC  71%  88%  11.0%  25.6% 

Table 1 DFdriver identification according to the atrial side. LA: left atrium; RA: right atrium. 

 

4 Discussion 

The important features of AF drivers present on surface electrical recordings can be used 

to stratify and guide ablation procedures [35]. Spectral analysis provides information on 

the activation rate of the atria; areas with high frequency are suspected of driving the 

cardiac rhythm in patients with AF and these therefore are targets for catheter ablation 
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[15]. This manuscript compares different estimators to identify these high frequency 

regions in the atria from EGM recordings. It also presents a new BSPM system using 

concentric ring electrodes, which enhanced the accuracy of DFdriver identification on the 

torso signals.   

4.1 DFdriver identification in EGM 

Fourier Transform-based estimations have been used to identify DFdriver in 

endocardial electrograms during invasive electrophysiological procedures [40]. To avoid 

the poor resolution of time varying spectra computed in short analysis windows, 

autoregressive spectral analysis was proposed to estimate DF in short EGM segments 

[14][15]. In Salinet et al, AR and PD techniques were applied to EGM segments about 7s 

long, obtaining similar results for both techniques in DFdriver identification [15], which 

agrees with the present results [15]. However, although several techniques have been 

proposed for AF source identification as the highest dominant frequency, organisation 

and regularization indexes, phase singularities or fractionated atrial electrograms, none of 

these has become a gold standard, resulting in controversial results across different 

clinical studies [41][42]. In the present work, we analysed not only the effect of the 

spectral estimator, but also the performance of harmonics removal and the use of the 

P90th, P95th and P98th percentiles of the DF distribution in the atrium to obtain a more 

robust spectral estimator of the high frequency atria activity, DFdriver (HDF), against 

possible outliers associated with the maximum dominant frequency. This approach is 

novel in the literature and the results indicate that the best DFdriver estimation was 

obtained with the AR method and the 95th percentile, HDF95_AR100, with no significant 

differences with HDF95_PD. (p<0.001, Wilcoxon signed test), but with considerable 

differences regarding the use of the P90th and P98th percentiles. 
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4.2 AF surface mapping 

As for surface ECG recordings, in the arrhythmologic field body surface potential 

mapping (BSPM) has been devoted to detecting signs of susceptibility to arrhythmias and 

identifying their sites of origin [43], for which activation maps identifying fiducial ECG 

points from BSPM recordings from unipolar electrodes were traditionally obtained [44]. 

However, several studies have shown that in the case of AF, dominant frequency analysis 

is more stable than activation times in describing the AF electrical activity [32]. 

Moreover, DF maps obtained by FFT from the BSPM of unipolar electrodes identified 

the atrium harbouring the DFdriver site and the presence of a gradient in activation 

frequencies across the atria, not only the global activation rate of the whole atrial tissue 

[21]. They can also assess the effectiveness of ablation therapy in restoring sinus rhythm 

[45][21].  

Detecting the site(s) driving AF by BSPM could result in a rapid, noninvasive and 

personalized diagnosis and treatment of AF patients. However, surface frequency maps 

only provide an overall estimation of the location of the highest atrial DF site, but not 

those at the specific DFdriver location [21]. As previously mentioned, increasing spatial 

resolution to enhance detection of the arrhythmia origin not only depends on increasing 

the number of electrodes on the torso surface, as unipolar ECG recordings are highly 

affected by the blurring effect of the torso volume conductor [29][46]. 

Electrocardiographic Imaging (ECGI) for mathematically reconstructing epicardial 

activity has been shown to be an effective tool for mapping DF during AF and has been 

validated against intracardiac panoramic electrograms [39]. Although this technique can 

increase DF mapping resolution at the expense of introducing a patient-specific anatomy, 

robust spectral and DF estimation methods are also required for the ECGI pipeline and 
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further research should be conducted to study whether CREs can also help in ECGI 

solutions and the best spectral estimators for this non-invasive technique.     

