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Discriminative Kernel Convolution Network for Multi-Label Ophthalmic
Disease Detection on Imbalanced Fundus Image Dataset

Amit Bhati, Neha Gour, Pritee Khanna and Aparajita Ojha

Abstract— It is feasible to recognize the presence and serious-
ness of eye disease by investigating the progressions in retinal
biological structure. Fundus examination is a diagnostic procedure
to examine the biological structure and anomaly of the eye. Oph-
thalmic diseases like glaucoma, diabetic retinopathy, and cataract
are the main reason for visual impairment around the world. Ocular
Disease Intelligent Recognition (ODIR-5K) is a benchmark struc-
tured fundus image dataset utilized by researchers for multi-label
multi-disease classification of fundus images. This work presents
a discriminative kernel convolution network (DKCNet), which ex-
plores discriminative region-wise features without adding extra
computational cost. DKCNet is composed of an attention block
followed by a squeeze and excitation (SE) block. The attention
block takes features from the backbone network and generates
discriminative feature attention maps. The SE block takes the
discriminative feature maps and improves channel interdependen-
cies. Better performance of DKCNet is observed with Inception-
Resnet backbone network for multi-label classification of ODIR-
5K fundus images with 96.08 AUC, 94.28 F1-score and 0.81 kappa
score. The proposed method splits the common target label for
an eye pair based on the diagnostic keyword. Based on these
labels oversampling and undersampling is done to resolve class
imbalance. To check the biasness of proposed model towards
training data, the model trained on ODIR dataset is tested on three
publicly available benchmark datasets. It is found to give good
performance on completely unseen fundus images also.

Index Terms— Multi-Label Classification, Channel Shuf-
fle, Discriminative Kernel Convolution, Fundus Image,
ODIR-5K.

I. INTRODUCTION

OPhthalmic diseases are leading cause of blindness worldwide.
A report published by the world health organization (WHO) in

2021 says that around 2.2 billion people are visually impaired, and
almost half of these are preventable based on timely detection and
treatment [1]. The human retina is a light-sensitive layer of tissues
in the rear end of the eye. The incident light is converted into neural
signals through the receptors on retina and handled by the brain’s
visual cortex to generate a picture. The retina gets affected by dif-
ferent abnormalities which influences vision [2]. Fundus, fluorescein
angiography, and optical coherence tomography (OCT) are standard
modalities used by experts to investigate ophthalmic diseases [3].
Fundus imaging is the primary image modality utilized for clinical
examination of ophthalmic diseases.

The presence of ophthalmic diseases can be recognized by ob-
serving abnormalities close to different retinal areas like optic nerve,
veins, macula, optic plate, etc. Early identification of retinal abnor-
malities depicted in Fig 1 is crucial, yet difficult, as a few signs
appear in the beginning stage. Deep Neural Networks (DNN) are
effectively utilized for retinal vessel segmentation, lesion detection
[5], [6], and glaucoma or diabetic retinopathy stage classification
[7], [8]. Traditional single-label classification, also known as multi-
class classification, includes a single class label for each instance.
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Fig. 1. Fundus image of an eye with different kinds of abnormalities [4].

However, ophthalmic disease classification is a complex problem as
multiple labels may be associated with a single instance. Among
various publicly available fundus image datasets, only Ocular Disease
Intelligent Recognition (ODIR-5K) dataset [9] presents the real-life
challenge of multi-class multi-label ophthalmic disease detection.
However, ODIR-5K is an imbalanced dataset. The biasing towards
the majority class in an imbalanced dataset affects models’ training
and classification accuracy.

This work presents a DNN based framework for multi-label
ophthalmic diseases classification of the fundus image. The proposed
architecture improves multi-label classification accuracy by handling
the issue of class imbalance in the fundus image dataset. The
proposed dilated convolution based attention network named Discrim-
inative Kernel Convolution Network (DKCNet) can simultaneously
detect multiple lesion parts related to ophthalmic diseases appearing
in a fundus image. Different backbone models are also used to
evaluate their efficiency for multi-label classification. The proposed
DKCNet achieves better performance for ophthalmic disease classi-
fication as compared to the methods proposed in the literature.

The work is organized as follows. Section II connects retinal
abnormalities in fundus images with ophthalmic diseases. State-of-
the-art techniques for fundus image classification are discussed in
Section III. Section IV describes the proposed transfer learning based
DKCNet model for fundus image classification. The dataset used
for experimental evaluation is also discussed here. The results are
discussed in Section V and the work is concluded in Section VI.

