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Abstract

A general method to design optimal sensor netwaide to estimate process key
variables within a required precision was receptigposed. This method is based on
the data reconciliation theory and the sensor métwsoptimised thanks to a genetic
algorithm. To reduce the solution time, two wayspafallelizing the algorithm have
been compared: the global parallelization and fk&ibluted genetic algorithms. Both
techniques allow reducing the elapsed time busé&mend one is more efficient.
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1. Problem position

Chemical processes must be efficiently monitorealtow production accounting as
well as for the enforcement of safety and enviromtaerules. Process control can only
take place if a suitable sensor network is indalen the plant. However most
measurements are erroneous. Moreover some varigdmesot directly be measured by
a sensor, such as for example compressor or tudffivéency, catalyst deactivation or
reaction conversion.

Uncertainty due to random measurements errors @nmebluced when redundant
measurements are available. Data reconciliati@mwallito correct measurements and to
access their reliability; simultaneouslyprovides estimates of unmeasured variables
and their uncertainty (Heyen et al., 1996). Howewer accuracy of the estimates and
the cost of the measurements system are stronfliyenmted by the number, the
location, the type and the precision of sensorgeAeral method to design the cheapest
sensor network able to determine all the processJeagiables within a prescribed
precision becomes therefore necessary.

This problem of measurements system design was $iobted by Bagajewicz
(Bagajewicz M.J., 1997) for non-linear mass balaggpeations and by Madron (Madron
F., 1992) who used a graph oriented method. Weloigee recently a method that takes
into account energy balances and non-linear equeafideyen and Gerkens, 2002). The
equations of the data reconciliation model areadiised at the nominal operating
conditions, assuming steady state operation. Theéblgmo is formulated as an
optimization problem whose objective function deggenf the costs of sensors and the
accuracy obtained for key variables. As the prohkeosually multimodal and involves



many binary variables (presence or absence of snsbwas solved by mean of a
genetic algorithm (Goldberg, 1989).

This method was applied successfully to small andinme problems of about 200 to

600 variables. The time required to obtain the smhuis about 10-15 minutes for an

ammonia synthesis loop (198 variables) and abtwids for an acid acetic cracker that
produces ketenes (618 variables) ddeamtium Il processor (333 Mhz). This time is too
long to apply the algorithm to much larger probles reduce the solution time, the
algorithm was parallelized by mean of the MessaagsiAg Interface (MPI) (Gropp et

al.,, 1999). Two parallelization methods, the glopatallelization and the distributed

genetic algorithms are discussed in this paper. & heshniques are compared for an
ammonia synthesis loop.

2. Description of the genetic algorithm

Before being parallelized, our method was decongboséour steps:

a. First of all a database for the sensors comigirthe accuracy, the range of
measurement and the cost of each sensor is cremtdda validation model of the
process is built using Belsim-Vali Il software. i$hsoftware allows to export the
linearised equations of the problem after computingieady state solution for typical
operating conditions.

b. Secondly the algorithm verifies that there ex@olution for the network containing
all the sensors that can be implemented. If neilfés solution is found, the program
stops and the problem should be defined in anetiagr

c. Thirdly, if the problem has a solution, the sensetwork is optimised by mean of a
genetic algorithm applying natural mechanisms déci®n, one point crossing and
jump mutation. The best chromosome is consideratieasolution of the problem if it
stays unchanged after a determined number of gioesa

d. Finally, the solution is saved in a report file.

3. Paralldization

As they share the computing work between severalcgssors, parallelization

techniques allow reducing the solution time. Howetlgs reduction of computing time

must be done without increasing too much the comgutesources. Parallelization

techniques can be compared using a ratio, whiastako account the number of active
processors, and the time required to obtain thaisal

Speed up
Number of active processors
_ Time for 1 processor 1
" Time for n processors Number of activeqessor:

Efficiency =

(3.1)




The calculations were carried out on a clustedehtical Apple Power Mac G4 bi-
processors.

3.1 Global parall€elization
The global parallelization method consists of dagyout in parallel the evaluation of

chromosomes fitness or the application of the gegerator.

In the case of our algorithm, the evaluation ofdbgective function of all chromosomes
of the population is the limiting step. Each chre@mme evaluation requires two
inversions of sensitivity matrix: first the non-gidarity is checked assuming the
physical property model is ideal. Afterwards a padsti variances are estimated by
inverting the sensibility matrix using non-ideattmodynamic model. The size of those
matrices is equal to the sum of the number of béegand the number of equations of
the problem. That's why the solution time of ougaithm increases much faster than
the size of problems.

