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PI-CONTROLLED BIOREACTOR AS A

GENERALIZED LIÉNARD SYSTEM
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Abstract

It is shown that periodic orbits can emerge in Cholette’s bioreactor model working
under the influence of a PI-controller. We find a diffeomorphic coordinate trans-
formation that turns this controlled enzymatic reaction system into a general-
ized Liénard form. Furthermore, we give sufficient conditions for the existence and
uniqueness of limit cycles in the new coordinates. We also perform numerical simu-
lations illustrating the possibility of the existence of a local center (period annulus).
A result with possible practical applications is that the oscillation frequency is a
function of the integral control gain parameter.
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1 Introduction

Mixing, understood as interpenetration of particles in different zones of a
given volume, is an important natural as well as technological process. This
is even more so when biochemical reactions get involved. For the case of con-
tinuous stirred tank reactors (CSTRs), Lo and Cholette [1] developed a non-
ideal isothermal mixing model using a Haldane type chemical reaction rate
(which is similar to the Monod function for low concentrations but includes
the inhibitory effect at high concentrations). This model has been studied ex-
tensively later by many authors ([2], [3], [4], [5], [6]). In particular, Sree and
Chidambaram [4], [5] focused on the control problem by means of a propor-
tional integral (PI) control for this case. Indeed, the PI controller is broadly
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used in the chemical and biochemical industry. Therefore its closed-loop be-
havior is of much interest. In this paper, we present a novel mathematical
feature of this closed-loop enzymatic reaction system, namely the possibility
to be represented as a dynamical system corresponding to a non polynomial
Liénard oscillator. That means that given a PI-controlled CSTR governed by
the usual two-dimensional smooth dynamical system

Ẋ = P (X, Y ), Ẏ = Q(X, Y ), (1)

we are able to find a diffeomorphic coordinate transformation (Eq. 7 below)
that allows us to put it into the well-known generalized Liénard form

Ẋ =φ(Y )− F (X) (2)

Ẏ =−g(X), (3)

where g(X) is continuous on an open interval (a1, b1), the functions F (X) and
φ(Y ) are continuously differentiable on the open intervals (a1, b1) and (a2, b2),
respectively. In fact, these intervals can be extended to −∞ ≤ ai < 0 < bi ≤
∞, i = 1, 2.

In this paper, we show that the PI-controlled Cholette’s CSTR model belongs
to this class of generalized Liénard systems. Once doing this, we make use of
the beautiful results encountered in this research area to study the periodic
solutions near stationary points for this particular application. Besides, the
Hopf bifurcation is an efficient way to study the existence of periodic orbits.
In this case, a pair of complex eigenvalues is assumed to exist and to cross
transversally the imaginary axis. Nevertheless, the fact that a Hopf bifurcation
guarantees the existence of a limit cycle does not imply its uniqueness [7]. It
is here where the uniqueness result for Liénard systems comes into play.

Thus, we extend the class of Liénard-type system to the interesting case of
PI-controlled bioreactors for which the results on the existence of limit cycles
and their number as a function of the control variables could be exploited in
industrial applications. In general, the study of oscillatory behavior in biore-
actors is a very important issue since it is generated by the coupled dynamics
of the most popular controller in industry (the PI one) and the kinetics of
the biochemical reactions. In addition, we shed light here on an explicit ex-
ample of a closed-loop system which is of Liénard-type. Since the most direct
way to interact with the PI-controlled Cholette’s CSTR is through the gain of
the controller the present analysis provide the users with definite conditions
for inducing oscillatory behaviors, which is instructive from the pedagogical
standpoint as well.

The paper is organized as follows. In Section 2, we discuss the PI-controlled
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Cholette’s bioreactor model and its basic assumptions. In Section 3, we present
the coordinate transformation that leads to the Liénard representation of this
type bioreactor. The existence of limit cycles is discussed in Section 4, and the
uniqueness consideration are included in Section 5. The numerical simulation
that we performed indicating the presence of the period annulus are shortly
described in Section 6. Finally, we end up the work with several concluding
remarks.