II. OPHTHALMIC DISEASES IDENTIFIED THROUGH
RETINAL ABNORMALITIES IN FUNDUS IMAGES

Fig. 2 shows fundus images belonging to different disease classes
from the ODIR-5K dataset. Glaucoma is an eye condition that affects
the optic nerve, whose strength is crucial for good vision. This harm
is typically caused by an unusually high pressure in the eye [10].
Glaucoma can be distinguished by noticing changes in the proportion
of the optic disc cup and neuro-retinal edge surface region known as
the cup-to-disc ratio. Diabetic retinopathy is a diabetes intricacy that
influences the tissues inside the retina. Diabetic retinopathy may not
show any adverse indications, and patients may have minor issues
related to clear vision. However, it may lead to visual impairment
if not treated at an earlier stage. The macula is liable for clear
central vision, and the distortion in vision starts if liquids collect
in it. Age-related Macular Degeneration (AMD) can be distinguished
by noticing the growth of fresh blood vessels or the presence of dead
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Fig. 2. Fundus images of different disease classes from ODIR-5K dataset [9].

retinal cells known as neovascularization and geographic atrophy,
respectively [11]. The cause of cataracts includes the development
of patches that make vision difficult [12]. The presence of cataracts
can be observed as optic disc, fovea, and other parts of the eye
become hazy. Hypertension is a silent illness. This disease changes
the biological shapes of veins, like length and thickness, and results
in cardiovascular disease, stroke, and respiratory failures over the
long run [13]. Myopia is a kind of eye issue that causes critical
vision loss because of diminishing epithelial tissues and change in
eye color. It fundamentally modifies the visualization of any object
from a certain distance by making them blurred. The fundus images
can also be used to detect some other kind of anomalies like pigment
epithelium proliferation, the epiretinal membrane, tessellated fundus,
and vitreous macular degeneration.

III. RELATED WORKS

Deep learning in ocular imaging can be used in conjunction with
telemedicine as a possible solution for selecting, diagnosing, and con-
trolling ophthalmic diseases for patients in primary care [14]. Recent
advances in neural network approaches are at the forefront of state-
of-the-art disease recognition systems [15], [16]. Many researchers
have made significant efforts to resolve the multi-label classification
problem of ophthalmic disease. All these works are simulated on the
publicly available ODIR-5K dataset.

Islam et al. [17] proposed a shallow CNN-based model trained
from scratch for classification of fundus images of ODIR-5K dataset.
The left and right eye fundus images are input to the CNN model
independently, and the disease label is assigned accordingly. Their
approach made the disease classification model less complex, but
their model is not able to distinguish multiple disease. Wang et al.
[18] preprocessed fundus images using gray and color histogram
equalization. Various data augmentation techniques are also used. The
preprocessed gray and colored images are applied to two parallel
EfficientNet models, and feature concatenation is done at the last
layer for final classification. But they are able to achieve only 73%
AUC and 88 % F1-Score on ODIR-5K dataset.

Li et al. [19] proposed a dense correlation network (DCNet) using
transfer learning based ResNet architecture. The spatial correlation
module (SCM) is the basic building block of this network archi-
tecture. The SCM block defines pixel-wise dense correlation be-
tween features extracted from color fundus images. These correlated

features are fused to create the final feature map for classifying
ophthalmic disease classes of ODIR-5K dataset with 93% AUC
and 91.3% F1-score. Similarly, Gour and Khanna [20] proposed a
pre-trained, two-input CNN architecture for the ODIR-5K dataset.
They applied left and right eye fundus images to two parallel pre-
trained VGG-16 simultaneously to extract the features [21], which
are concatenated to create a final feature map. In spite of the use of
VGG model, they failed to beat the performance of [19].

Li et al. [22] chose VGG-16, ResNet, Inception-v4, and Densenet
[23] architectures with the sum, multiply, and concatenate operations
on features extracted from the baseline model. They found that
element-wise sum operation on feature maps yields better abnormal-
ity detection compared to the other two methods. Lin et al. [24]
proposed a graph convolution network (GCN) based self-supervising
learning model known as MGC-Net. GCN is utilized to capture
contextual information for multi-label fundus images whereas self-
supervising learning is used for generalization of the network. In com-
parison to the backbone network, their model showed performance
enhancement for fundus disease classification on ODIR dataset. Ou et
al. [25] proposed two input CNN based attention model with multi-
scale module for multi-label fundus image classification. Multi-scale
module utilized 3× 3 and 1× 1 dilated convolution filters to capture
multi-scale features. A spatial attention module is used for feature
enhancement and learning inter-dependency between global and local
information. The model is found computationally efficient but could
not beat Li et al. [19] performance-wise.