Chromosomes are evaluated independently from oothanso that the algorithm was
parallellized at that level. Evaluation of the &8s function for all chromosomes is
distributed among available processors. Each chsome handles completely the
evaluation. Thus the maximum useful number of pgsees is equal to the size of the
chromosome population. The other tasks of the dlgor(chromosomes distribution,

population evolution) are completed by the mastec@ssor only: as they consist of
rapid operations, losses of efficiency they causeret important. As all processors
need some information about the chemical procedsdrstudied, the first generation of
chromosomes is evaluated simultaneously by alvaagtrocessors (this involves all
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initialisation and processing the problem defimitides).
Global paralelization was carried out in two ways:

a. First of all the number of active processors alassen lower or equal to the number
of chromosomes to be evaluated. In that case,peas that the efficiency is better

when the number of active processors is a divitim@number of chromosomes so that
each processor has to handle the same number @holomes. As can be seen on
figure 1, in the case of an ammonia synthesis Itiop elapsed time required to obtain
the optimal validable measurement system and the tf the master processor is
inversely proportional to the number of active mssors. The efficiency decreases
rapidly when the number of active processors amtresthe number of chromosomes.
This can be explained by considering how the firfesiction is evaluated for a given

sensor selection. First one has to chiétike sensor arrangement is feasible by verifying
that the jacobian matrix of the model equationads singular. When this is the case,
the processor being in charge of an evaluation irsridle while the others processors
go on evaluating the variances for all state véemb

b. Secondly the number of active processors wasntdligher than the number of
chromosomes. This case can only be considered wiesigning a measurement
systems that remain observable in case of one is&ikoe. The fitness function has to
be evaluated for all sensor configurations obtaibgdemoving one sensor from the
current selection, and this work can be distribitatbng several processors. As can be
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seen on figure 2 for the ammonia synthesis logp cHiculation times are still inversely
proportional to the number of processors and tfieieficy falls when the number of
processors comes close to the number of evaludtonise population.

The clock time required to design a validable mezsents networks is less than one
minute for the ammonia synthesis loop (198 statéabbes and 117 possible sensors)
and about fifteen minutes for an acetic acid crati@roduce keten (618 state variables
269 possible sensors).

3.2 Distributed genetic algorithm

In order to improve the efficiency, we attemptedafializing the calculation by means
of of distributed genetic algorithms (Herrera Fakt 1999).

The method of distributed genetic algorithms cdssi$ sharing the chromosomes in
several sub-populations, which are independent frone another. Those sub-
populations evolve thanks to their own genetic algm. Periodically some
chromosomes move between the different sub-popukatithanks to a migration
operator. In each sub-population, the migratingeiosomes are chosen and distributed
at random. The chromosomes that are replaced soetalten at random. That random
choice allows keeping most of the information cored in the global population. The
four parameters that have to be specified are sissxlihere below:

a. The size of sub-populations: sub-populationsl®fand 20 chromosomes were
studied. It appeared that the time required by mytnilations of 10 chromosomes to
obtain similar solutions is twice smaller than tbee for sub-populations of 20
chromosomes. So all the othe
tests were performed with sub

populations of 10 Time comparison between global
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algorithm
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population: the value of this | g =

parameter was taken equal to | & -

what correspond to 20 % o | g .,

sub-populations’ chromosomes | F =

c. The number of sub-

populations: as can be seen ¢ Number of processors or sub-

figure 3, it is not possible to populations

obtain a correlation betweer —a— Global parallelisation : master time

computing resources (or the —@— Global parallelisation : elpased time

number of sub-populations) ani —aA— Distributed algorithm : master time

the solution time. A value of —6— Distributed algorithm : elapsed time

five was kept because it seen

to be the best compromise;

Figure 5: time comparison between global

d. The number of iterations o | o\ dization  and  distributed  gentic



the genetic algorithms between two migrations:\aleie of five found in the literature
agrees with the results presented on figure 4.

The elapsed and master times for global paraltzaand distributed genetic
algorithm are compared on figure 5. It can be gbahdistributed genetic algorithm
requires less time that global paralelization. Remnore, the values of objective
function are better in the case of distributed ¢gieradgorithm.

4. Conclusion and future wor k

The parallelization of the proposed method of desifjoptimal sensor networks allows
to obtain validable measurements sets within aeeble time for small and medium
problems. For larger size problem, solutions tisiatill expected to be very important
so that treating plants like refineries could net tonsidered nowadays. However
suboptimal solutions of practical use can be olkthihy considering individual plant

sections.

Two parallelization methods were tested: both all@ducing the solution clock time

but the distributed genetic algorithms appear saper all points of view for all cases

we considered.

The algorithm could also be parallelized by meahsgymamic populations such that
each chromosome would have his own life time thatildl be managed by the master
processor.
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