4.3 Laplacian ECG recordings 

Surface Laplacian ECG recordings have emerged as an alternative that can overcome 

the limitations of BSPM spatial resolution [47]. Body surface Laplacian mapping 

estimated by the spline technique reveals high-resolution surface mapping of normal 

atrial depolarization compared to the smooth patterns of the BSPMs, which may possibly 

be associated with atrial activation wavefronts [19]. Instead of using discretization 

techniques and monopolar electrodes, surface Laplacian can be directly estimated by 

concentric ring electrodes [48][49]. This type of electrode has been used to estimate the 

Laplacian of the surface bioelectric potential in many applications such as 

electroencephalography[50][51], skeletal electromyography [52] and gastroenterology 

[53][54].Several studies have assessed the capability of CRE electrodes to pick up high-

local resolution ECG signals for electrocardiography. In this regard, local cardiac activity, 

as in the case of the P1 and P2 atrial waves, was identified in BC-ECG surface records, 

while they were difficult to distinguish in precordial leads, commonly used in out-patient 

clinics, since disc electrode recordings  are more affected by the volume conductor 

effect, as previously mentioned [46][29]. In addition, BC-ECG signals recorded in a 

position comparable to the V1 precordial lead proved to be better at picking up atrial 

activity than standard 12-Lead ECG, providing the best combination of detectability and 

normalized amplitude of the P wave [27]. 

Considering the enhanced spatial sensitivity of CRE, body surface Laplacian 

potential maps have been used to obtain moment of activation (MOA) isochronal maps 

in healthy subjects, suggesting their potential use by clinicians in diagnosing arrhythmias 

and assessing the efficacy of therapies [55]. However, as far as we are concerned, this is 
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the first study to assess the capacity of BC-ECG signals to identify the DFdriver in AF. 

In this regard, in the present work we found that in general the higher the percentage of 

internal nodes at the DFdriver, the higher the number of surface recordings in which DF 

in the DFdriver range were identified, but not always. The study of the atrial zones in the 

DFdriver for the 31 models analysed revealed that the capacity to identify these drivers 

depends on the proximity of the affected atrial area to the chest surface. For instance, in 

model 3 the percentage of internal electrodes at DFdriver is quite high (about 13%) but 

no surface electrode was able to detect this activity, which involves a deep atrial area 

facing into the chest cavity. Something similar occurs in models 21 and 22, which 

highlight that both proximity to the body surface and the orientation of the atrial tissue 

may influence the detection of AF foci. However, the results showed that BC-ECG 

recordings were better than unipolar recordings in identifying the DFdriver in AF 

situations (80% of the cases vs. 61%, respectively). This is probably due to enhanced 

spatial resolution and greater attenuation of far field CRE components, in comparison to 

disc electrodes. In this latter, the activity of the atrial region harbouring a DFdriver can 

be more easily masked by other more distant but larger atrial regions. This result agrees 

with theoretical studies of the two-dimensional spatial transfer function and supports 

CREs being more sensitive to vertical dipole sources closer to the electrode and less to 

distant dipoles than recordings with disk electrodes [56]. In the present work we also 

found that surface uptake of DFdriver-associated activities easier for the models in which 

the rotor is in the right atrium than those in which it is in the left. This could be attributed 

to the better reflection of right atrial activity on the torso, since the right atrium is closer 

to the anterior torso than the left atrium to the posterior torso. 
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4.4 Limitations and future studies 

Dynamic torso models can simulate breathing in aspects such as (1) conduction 

conditions and (2) geometrical distances of the moving heart and moving torso surface. 

In this study we used a static torso model in which the effect of respiration and the 

variation in distance between heart and recording electrodes was not taken into account. 

Even though it would be advisable to consider these effects in future work, we did not 

think it necessary for the objectives of the present study, since it would not have had a 

great effect on the comparison between the different HDF estimation methods assessed, 

or the comparison of the capacity of unipolar and BC-ECG recordings to non-invasively 

pick up HDF activity. In the specific case of breathing, as its frequency is below 0.3 Hz, 

it does not significantly affect the proposed analysis. 

BC-ECG captures the bioelectric activity focused on the central recording point of 

the CRE and reduces the volume conductor effect more than conventional unipolar 

electrodes and seems to precisely locate the sources attributable to the DFdriver of atrial 

fibrillation and thus the ablation target area by non-invasive recording (inverse problem). 

