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Abstract 
A general method to design optimal sensor networks able to estimate process key 
variables within a required precision was recently proposed. This method is based on 
the data reconciliation theory and the sensor network is optimised thanks to a genetic 
algorithm. To reduce the solution time, two ways of parallelizing the algorithm have 
been compared: the global parallelization and the distributed genetic algorithms. Both 
techniques allow reducing the elapsed time but the second one is more efficient. 
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1. Problem position 

Chemical processes must be efficiently monitored to allow production accounting as 
well as for the enforcement of safety and environmental rules. Process control can only 
take place if a suitable sensor network is installed on the plant. However most 
measurements are erroneous. Moreover some variables can not directly be measured by 
a sensor, such as for example compressor or turbine efficiency, catalyst deactivation or 
reaction conversion. 
Uncertainty due to random measurements errors can be reduced when redundant 
measurements are available. Data reconciliation allows to correct measurements and to 
access their reliability; simultaneously it provides estimates of unmeasured variables 
and their uncertainty (Heyen et al., 1996). However the accuracy of the estimates and 
the cost of the measurements system are strongly influenced by the number, the 
location, the type and the precision of sensors. A general method to design the cheapest 
sensor network able to determine all the process key variables within a prescribed 
precision becomes therefore necessary.  
This problem of measurements system design was first solved by Bagajewicz 
(Bagajewicz M.J., 1997) for non-linear mass balance equations and by Madron (Madron 
F., 1992) who used a graph oriented method. We developed recently a method that takes 
into account energy balances and non-linear equations (Heyen and Gerkens, 2002). The 
equations of the data reconciliation model are linearised at the nominal operating 
conditions, assuming steady state operation. The problem is formulated as an 
optimization problem whose objective function depends of the costs of sensors and the 
accuracy obtained for key variables. As the problem is usually multimodal and involves 



many binary variables (presence or absence of sensors), it was solved by mean of a 
genetic algorithm (Goldberg, 1989). 
This method was applied successfully to small and medium problems of about 200 to 
600 variables. The time required to obtain the solution is about 10-15 minutes for an 
ammonia synthesis loop (198 variables) and about 4 hours for an acid acetic cracker that 
produces ketenes (618 variables) on a Pentium II processor (333 Mhz). This time is too 
long to apply the algorithm to much larger problems. To reduce the solution time, the 
algorithm was parallelized by mean of the Message Passing Interface (MPI) (Gropp et 
al., 1999). Two parallelization methods, the global parallelization and the distributed 
genetic algorithms are discussed in this paper. Those techniques are compared for an 
ammonia synthesis loop. 
 

2. Description of the genetic algorithm  

Before being parallelized, our method was decomposed in four steps:  
 
a. First of all a database for the sensors containing the accuracy, the range of 
measurement and the cost of each sensor is created, and a validation model of the 
process is built using Belsim-Vali III software. This software allows to export the 
linearised equations of the problem after computing a steady state solution for typical 
operating conditions. 
 
b. Secondly the algorithm verifies that there exists a solution for the network containing 
all the sensors that can be implemented.  If no feasible solution is found, the program 
stops and the problem should be defined in another way. 
 
c. Thirdly, if the problem has a solution, the sensor network is optimised by mean of a 
genetic algorithm applying natural mechanisms of selection, one point crossing and 
jump mutation. The best chromosome is considered as the solution of the problem if it 
stays unchanged after a determined number of generations. 
 
d. Finally, the solution is saved in a report file. 
 

3. Parallelization 

As they share the computing work between several processors, parallelization 
techniques allow reducing the solution time. However, this reduction of computing time 
must be done without increasing too much the computing resources. Parallelization 
techniques can be compared using a ratio, which takes into account the number of active 
processors, and the time required to obtain the solution. 
 

Speed up
Efficiency

Number of active processors

Time for 1 processor 1

Time for n processors Number of active processors

=

=
         (3.1) 

 



The calculations were carried out on a cluster of identical Apple Power Mac G4 bi-
processors. 

3.1 Global parallelization 
The global parallelization method consists of carrying out in parallel the evaluation of 
chromosomes fitness or the application of the genetic operator.  
In the case of our algorithm, the evaluation of the objective function of all chromosomes 
of the population is the limiting step. Each chromosome evaluation requires two 
inversions of sensitivity matrix: first the non-singularity is checked assuming the 
physical property model is ideal. Afterwards a posteriori variances are estimated by 
inverting the sensibility matrix using non-ideal thermodynamic model. The size of those 
matrices is equal to the sum of the number of variables and the number of equations of 
the problem. That’s why the solution time of our algorithm increases much faster than 
the size of problems. 
Chromosomes are evaluated independently from one another so that the algorithm was 
parallellized at that level. Evaluation of the fitness function for all chromosomes is 
distributed among available processors. Each chromosome handles completely the 
evaluation. Thus the maximum useful number of processors is equal to the size of the 
chromosome population. The other tasks of the algorithm (chromosomes distribution, 
population evolution) are completed by the master processor only: as they consist of 
rapid operations, losses of efficiency they cause are not important. As all processors 
need some information about the chemical process that is studied, the first generation of 
chromosomes is evaluated simultaneously by all active processors (this involves all 
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Figure 1: global parallelization: 
determination of a validable 
measurement system in the case of an 
ammonia synthesis loop 
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Figure 2: global parallelization: 
determination of a measurement 
system that is observable when one 
sensor fails in the case of an ammonia 
synthesis loop 