2 Cholette’s Dynamical Model

The dynamical behavior without control actions (i.e., open-loop operation)
is governed by a unique nonlinear ordinary differential equation (see Eq. 4).
The non ideal mixing can by described by the Cholette model [2]. This model
was studied by Chidambaram [4], who proposed a tuning method for a PI-
controller. Examples, where this kind of kinetics occurs, can be found in [6].
The reactor model is given by the following equations

dζ

dt
=(ζf − ζ)

[

nF

mV

]

− K1ζ

(1 +K2ζ)
2 , (4)

where the meaning of the parameters are given in table 1.

The following assumptions hold in Eq. (4): (i) all model parameters and physic-
ochemical properties are constant (ii) the reaction occurs in an nonideal mixed
CSTR, operated under isothermal conditions. The fraction of the reactant feed
that enters the region of perfect mixing is denoted by n, whereas m denotes
the fraction of the total volume of the reactor where perfect mixing is achieved.
For m and n both equal to 1, the system is ideally mixed. The values of the
parameters m and n can be obtained from the residence time distribution [2].
Fig. 1 shows the schematic diagram of the bioreactor configuration modeled
by Eq. (4).

Following the previous authors, we consider ζf as the manipulated variable (i.e.
ζf = u) and let ζ be the controlled variable [4]. We are especially interested in
the induced oscillatory behavior of the bioreactor. The common control law in
this case is of the proportional integral type, that requires a dynamical error
extension in order to build the closed-loop two dimensional system. Thus, the
control law is given by

u ,

(

−Kc · Error −Ki

∫

Error dt

)

,
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Table 1
Variables and parameters of Cholette’s model.

Symbol Meaning Units

X Substrate concentration [Kmol/m3]

Y Integrated error [Kmol s/m3]

F Feed flow rate [m3/s]

V Volume [m3]

SF Substrate feed concentration [Kmol/m3]

K1 Maximal kinetic rate [1/s]

K2 Inhibition parameter [m3/Kmol]

n Mixing parameter [dimensionless ]

m Mixing parameter [dimensionless ]

Kc Proportional gain controller [dimensionless ]

Ki Integral gain controller [dimensionless ]

u Control input [dimensionless ]

(1−m)V

ζf

nF

ζf

F

✲

(1− n)F

ζf

ζ
mV

✲
ζ ′

F
ζ
nF

❄

❄

A

✲

Fig. 1. Schematics of a classical continuous stirred tank bioreactor with imperfect
mixing corresponding to Cholette’s model.

where Kc and Ki are the control gain values. For the sake of simplicity, the
closed-loop system is written as:

Ẋ =−X

(

C +
K1

(1 +K2X)2

)

+ C (−Kc (X − Ref)−KiY ) (5)

Ẏ =X − Ref , (6)
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where

C =
n F

m V
, X = ζ .

Eq. (5) describes the dynamical behavior of the concentration, while Eq. (6)
refers to the dynamical behavior of the integrated error.

3 Transformation to the Liénard form

In this section, we show that the system given by Eqs. (5-6) can be rewritten
as a system of the form (2)-(3), i.e., in the Liénard generalized form. This is
one of the main results of this work.

Proposition 1. Under the transformation





x

y



 = Ψ(X,Y ) =





X −Xp

−Y + Yp



 , (7)

where

Yp =−Ref (C +K1 + Ref CK2 (K2Ref + 2))

CKi (1 +K2Ref )
2

Xp =Ref,

system given by Eq. (5-6) can be written in the generalized Liénard form. With the
following additional properties

[A1] g(0) = 0 and xg(x) > 0 for x 6= 0;

[A2] φ(0) = 0 and φ′(x) > 0 for a2 < y < b2;

[A3] The curve φ(y) = F (x) is well defined for all x ∈ (a1, b1).

Proof. If we substitute X = x+Xp and Y = −y + Yp in Eqs. (5) and (6), and we
choose

F (x) = x



C (1 +Kc) +K1

(

1− K2Ref (2+K2(x+2Ref ))

(1+K2Ref )
2

)

(1 +K2 (x+ Ref ))2



 (8)

φ(y) =CKi y (9)

g(x) = x , (10)
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we get the generalized Liénard form of the PI-controlled Cholette system. The

properties [A1], [A2] and [A3] are straightforwardly checked in Eqs. (8)-(10).