Even using realistic multi-layer BEM models or FEM models that consider the 

individualized anatomy of the patient's torso obtained from images, differences in terms 

of the arrangement and features of the different layers of tissue now provide different 

volume conductor effects [23][57] and solving the inverse problem from conventional 

ECG recordings remains a challenge for the scientific-technical community, so that 

invasive methods are still necessary to determine the injured area origin of the DFdriver 

of atrial fibrillation. Experimental recordings will confirm the present results by 

simulations, analysing their robustness to factors such as the blurring effect of the volume 

conductor or the signal-to-noise ratio of the recordings. However, there is still further to 

go before we can determine whether the combination of body surface Laplacian ECG 
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mapping with CRE and cardiac images will provide a non-invasive tool for diagnosis, 

prognosis and ablation targeting of cardiac arrhythmias [58]. 

5 Conclusions 

Parametric and non-parametric techniques were assessed for epicardial DFdriver 

identification, obtaining very similar results when using the P95 of the DFs worked out 

using a periodogram and an order 100 autoregressive parametric model (AR100), this last 

being the one with the best coincidence with the DFdriver (MSE 0.005Hz) but without a 

significant difference. We assessed the capacity to identify the DFdriver non-invasively 

by means of BSPM with unipolar and CREs. In general, the higher the epicardial nodes 

at the DFdriver, the higher the number of surface recordings in which the DFdriver is 

detected. However, the orientation of the atrial region in which the DFdriver is located 

seems to be another important factor that influences the identification of this activity on 

surface recordings, especially when the affected atrial area is small. In any case, the 

results revealed that BC-ECG signals from CRE can detect atrial fibrillation activity on 

the surface better than unipolar signals from disc electrodes in the same positions: the BC 

configuration succeeded in identifying the DFdriver in 25 out of the 31 models (80%), 

while unipolar only did so in 19 (61%). BC-ECG signals from BSPM with CRE could 

therefore be helpful for better AF diagnosis, prognosis and in planning ablation 

procedures.  

Funding: This work was supported by the Spanish Ministry of Economy and 

Competitiveness (PID2020-114291RB-I00) and the Instituto de Salud Carlos III, the 

European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-

I00-AR, PI17/01106), EIT Health (Activity code 19600, EIT Health is supported by EIT, 



 

26 
 

a body of the European Union) and the Generalitat Valenciana (AICO/2021/318, 

AICO/2021/126 and AICO/2019/220). 

References 

[1] C. W. G Hindricks, T Potpara, N Dagres, E Arbelo, JJ Bax, C Blomström-Lundqvist, G 

Boriani, M Castella, GA Dan, PE Dilaveris, L Fauchier, G Filippatos, JM Kalman, M La 

Meir, DA Lane, JP Lebeau, M Lettino, GYH Lip, FJ Pinto, GN Thomas, M Valgimigli, 

IC Van Gelde, “2020 ESC Guidelines for the Diagnosis and Management of Arrial 

Fibrillation Developed in Collaboration With the European Association of Cardio-

Thoracic Surgery (EACTS),” Eur. Heart J. 

[2] M. Velleca, G. Costa, L. Goldstein, M. Bishara, and L. Ming Boo, “A Review of the 

Burden of Atrial Fibrillation: Understanding the Impact of the New Millennium Epidemic 

across Europe,” EMJ Eur. Med. J., vol. 110, 2019. 

[3] J. Kornej et al., “Epidemiology of Atrial Fibrillation in the 21st Century,” Circ. Res., vol. 

127, pp. 4–20, Jun. 2020. 

[4] M. S. Spach, J. F. Heidlage, P. C. Dolber, and R. C. Barr, “Mechanism of origin of 

conduction disturbances in aging human atrial bundles: experimental and model study,” 

Hear. Rhythm, vol. 4, no. 2, pp. 175–185, Feb. 2007. 

[5] C. Pearman, A. Trafford, D. Eisner, and K. Dibb, “218 Action Potential Alternans in the 

Ageing Ovine Atria,” Heart, vol. 100, no. Suppl 3, pp. A119–A120, Jun. 2014. 

[6] S. V. Pandit and J. Jalife, “Aging and atrial fibrillation research: where we are and where 

we should go,” Hear. Rhythm, vol. 4, no. 2, pp. 186–187, Feb. 2007. 

[7] A. A. Mashat et al., “Atrial fibrillation: risk factors and comorbidities in a tertiary center 

in Jeddah, Saudi Arabia,” Int. J. Gen. Med., vol. 12, p. 71, 2019. 