ODIR-5k has a common target label for a pair of fundus image.
Due to high variation in the sample counts of each class, it suffers
from the class imbalance problem. None of the state-of-the-art meth-
ods attempt to address this issue. Class imbalance is a well-known
issue in medical image classification, yet limited research is available
on it in the context of deep learning methods [26]. Pratt et al. [27]
implemented a CNN based model for the five-class classification of
diabetic retinopathy disease. The authors demonstrated that the class-
weight strategy can be used to resolve over-fitting and class imbalance
issues. Buda et al. [26] examined the impact of class imbalance on
classification problems using CNN. In their experimentation, CIFAR-
10, MNIST, and ImageNet datasets are sub-sampled to construct
artificially balanced datasets.

In CNN, the receptive field can be made large with increasing
kernel size, but this usually results in an increasing number of
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learning parameters, which may lead to over-fitting problem [28].
To overcome this issue, Yu et al. [28] proposed dilated convolution
operation which can enlarge the receptive field without adding
additional computational cost. Since large receptive fields may not be
able to recognise small objects, multi-scale feature extraction can be
utilized to improve the image classification. Qi Zhang [29] proposed
a dilated convolution based network to extract multi-scale features
with increased receptive field size. The model showed improved
performance by extracting broader and deeper semantic information
for liver tumour classification. Similarly, Tao et al. [30] proposed a
multi-scale hybrid dilated convolution module for segmentation. They
used multiscale dilated convolution with variable dilation rate in the
encoder-decoder architecture. Simulated on several backbone, CNN
based model achieved improved performance for object segmentation.
In this manuscript, a novel attention-based model is proposed with
improved multi-label classification accuracy by resolving the class
imbalance issue of the dataset.

IV. METHODOLOGY

A. ODIR-5K Dataset
ODIR-5K dataset used for experimentation in this work is made

available online through a grand challenge by Peking University.
The dataset contains around 5000 organized fundus images of the
left and right eyes of patients. These fundus images were captured
using different fundus cameras, like Kowa, Zeiss, and Cannon,
having different image resolutions. Disease diagnostic keywords were
assigned to these images from eye specialists [9]. Based on these
diagnostic keywords, the disease classification labels are assigned to
each pair of fundus images. This visual pathology dataset is unique
in comparison to other publicly accessible data sets as it contains
color fundus images of both left and right eyes of a patient with
single/multiple abnormalities in a single image. The dataset contains
a common target label for the pair of eye images. The images are
grouped into eight disease classes, Normal, Diabetes, Glaucoma,
Cataract, AMD, Hypertension, Myopia, and Others. Patients’ age and
gender are also included. Another challenging part of the ODIR-
5K dataset is that the other class images contain lesions related to
12 different ophthalmic diseases. It is not easy to learn appropriate
features in such a case. Also, the dataset is highly imbalanced,
considering the number of images in each of the eight classes. These
issues negatively affect the accuracy and loss of the trained models
for classification. Although ODIR-5K dataset is more applicable to
real-life clinical situations as the images are captured with different
cameras in different illumination conditions, this imposes a great
challenge for any disease identification model.

B. Pre-processing
Most deep neural networks require dimension of input images

in 1:1 aspect ratio. Images in the ODIR-5K dataset have different
resolutions as these are captured from different cameras. Image crop
operation is utilized to make these images appropriate for model
training. In image crop operation, the field of view is identified
by seeking the start position of non-black pixel in the input fundus
image. This position is used to identify the image mask border for
crop operation. To support different DNN models, the image size
needs to be adjusted explicitly. Therefore, the size of cropped image
is kept to 224× 224 pixels as it is commonly accepted size by most
of the DNN models [21], [23], [31]–[33].

C. Class Balancing
The left and right fundus images are treated individually as input to

the CNN architecture in this work. Based on the disease description

TABLE I
ODIR-5K DATASET CLASS STATISTICS IN ORIGINAL, AFTER

OVERSAMPLING, AND AFTER UNDERSAMPLING OPERATION.