initialisation and processing the problem definition files). 
Global paralelization was carried out in two ways: 
 
a. First of all the number of active processors was chosen lower or equal to the number 
of chromosomes to be evaluated. In that case, it appears that the efficiency is better 
when the number of active processors is a divisor of the number of chromosomes so that 
each processor has to handle the same number of chromosomes. As can be seen on 
figure 1, in the case of an ammonia synthesis loop, the elapsed time required to obtain 
the optimal validable measurement system and the time of the master processor is 
inversely proportional to the number of active processors. The efficiency decreases 
rapidly when the number of active processors approaches the number of chromosomes. 
This can be explained by considering how the fitness function is evaluated for a given 
sensor selection. First one has to check if the sensor arrangement is feasible by verifying 
that the jacobian matrix of the model equations is not singular. When this is the case, 
the processor being in charge of an evaluation remains idle while the others processors 
go on evaluating the variances for all state variables. 
 
b. Secondly the number of active processors was taken higher than the number of 
chromosomes. This case can only be considered when designing a measurement 
systems that remain observable in case of one sensor failure. The fitness function has to 
be evaluated for all sensor configurations obtained by removing one sensor from the 
current selection, and this work can be distributed among several processors. As can be 
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Figure 3: distributed genetic algorithm: 
influence of the number of sub-
populations in the case of an ammonia 
synthesis loop 
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Figure 4: distributed genetic algorithm: 
influence of the number of iterations 
between two migrations in the case of an 
ammonia synthesis loop 



seen on figure 2 for the ammonia synthesis loop, the calculation times are still inversely 
proportional to the number of processors and the efficiency falls when the number of 
processors comes close to the number of evaluations for the population. 
The clock time required to design a validable measurements networks is less than one 
minute for the ammonia synthesis loop (198 state variables and 117 possible sensors) 
and about fifteen minutes for an acetic acid cracker to produce keten (618 state variables 
269 possible sensors). 

3.2 Distributed genetic algorithm 
In order to improve the efficiency, we attempted parallelizing the calculation by means 
of of distributed genetic algorithms (Herrera F. et al., 1999). 
The method of distributed genetic algorithms consists of sharing the chromosomes in 
several sub-populations, which are independent from one another. Those sub-
populations evolve thanks to their own genetic algorithm. Periodically some 
chromosomes move between the different sub-populations thanks to a migration 
operator. In each sub-population, the migrating chromosomes are chosen and distributed 
at random. The chromosomes that are replaced are also taken at random. That random 
choice allows keeping most of the information contained in the global population. The 
four parameters that have to be specified are discussed here below:  
 
a. The size of sub-populations: sub-populations of 10 and 20 chromosomes were 
studied. It appeared that the time required by sub-populations of 10 chromosomes to 
obtain similar solutions is twice smaller than the one for sub-populations of 20 
chromosomes. So all the other 
tests were performed with sub-
populations of 10 
chromosomes; 
 
b. The number of migrating 
chromosomes in each sub-
population: the value of this 
parameter was taken equal to 2 
what correspond to 20 % of 
sub-populations’ chromosomes; 
 
c. The number of sub-
populations: as can be seen on 
figure 3, it is not possible to 
obtain a correlation between 
computing resources (or the 
number of sub-populations) and 
the solution time. A value of 
five was kept because it seems 
to be the best compromise; 
 
d. The number of iterations of 
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Figure 5: time comparison between global 
parallelization and distributed genetic 



the genetic algorithms between two migrations: the value of five found in the literature 
agrees with the results presented on figure 4. 
 
The elapsed and master times for global parallelization and distributed genetic 
algorithm are compared on figure 5.  It can be seen that distributed genetic algorithm 
requires less time that global paralelization. Furthermore, the values of objective 
function are better in the case of distributed genetic algorithm. 

 

4. Conclusion and future work 

The parallelization of the proposed method of design of optimal sensor networks allows 
to obtain validable measurements sets within an acceptable time for small and medium 
problems. For larger size problem, solutions time is still expected to be very important 
so that treating plants like refineries could not be considered nowadays. However 
suboptimal solutions of practical use can be obtained by considering individual plant 
sections. 
Two parallelization methods were tested: both allow reducing the solution clock time 
but the distributed genetic algorithms appear superior in all points of view for all cases 
we considered. 
The algorithm could also be parallelized by means of dynamic populations such that 
each chromosome would have his own life time that would be managed by the master 
processor. 
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