[8] S. Fumagalli et al., “Atrial fibrillation after electrical cardioversion in elderly patients: a 

role for arterial stiffness? Results from a preliminary study,” Aging Clin. Exp. Res., vol. 

28, no. 6, pp. 1273–1277, Dec. 2016. 

[9] H. Ogawa et al., “Progression from paroxysmal to sustained atrial fibrillation is associated 



 

27 
 

with increased adverse events,” Stroke, vol. 49, no. 10, pp. 2301–2308, 2018. 

[10] R. Mandapati, A. Skanes, J. Chen, O. Berenfeld, and J. Jalife, “Stable microreentrant 

sources as a mechanism of atrial fibrillation in the isolated sheep heart,” Circulation, vol. 

101, no. 2, pp. 194–199, Jan. 2000. 

[11] M. Mansour, R. Mandapati, O. Berenfeld, J. Chen, F. H. Samie, and J. Jalife, “Left-to-

Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep 

Heart,” Circulation, vol. 103, no. 21, pp. 2631–2636, May 2001. 

[12] P. Sanders et al., “Electrophysiologic and clinical consequences of linear catheter ablation 

to transect the anterior left atrium in patients with atrial fibrillation,” Hear. Rhythm, vol. 

1, no. 2, pp. 176–184, Jul. 2004. 

[13] F. Atienza et al., “Real-time dominant frequency mapping and ablation of dominant 

frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-

term maintenance of sinus rhythm,” Hear. Rhythm, vol. 6, no. 1, pp. 33–40, Jan. 2009. 

[14] S. M. Kay, Modern spectral estimation : theory and application. Prentice Hall, 1987. 

[15] J. L. Salinet, N. Masca, P. J. Stafford, G. A. Ng, and F. S. Schlindwein, “Three-

dimensional dominant frequency mapping using autoregressive spectral analysis of atrial 

electrograms of patients in persistent atrial fibrillation,” Biomed. Eng. Online, vol. 15, no. 

1, 2016. 

[16] M. Fereniec, G. Stix, M. Kania, T. Mroczka, and R. Maniewski, “An Analysis of the U-

Wave and Its Relation to the T-Wave in Body Surface Potential Maps for Healthy Subjects 

and MI Patients,” Ann. Noninvasive Electrocardiol., vol. 19, no. 2, pp. 145–156, Mar. 

2014. 

[17] M. Meo et al., “Insights Into the Spatiotemporal Patterns of Complexity of Ventricular 

Fibrillation by Multilead Analysis of Body Surface Potential Maps,” Front. Physiol., vol. 

11, p. 1116, Sep. 2020. 

[18] V. Kommata, M. Elshafie, E. Sciaraffia, M. Perez, R. Augustine, and C. Blomström-

Lundqvist, “QRS dispersion detected in ARVC patients and healthy gene carriers using 

252-leads body surface mapping: an explorative study of a potential diagnostic tool for 



 

28 
 

arrhythmogenic right ventricular cardiomyopathy,” PACE - Pacing Clin. Electrophysiol., 

vol. 44, no. 8, pp. 1355–1364, Aug. 2021. 

[19] J. Lian et al., “Body surface Laplacian mapping of atrial depolarization in healthy human 

subjects,” vol. 40, no. 6, pp. 650–659, Nov. 2002. 

[20] A. Bollmann, N. K. Kanuru, K. K. McTeague, P. F. Walter, D. B. DeLurgio, and J. J. 

Langberg, “Frequency Analysis of Human Atrial Fibrillation Using the Surface 

Electrocardiogram and Its Response to Ibutilide,” Am. J. Cardiol., vol. 81, no. 12, pp. 

1439–1445, Jun. 1998. 

[21] G. MS et al., “Noninvasive localization of maximal frequency sites of atrial fibrillation by 

body surface potential mapping,” Circ. Arrhythm. Electrophysiol., vol. 6, no. 2, pp. 294–

301, Apr. 2013. 

[22] J. Liu et al., “Intrinsically stretchable electrode array enabled in vivo electrophysiological 

mapping of atrial fibrillation at cellular resolution,” Proc. Natl. Acad. Sci., vol. 117, no. 