Class (Label) Samples
Oversampling Undersampling

CBF Samples CBF Samples
Normal (N) 1135 0 1135 12 95
Diabetes (D) 1131 0 1131 11 103
Glaucoma (G) 207 5 1035 2 104
Cataract (C) 211 5 1055 2 106
AMD (AMD) 171 7 1197 2 85
Hypertension (H) 94 12 1128 1 94
Myopia (M) 177 6 1062 2 86
Others (O) 944 0 944 10 95

appearing for a particular eye part, the disease label is being assigned
to each image. A fundus image having multiple diseases is treated
separately with individual disease class labels. The images with
artifacts like “low-quality image”, “optical disk photographically
invisible,” “lens dust,” and “pimage offset” are removed from the
final dataset to reduce the false recognition rate. After separating
left and right eye images with their corresponding ground truth,
the class-wise distribution is shown in Table I. It is observed that
three classes, normal, diabetes, and other classes have a significantly
greater number of images in comparison to other disease classes.
Random sampling techniques are used in this work to address the
class balancing issue. Oversampling and undersampling are done to
create two different versions of the datasets for implementation of
the proposed CNN model.

1) Oversampling: The most popular approach for producing
synthetic image samples is to generate images with random attributes
for minority classes. It can be seen in Table I, classes Hypertension,
Myopia, Cataract, AMD, and Glaucoma have a lesser number of
samples compared to other classes. New samples for these classes are
synthetically generated using different data augmentation strategies.
The new sample size is calculated as per equation (1).

Mminor = Nminor × (1 + k) (1)

where NminorandMminor represent the total number of samples
in a minor class and synthetically generated samples for that class,
respectively. Here, k is defined as a class balancing factor (CBF)
having a value ranging from 1 to 13, which represent the number
of augmentation operations. For data augmentation, flip, re-scaling
with scaling ratio (0.5, 0.7, 0.8 and 0.9), crop, rotation, contrast
change, hue, saturation, and gamma value change operations are used.

2) Undersampling: In this case, the whole dataset is shuffled
and random images from majority classes have been selected to limit
majority classes within the range of minority classes as per equation
(2).

Mmajor =

⌊
Nmajor

k

⌋
(2)

where Nmajor,Mmajor represent the total number of samples
in a major class and random samples for that class within a range,
respectively. Again, k is defined as class balancing factor (CBF).

In this manner, image statistics for all 8 disease classes get
equalized.

D. Overview of the Proposed DKCNet Architecture

As shown in Fig. 3, DKCNet is comprised of the backbone, atten-
tion block, and squeeze-excitation (SE) block. The backbone network
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Fig. 3. Block diagram of the proposed DKCNet architecture.

Fig. 4. Description of DKCNet Block.

is utilized to acquire the global feature maps. Any CNN based deep-
learning model pre-trained on ImageNet dataset can be used as the
backbone network to extract feature maps from the last layer of the
model, which contains high-level semantic features of fundus image.
These feature maps are Fm ∈ Rm(H × W × C), where W, H,
and C are width, height, and the number of channels in the feature
maps. The output of the backbone network is fed into the attention
block, which learns more region-wise features to discriminate lesion
parts. A dropout layer follows this to reduce overfitting with a drop
rate of 0.3. These discriminative features are processed by SE block,
which dynamically re-calibrate channels. Finally, a global average
pooling layer followed by a fully connected layer performs disease
classification by predicting class label probability.

E. DKCNet Block

The standard convolution with a fixed kernel captures contextual
information by sliding on the feature maps. In this case, features of
a similar group of pixels may have a different representation in other
regions, resulting in intra-class inconsistency. It is widely accepted
that more contextual information can be captured by generating multi-
scale features using different receptive field sizes [34], [35]. Dilated
convolution captures multi-scale information by varying kernel sizes
known as dilation rate. With a large receptive field size, more
semantic information can be captured. As depicted in fig. 4, dilated
convolution is utilized in the proposed model to capture multi-scale
features without adding extra computational cost.

The extracted feature maps from the backbone are passed to the
channel shuffle block, which permutates the channel and permits data
stream across feature channels. The DKCNet Block takes input from
the channel shuffle block. It applies dilated convolution operation
using 2 × 2 kernel with dilation rate ranging from 1 to 3. Dilated
convolution (DConv) is followed by batch normalization (fBN ) and
ReLu activation (fReLu) function as shown in equation (3).

Pi = fReLu(fBN (DConvd(P ))), i = {1, 2, 3} , d = {2, 3, 4}
(3)

Features obtained after dilated convolution operation are grouped
together by element wise addition operation as per equation (4).

P ′ = P1 ⊕ P2 ⊕ P3 (4)

Now the spatial information is squeezed from the feature maps by
performing global average pooling (fGAP ) and global max-pooling
(fGMP ) operations followed by element-wise addition to get global
spatial information as per equation (5).