26, pp. 14769–14778, Jun. 2020. 

[23] F. J. Vanheusden et al., “Systematic differences of non-invasive dominant frequency 

estimation compared to invasive dominant frequency estimation in atrial fibrillation,” 

Comput. Biol. Med., vol. 104, p. 299, Jan. 2019. 

[24] H. B, “Brain electric source imaging: scalp Laplacian mapping and cortical imaging.,” 

Crit. Rev. Biomed. Eng., vol. 27, no. 3–5, pp. 149–188, Jan. 1999. 

[25] B. He, X. Yu, D. Wu, and N. Mehdi, “Body surface Laplacian mapping of bioelectrical 

activity,” Methods Inf.Med., vol. 36, no. 4–5, pp. 326–328, 1997. 

[26] H. B, C. RJ, B. He, and R. J. J. Cohen, “Body surface Laplacian ECG mapping,” IEEE 

Trans.Biomed.Eng, vol. 39, no. 11, pp. 1179–1191, Nov. 1992. 

[27] G. Prats-Boluda, Y. Ye-Lin, J. M. Bueno-Barrachina, R. Rodriguez De Sanabria, and J. 

Garcia-Casado, “Towards the clinical use of concentric electrodes in ECG recordings: 

Influence of ring dimensions and electrode position,” Meas. Sci. Technol., vol. 27, no. 2, 

2016. 

[28] D. Farina and C. Cescon, “Concentric-ring electrode systems for noninvasive detection of 



 

29 
 

single motor unit activity,” IEEE Trans. Biomed. Eng., vol. 48, no. 11, pp. 1326–1334, 

Nov. 2001. 

[29] G. Prats-Boluda, Y. Ye-Lin, F. Pradas-Novella, E. Garcia-Breijo, and J. Garcia-Casado, 

“Textile Concentric Ring Electrodes: Influence of Position and Electrode Size on Cardiac 

Activity Monitoring,” J. Sensors, vol. 2018, pp. 1–9, Jul. 2018. 

[30] O. Dössel, M. W. Krueger, F. M. Weber, M. Wilhelms, and G. Seemann, “Computational 

modeling of the human atrial anatomy and electrophysiology,” Med. Biol. Eng. Comput. 

2012 508, vol. 50, no. 8, pp. 773–799, Jun. 2012. 

[31] J. T. Koivumäki, G. Seemann, M. M. Maleckar, and P. Tavi, “In Silico Screening of the 

Key Cellular Remodeling Targets in Chronic Atrial Fibrillation,” PLOS Comput. Biol., 

vol. 10, no. 5, p. e1003620, 2014. 

[32] M. Rodrigo et al., “Highest dominant frequency and rotor positions are robust markers of 

driver location during noninvasive mapping of atrial fibrillation: A computational study,” 

Hear. Rhythm, vol. 14, no. 8, pp. 1224–1233, Aug. 2017. 

[33] J. J. Bailey et al., “Recommendations for standardization and specifications in automated 

electrocardiography: bandwidth and digital signal processing. A report for health 

professionals by an ad hoc writing group of the Committee on Electrocardiography and 

Cardiac Electrophysiology of the Council on Clinical Cardiology, American Heart 

Association.,” Circulation, vol. 81, no. 2, pp. 730–739, 1990. 

[34] P. R. Rijnbeek, J. A. Kors, and M. Witsenburg, “Minimum Bandwidth Requirements for 

Recording of Pediatric Electrocardiograms,” Circulation, vol. 104, no. 25, pp. 3087–3090, 

Dec. 2001. 

[35] J. Pedrón-Torrecilla et al., “Noninvasive Estimation of Epicardial Dominant High-

Frequency Regions During Atrial Fibrillation,” J. Cardiovasc. Electrophysiol., vol. 27, no. 

4, pp. 435–442, Apr. 2016. 

[36] B. M. Horáček and J. C. Clements, “The inverse problem of electrocardiography: A 

solution in terms of single- end double-layer sources on the epicardial surface,” Math. 

Biosci., vol. 144, no. 2, pp. 119–154, Sep. 1997. 



 

30 
 

[37] M. Rodrigo et al., “Minimal configuration of body surface potential mapping for 

discrimination of left versus right dominant frequencies during atrial fibrillation,” Pacing 

Clin. Electrophysiol., vol. 40, no. 8, pp. 940–946, Aug. 2017. 

[38] F. Castells, R. Cervigón, and J. Millet, “On the Preprocessing of Atrial Electrograms in 

Atrial Fibrillation: Understanding Botteron’s Approach,” Pacing Clin. Electrophysiol., 

vol. 37, no. 2, pp. 133–143, Feb. 2014. 

[39] M. Rodrigo et al., “Non-invasive Spatial Mapping of Frequencies in Atrial Fibrillation: 

Correlation With Contact Mapping,” Front. Physiol., p. 1727, Jan. 2021. 

[40] X. Li et al., “Automatic Extraction of Recurrent Patterns of High Dominant Frequency 

Mapping During Human Persistent Atrial Fibrillation,” Front. Physiol., vol. 12, p. 286, 

Mar. 2021. 

[41] J. L. Salinet, J. H. Tuan, A. J. Sandilands, P. J. Stafford, F. S. Schlindwein, and G. André 

Ng, “Distinctive patterns of dominant frequency trajectory behavior in drug-refractory 

persistent atrial fibrillation: Preliminary characterization of spatiotemporal instability,” J. 

Cardiovasc. Electrophysiol., vol. 25, no. 4, pp. 371–379, 2014. 

[42] T. P. Almeida et al., “Minimizing discordances in automated classification of fractionated 

electrograms in human persistent atrial fibrillation,” Med. Biol. Eng. Comput., vol. 54, no. 

11, pp. 1695–1706, Nov. 2016. 

[43] L. De Ambroggi and C. Santambrogio, “Clinical Use of Body Surface Potential Mapping 

in Cardiac Arrhythmias,” Physiol Res, vol. 42, pp. 137–140, 1993. 

[44] R. M. Gage, A. E. Curtin, K. V. Burns, S. Ghosh, J. M. Gillberg, and A. J. Bank, “Changes 

in electrical dyssynchrony by body surface mapping predict left ventricular remodeling in 

patients with cardiac resynchronization therapy,” Hear. Rhythm, vol. 14, no. 3, pp. 392–

399, Mar. 2017. 

[45] S. P et al., “Spectral analysis identifies sites of high-frequency activity maintaining atrial 

fibrillation in humans,” Circulation, vol. 112, no. 6, pp. 789–797, Aug. 2005. 

[46] J. V. J. Lidón-Roger et al., “Textile Concentric Ring Electrodes for ECG Recording Based 

on Screen-Printing Technology,” Sensors, vol. 18, no. 1, p. 300, Jan. 2018. 



 

31 
 

[47] K. Umetani, Y. Okamoto, S. Mashima, K. Ono, H. Hosaka, and B. He, “Body Surface 

Laplacian Mapping in Patients with Left or Right Ventricular Bundle Branch Block,” 

Pacing Clin. Electrophysiol., vol. 21, no. 11, pp. 2043–2054, Nov. 1998. 

[48] O. Makeyev, W. G. Besio, O. Makeyev, and W. G. Besio, “Improving the Accuracy of 

Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring 

Electrodes,” Sensors, vol. 16, no. 6, p. 858, Jun. 2016. 

[49] J. Garcia-Casado, Y. Ye-Lin, G. Prats-Boluda, and O. Makeyev, “Evaluation of bipolar, 

tripolar, and quadripolar laplacian estimates of electrocardiogram via concentric ring 

electrodes,” Sensors (Switzerland), vol. 19, no. 17, Sep. 2019. 

[50] W. G. Besio et al., “High-Frequency Oscillations Recorded on the Scalp of Patients With 

Epilepsy Using Tripolar Concentric Ring Electrodes,” IEEE J. Transl. Eng. Heal. Med., 

vol. 2, 2014. 

[51] Y. Boudria, A. Feltane, and W. Besio, “Significant improvement in one-dimensional 

cursor control using Laplacian electroencephalography over electroencephalography,” J. 

Neural Eng., vol. 11, no. 3, p. 035014, Jun. 2014. 

[52] T. Hiyama, S. Sakurazawa, M. Toda, J. Akita, K. Kondo, and Y. Nakamura, “Motion 

estimation of five fingers using small concentric ring electrodes for measuring surface 

electromyography,” in 2014 IEEE 3rd Global Conference on Consumer Electronics, 

GCCE 2014, 2014, pp. 376–380. 