Q = fGMP (P ′)⊕ fGAP (P ′) (5)

This squeezed spatial information is passed through two fully
connected layers for channel dimension reduction by a factor r. Some
of the features are then dropped by introducing a feature drop layer
with dropout rate of 0.25 followed by sigmoid (σ) activation function
as per equation (6) & (7).

Q′ = fDrop=0.25(Q) (6)

R = fSigmoid(fFC(Q′)) (7)

After that, obtained squeezed information vector is element-wise
multiplied with feature maps obtained by dilated convolution as
shown in equation (8).

Si = R⊗ Pi, i = {1, 2, 3} (8)

S′ = S1 ⊕ S2 ⊕ S3 (9)

Finally, as per equation (9), the obtained features are added
together to get the attention map.
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F. Loss Function

This work deals with a multi-class multi-label classification prob-
lem; one or more disease labels are required as the output for each
left and right eye image input. For the computation of the difference
between predicted target labels and actual labels, the Binary Cross-
Entropy (BCE) loss function is used, which is given as:

BCE(y, ŷ) = − 1

M

M∑
i=1

yi log(ŷ) + (1− yi) log(1− ŷ) (10)

where M is the number of samples in the training set, y is the
actual label, and ŷ is the predicted label.

G. Experimentation Setup

In this study, a backbone network is selected via experimentation
with pre-trained ResNet, InceptionV3, and InceptionResNet archi-
tectures. The ODIR-5K dataset is split into 80% and 20% for the
training and validation set, respectively. For oversampling, CBF value
is selected as 12, 6, 5, 7, 5 for hypertension, myopia, cataract,
AMD and glaucoma disease classes, respectively; and 0 for normal,
diabetes, and other disease classes. Similarly, for under-sampling,
CBF value is selected as 12, 11, 10, 1 for normal, diabetes, others,
and hypertension classes; and 2 for glaucoma, cataract, AMD, and
myopia class. Samples synthetically generated by both oversampling
and undersampling are depicted in Table I. Model is optimized with
SGD optimizer. The initial learning rate is set to 0.0005 with decay
factor 1e−6 along with the batch size as 16. All the models are
trained for 100 epochs with BCE loss function. All experimentation
work is performed on NVIDIA T4 GPU with 16 GB memory. Two
experimentation scenarios have been implemented to investigate the
performance of DKCNet. In the first scenario, the model is trained
with a backbone network for the classification of eight ophthalmic
diseases. In the second scenario, training is done on the fusion of the
backbone with DKCNet.

V. RESULTS & DISCUSSION

The performance of the proposed model is evaluated using Area
Under receiver operating Curve (AUC), F1-Score, and kappa score.
AUC curve is a performance estimator for classification problems.
The AUC value closer to 1 means better performance of the model
to classify the disease labels. Similarly, F1-score is defined as the
harmonic mean of recall and precision values as shown in equation
(13). Kappa score is a proportion of how intently the instance
classified results matched with the ground truth label. It is calculated
as per equation (14).

Precision =
Tp

Fp + Tp
(11)

Recall =
Tp

Fn + Tp
(12)

F1 = 2× Precision×Recall
Precision+Recall

(13)

k =
(po − pe)
1− pe

(14)

where Tp, Fp, Fn are true positive, false positive, and false nega-
tive, respectively; po is the empirical probability of agreement on the
label assigned to the sample and pe is the expected agreement when
both annotators assign labels randomly.

TABLE II
OPHTHALMIC DISEASE CLASSIFICATION BY USING DKC BLOCK WITH

STATE-OF-THE-ART BACKBONE NETWORKS ON ODIR-5K DATASET.

Model
No Sampling Undersampling Oversampling

AUC F1-
Score

AUC F1-
Score

AUC F1-
Score

ResNet-101 70.12 78.53 87.04 89.56 94.33 92.28

ResNet-101+
DKC Block

70.26 79.28 86.53 88.15 93.52 91.62

InceptionV3 72.94 78.17 87.45 88.93 86.31 87.37

InceptionV3+
DKC Block

73.86 79.44 88.24 88.93 88.59 89

InceptionResNet 74.22 80.44 86.94 88.68 94.24 91.53

InceptionResNet
+ DKC Block

74.55 80.96 88.05 88.93 95.4 93.18

TABLE III
OPHTHALMIC DISEASE CLASSIFICATION RESULTS OBTAINED WITH

DIFFERENT METHODS ON ODIR-5K DATASET.