[53] J. Garcia-Casado, V. Zena-Gimenez, G. Prats-Boluda, and Y. Ye-Lin, “Enhancement of 

non-invasive recording of electroenterogram by means of a flexible array of concentric 

ring electrodes,” Ann. Biomed. Eng., vol. 42, no. 3, 2014. 

[54] G. Prats-Boluda, J. Garcia-Casado, J. L. Martinez-de-Juan, and Y. Ye-Lin, “Active 

concentric ring electrode for non-invasive detection of intestinal myoelectric signals,” 

Med. Eng. Phys., vol. 33, no. 4, pp. 446–455, May 2011. 

[55] W. Besio and T. Chen, “Tripolar Laplacian electrocardiogram and moment of activation 

isochronal mapping,” Physiol Meas., vol. 28, no. 5, pp. 515–529, May 2007. 

[56] C. C. Lu and P. P. Tarjan, “Pasteless, Active, Concentric Ring Sensors for Directly 



 

32 
 

Obtained Laplacian Cardiac Electrograms,” J.Med.Biol.Eng., vol. 22, pp. 199–203, 2002. 

[57] Z. Zhou, Q. Jin, L. Y. Chen, L. Yu, L. Wu, and B. He, “Noninvasive Imaging of High-

Frequency Drivers and Reconstruction of Global Dominant Frequency Maps in Patients 

with Paroxysmal and Persistent Atrial Fibrillation,” IEEE Trans. Biomed. Eng., vol. 63, 

no. 6, pp. 1333–1340, Jun. 2016. 

[58] H. Cochet et al., “Cardiac Arrythmias: Multimodal Assessment Integrating Body Surface 

ECG Mapping into Cardiac Imaging,” https://doi.org/10.1148/radiol.13131331, vol. 271, 

no. 1, pp. 239–247, Dec. 2013. 

 

 
 

  



 

33 
 

Summary 

The prevalence of atrial fibrillation (AF) has tripled in the last 50 years due to population 

aging and survival with chronic diseases turning into an epidemic. High-frequency 

activated atrial regions (DFdriver) lead the activation of the rest of the atria, disrupting of 

the propagation wavefront. The identification of DFdriver sources would help diagnose 

AF and plan ablation procedures. Fourier based spectral analysis of body surface potential 

maps (BSPM) has been proposed for non-invasively dealing with DFdriver identification. 

However, these approaches present serious drawbacks due to the limited temporal 

resolution of the Fourier Transform for short AF epochs and the blurring effect of the 

volume conductor associated with unipolar ECG recordings in BSPM. In this work we 

aimed: -to determine the best estimator of the DFdriver frequency in endocardial 

electrograms by the non-parametric (periodogram, PD) and parametric (autoregressive, 

AR) spectral estimators to determine the percentiles (P90th, P95th or P98th) to be 

imposed on the DFs estimated across the whole atria to define the highest dominant 

frequency (HDF); and -to assess the capability of surface unipolar and bipolar concentric 

ECG signals (BC-ECG) from concentric ring electrodes (CRE) to identify atrial 

fibrillation activity. Realistic tridimensional models of the atria electrical activity and the 

torso, on which unipolar and CRE were placed, were simulated during different AF 

episodes. The results revealed that the best DFdriver estimator (HDF) was better 

represented by P95th and parametric AR order 100 estimator, (HDF95_AR100, MSE 

0.005Hz), followed by percentile P95th from PD (HDF95_PD, MSE 0.010 Hz). The greater 

the epicardial area at DFdriver, the higher the number of surface recordings in which the 

DFdriver is detected. However, the location and orientation of the atrial fibrillation region 

influence its identification on the torso surface. Nevertheless, BC-ECG signals allowed 

better detection than unipolar signals, and the percentage of electrode locations for BC-
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ECG records in which DFdriver was identified was significantly higher than in 

simultaneous unipolar records (p-value 0.0095, Wilcoxon paired test). The use of BC-

ECG signals for body surface Laplacian potential mapping with CRE could thus be 

helpful for better AF diagnosis, prognosis and in ablation procedures than those with 

conventional disc electrodes. 

 