Author Method AUC F1-
Score

Params
(M)

Flops
(G)

Islam et al. [17],
2019

Shallow CNN 80.5 85 1.1 -

Wang et al. [18],
2020

EfficientNet 73 88 - -

Gour and Khanna
[20], 2020

Two Input VGG-
16

84.93 85.57 15.2 80.2

Li et al. [19], 2020 ResNet-101 93 91.3 74.2 68.7
Ning Li et. al. [22],
2021

Inception-v4 88 85.93 - -

Lin et. al. [24],
2022

Graph Conv. Net-
work

78.16 89.66 - -

Ou et. al. [25], 2022 ResNet-50 90.3 88.6 82.6 67
Proposed Method InceptionResnet

+ DKC Block
96.08 94.28 87.7 13.4

The effectiveness of DKCNet is experimentally investigated, and
results for 10-fold cross validation are shown in Table II. The pro-
posed method can be applied to a wide range of backbone networks to
improve ophthalmic disease classification. ResNet-101, Inception V3,
and InceptionResNet backbone networks are implemented with the
three different baselines (without sampling, oversampling and under-
sampling) in the proposed approach. The increase in performance can
be seen in both over-sampled and under-sampled datasets compared
to without sampling. Results reported in Table II indicate that the
backbone network integrated with DKCNet achieves a significant
performance improvement (96.08 AUC, 94.28 F1-Score, and 0.81
kappa-score) for ophthalmic disease classification with over-sampling
of minority classes for training. For each test image, we assigned
target labels with a confidence greater than 0.5 to be positive, and
compared them with a ground truth labels. Fig 5 shows the AUC
curves for each disease class classification performance.

The proposed model is also compared with five recent multi-
class, multi-label ophthalmic disease classification models to show
its efficacy. The results are reported in Table III. As mentioned in
Section III, Islam et al. [17] considered single shallow CNN model
which could not perform well for multi-label classification. Wang et
al. [18] obtained a better F1-score with EfficientNet model but lacked
in AUC compared to other methods. Furthermore, Gour and Khanna
[20] achieved slightly better performance. But they utilized a heavy
VGG16 model, which does not contain a batch normalization layer,
making it hard to converge. The performance obtained by Ning Li et.
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Fig. 5. AUC curves obtained with the proposed model for multi-class multi-label classification of retinal disease.

Fig. 6. Class activation maps obtained with DKCNet for single diseased fundus images from ODIR-5K dataset (a) original fundus images with
lesion parts highlighted using white arrow, (b) heatmaps generated by backbone network, and (c) heatmaps refined by DKCNet.

al. [22] by using inception-v4 model with element-wise sum feature
fusion is comparable with that obtained by Gour and Khanna [20].
The spatial corelation model proposed by Li et al. [19] delivered
better outcomes for different mixes of ResNet structures. The model
performs better among counterpart models in terms of F1-score and

AUC. However, the proposed DKCNet model achieves improvement
in AUC and F1-Score by 2.5% and 2.05%, respectively as compared
to those achieved by Li et al. [19]. Table III also shows that the
proposed network requires less number of floating-point operations
per second (FLOPS) compared to state-of-the-art methods.
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Fig. 7. Class activation maps obtained with DKCNet for multiple diseased fundus images from ODIR-5K dataset (a) original fundus images with
lesion parts highlighted using white arrows, (b) heatmaps generated by backbone network, and (c) heatmaps refined by DKCNet.

TABLE IV
CROSS DATASET PERFORMANCE EVALUATION OF THE PROPOSED

MODEL.

Testing Dataset AUC F1-Score
Messidor (Diabetic Retinopathy) 89.37 87.75

G1020 (Glaucoma) 93.14 91.42

Joint Shantou International Eye Centre (Multi class) 94.18 91.15

To check the biasness of proposed model towards training data,
it is further tested on three publicly available benchmark datasets:
Messidor (Diabetic Retinopathy), G1020 (Glaucoma), Joint Shantou
International Eye Centre (Multi class). From the Table IV, it can
be observed that the proposed DKCNet can predict retinal diseases
effectively on completely unseen fundus image datasets.

Qualitative analysis of results is performed by visualizing activa-
tion maps using Grad-CAM [36]. In Fig. 6, the first column shows
fundus images containing a single disease class with lesion part
marked with a white arrow. The results of the backbone network,
i.e., InceptionResnet are visualized in the second column. The third
column shows refined activation maps obtained by using DKCNet
with the backbone network. In the first row, the results generated
by the backbone network show false detection of lesion part in a
normal eye image, whereas the proposed model is able to discriminate
such situations effectively. Similarly, the backbone network failed
to detect some lesion parts in the input image in the second row,
but the proposed model can identify those efficiently. The third row
corresponds to the cases where the prediction results obtained with
the backbone network and the proposed model are similar. In the
fourth row, the backbone network falsely highlights the lesion part
in the larger portion of the eye, whereas the proposed model refines
the detection and is near the ground truth.

Similarly, multi-class classification performance can be visualized
in Fig 7. Here, the first column shows input fundus images of patients’
eyes having multiple diseases. The second and third columns corre-
spond to class activation maps generated by the backbone network
for predicted class, whereas the last two columns demonstrate a

refined class activation map obtained with DKCNet with better visual
classification. In the fourth column of the first row of Fig 7, it can be
seen that the backbone network failed to detect some of the lesion
parts, whereas the proposed method detects those well. In the second
row, the backbone network shows false detection for lesion parts,
whereas the proposed DKCNet highlights those parts more accurately,
as seen in the fourth and the last column of Fig 7.

VI. CONCLUSION AND FUTURE WORK

The DKCNet architecture proposed in this work enables CNN
based model to learn discriminative features with an attention module
without introducing extra cost. The novelty of this work lies in a
model which improves ophthalmic disease classification performance
and solves the class balancing issue of the highly imbalanced ODIR-
5K dataset having multiple common labels for fundus image pair of
a patient’s left and right eye. DKCNet is composed of an attention
block followed by a SE block. The attention block takes features
from the backbone network and generates discriminative feature
attention maps. The SE block takes the discriminative feature maps
and performs channel wise attention almost at no computational
cost. The experimentation has been done with three backbone CNN-
based architectures, and it is found that the proposed DKCNet
shows superior performance compared to counterpart methods with
InceptionResnet model. As it is expensive to obtain good quality and
labeled fundus images, it is planned to use generative adversarial
networks to generate samples for minority classes artificially. Also,
the model can be explored to localize and find the types of lesions.

REFERENCES

[1] “World health organization - vision impairment and blindness,”
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-
impairment, accessed: 2021-12-18.

[2] R. Kawasaki and J. Grauslund, “Clinical motivation and the needs for
ria in healthcare,” in Computational Retinal Image Analysis. Elsevier,
2019, pp. 5–17.

[3] H. Raja, T. Hassan, M. U. Akram, and N. Werghi, “Clinically verified
hybrid deep learning system for retinal ganglion cells aware grading of
glaucomatous progression,” IEEE Transactions on Biomedical Engineer-
ing, vol. 68, no. 7, pp. 2140–2151, 2021.



8

[4] L. Lin, M. Li, Y. Huang, P. Cheng, H. Xia, K. Wang, J. Yuan, and
X. Tang, “The sustech-sysu dataset for automated exudate detection and
diabetic retinopathy grading,” Scientific Data, vol. 7, no. 1, pp. 1–10,
2020.

[5] T. B. Sekou, M. Hidane, J. Olivier, and H. Cardot, “From patch to image
segmentation using fully convolutional networks–application to retinal
images,” arXiv preprint arXiv:1904.03892, 2019.

[6] H. Fu, J. Cheng, Y. Xu, D. W. K. Wong, J. Liu, and X. Cao, “Joint optic
disc and cup segmentation based on multi-label deep network and polar
transformation,” IEEE transactions on medical imaging, vol. 37, no. 7,
pp. 1597–1605, 2018.

[7] U. Raghavendra, H. Fujita, S. V. Bhandary, A. Gudigar, J. H. Tan, and
U. R. Acharya, “Deep convolution neural network for accurate diagnosis
of glaucoma using digital fundus images,” Information Sciences, vol.
441, pp. 41–49, 2018.

[8] H. Fu, J. Cheng, Y. Xu, C. Zhang, D. W. K. Wong, J. Liu, and X. Cao,
“Disc-aware ensemble network for glaucoma screening from fundus
image,” IEEE transactions on medical imaging, vol. 37, no. 11, pp.
2493–2501, 2018.

[9] “Peking university international competition on ocular disease intelligent
recognition (odir-2019),” https://odir2019.grandchallenge.org/, accessed:
2022-02-10.

[10] Y. Jiang, H. Xia, Y. Xu, J. Cheng, H. Fu, L. Duan, Z. Meng, and
J. Liu, “Optic disc and cup segmentation with blood vessel removal
from fundus images for glaucoma detection,” in 2018 40th annual
international conference of the ieee engineering in medicine and biology
society (EMBC). IEEE, 2018, pp. 862–865.

[11] L. Giancardo, F. Meriaudeau, T. P. Karnowski, Y. Li, S. Garg, K. W.
Tobin Jr, and E. Chaum, “Exudate-based diabetic macular edema detec-
tion in fundus images using publicly available datasets,” Medical image
analysis, vol. 16, no. 1, pp. 216–226, 2012.

[12] E. Peli and T. Peli, “Restoration of retinal images obtained through
cataracts,” IEEE transactions on medical imaging, vol. 8, no. 4, pp.
401–406, 1989.

[13] P. Antonio, P. Marta, D. Luı́s, D. Antonio, S. Manuel, M. Rafael,
G. Sonia, G. Manuel, M. Isabel, E. Carlos et al., “Factors associated with
changes in retinal microcirculation after antihypertensive treatment,”
Journal of human hypertension, vol. 28, no. 5, pp. 310–315, 2014.

[14] Z. Wang, P. A. Keane, M. Chiang, C. Y. Cheung, T. Y. Wong, and
D. S. W. Ting, “Artificial intelligence and deep learning in ophthalmol-
ogy,” Artificial Intelligence in Medicine, pp. 1–34, 2020.

[15] A. Kwasigroch, B. Jarzembinski, and M. Grochowski, “Deep cnn based
decision support system for detection and assessing the stage of diabetic
retinopathy,” in 2018 International Interdisciplinary PhD Workshop
(IIPhDW). IEEE, 2018, pp. 111–116.

[16] M. Akil, Y. Elloumi, and R. Kachouri, “Detection of retinal abnormali-
ties in fundus image using cnn deep learning networks,” in State of the
Art in Neural Networks and their Applications. Elsevier, 2021, pp.
19–61.

[17] M. T. Islam, S. A. Imran, A. Arefeen, M. Hasan, and C. Shahnaz,
“Source and camera independent ophthalmic disease recognition from
fundus image using neural network,” in 2019 IEEE International Con-
ference on Signal Processing, Information, Communication & Systems
(SPICSCON). IEEE, 2019, pp. 59–63.

[18] J. Wang, L. Yang, Z. Huo, W. He, and J. Luo, “Multi-label classification
of fundus images with efficientnet,” IEEE Access, vol. 8, pp. 212 499–
212 508, 2020.

[19] C. Li, J. Ye, J. He, S. Wang, Y. Qiao, and L. Gu, “Dense correlation
network for automated multi-label ocular disease detection with paired
color fundus photographs,” in 2020 IEEE 17th International Symposium
on Biomedical Imaging (ISBI). IEEE, 2020, pp. 1–4.

[20] N. Gour and P. Khanna, “Multi-class multi-label ophthalmological
disease detection using transfer learning based convolutional neural
network,” Biomedical Signal Processing and Control, vol. 66, p. 102329,
2021.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] N. Li, T. Li, C. Hu, K. Wang, and H. Kang, “A benchmark of ocular
disease intelligent recognition: one shot for multi-disease detection,” in
International Symposium on Benchmarking, Measuring and Optimiza-
tion. Springer, 2020, pp. 177–193.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[24] J. Lin, Q. Cai, and M. Lin, “Multi-label classification of fundus images
with graph convolutional network and self-supervised learning,” IEEE
Signal Processing Letters, vol. 28, pp. 454–458, 2021.

[25] X. Ou, L. Gao, X. Quan, H. Zhang, J. Yang, and W. Li, “Bfenet: A
two-stream interaction cnn method for multi-label ophthalmic diseases
classification with bilateral fundus images,” Computer Methods and
Programs in Biomedicine, p. 106739, 2022.

[26] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of
the class imbalance problem in convolutional neural networks,” Neural
Networks, vol. 106, pp. 249–259, 2018.

[27] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Con-
volutional neural networks for diabetic retinopathy,” Procedia computer
science, vol. 90, pp. 200–205, 2016.

[28] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convo-
lutions,” arXiv preprint arXiv:1511.07122, 2015.

[29] Q. Zhang, “A novel resnet101 model based on dense dilated convolution
for image classification,” SN Applied Sciences, vol. 4, no. 1, pp. 1–13,
2022.

[30] T. Ku, Q. Yang, and H. Zhang, “Multilevel feature fusion dilated
convolutional network for semantic segmentation,” International Journal
of Advanced Robotic Systems, vol. 18, no. 2, p. 17298814211007665,
2021.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[34] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2881–2890.

[35] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801–818.

[36] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.