For Ψ(X, Y ) to be a diffeomorphism on the region Ω, it is necessary and
sufficient that the Jacobian dΨ(X, Y ) be nonsingular on Ω, and moreover
that Ψ(X, Y ) is one to one from Ω to Ψ(Ω). Since Ψ(X, Y ) is linear, it is
one to one and the determinant of the Jacobian matrix is constant, then is
nonsingular in the region Ω = [−∞,∞]× [−∞,∞].

In the literature, the properties [Ai] are standard properties assumed for
Liénard systems [10]. We point out that the huge existing literature on Liénard
systems deals mainly with cases in which F (x) is polynomial [14], [12], [13],
whereas we are in a case in which F (x) is a nonlinear rational function. Such
cases are far less studied and there are still many open problems.

4 Existence of Limit Cycles

We briefly recall some basic results of the theory of bifurcations of vector
fields. Roughly speaking, a bifurcation is a change in equilibrium points, peri-
odic orbits, or in their stability properties, when varying a parameter known
as bifurcation parameter. The values of the parameter at which the changes
occur are called bifurcation points. A Hopf bifurcation is characterized by a
pair of complex conjugate eigenvalues crossing the imaginary axis. Now, sup-
pose that the dynamical system Ẋ = f(X, µ) with X ∈ R

n and µ ∈ R has

an equilibrium point at Xeq, for some µ = µH ; that is f
(

Xeq, µ
H
)

= 0.

Let A(µ) =
∂f(XH ,µ)

∂X
be the Jacobian matrix of the system at the equi-

librium point. Assume that A
(

µH
)

has as single pair of purely imaginary

eigenvalues S
(

µH
)

= ±ı̇ωH with ωH > 0 and that these eigenvalues are the

only ones with the properties ℜ(S) = 0. If the following condition is fulfilled
dℜ(S(µ))

dµ

∣

∣

∣

µ=µH
6= 0 the Hopf bifurcation theorem states that at least one limit

cycle is generated at
(

Xeq, µ
H
)

(see [8]). The condition (4) is known as the
transversality hypothesis. Considering now the nth degree characteristic poly-
nomial λ(S) = Sn+a1S

n−1+a2S
n−2+ . . .+an, where all the real ai coefficients

are positive allows the construction of a Hurwitz matrix Hn×n Then one has
the basic result that the characteristic polynomial is stable if and only if the
leading principal minors of Hn×n are all positive [9].

To search the Hopf bifurcation we have to calculate the equilibrium points of
the system (2)-(3) making equal to zero the right-hand-side of the equation,
and taking as bifurcation parameters the values of the PI-control gains. Then,
finding the solution with respect to the state vector x we notice that the
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closed-loop system has a unique equilibrium point located at the origin.

Proposition 2. If the parameter Kc is such that

KH
c − 2

√
CKi

C
< Kc < KH

c ,

then the Liénard system (2) and (3) with the functions given in Eqs. (8)-(10) has

at least one limit cycle. The upper limit KH
c is defined in Eq. (15).

Proof. If we use the Hurwitz criterion to guarantee that the unique equilibrium
point is unstable, we evaluate the Jacobian of the system at the origin

J (0,Kc) =







−C − K1

(1+K2Ref )
2 + 2 Ref K2K1

(1+K2Ref )
3 − CKc CKi

−1 0






. (11)

Then, from the determinant IS − J (0,Kc), we get the characteristic polynomial
λ(S) = S2 + a1S + a2, where

a1 =C (1 +Kc)−
K1 (K2Ref − 1)

(1 +K2Ref )
3 (12)

a2 =CKi . (13)

Then, the Hurwitz matrix is given by

H =





a1 0

1 a2



 , (14)

and its principal minors are H1 (Kc) = a1 and H2 (Kc) = a1a2. From this formulas,
we can note that the stability of the unique equilibrium point depends on the sign
of Eq. (12). Since all the parameters in the Eqs. (12) and (13) are positive, we can
induce the local stability as a function of the values of the controller gains involved
in these equations and then we obtain the bifurcation point as the trivial solution
of Eq. (12) for Kc and restricting Ki > 0

Kc
H = −1 +

K1 (K2Ref − 1)

C (1 +K2Ref )
3 . (15)

In order to test the transversality condition, the behavior of the eigenvalues of
J (0,Kc) in the neighborhood of KH

c should be analyzed. Thus, we take Kc as
KH

c + ǫ, with ǫ ∈ R. The transversality condition will be fulfilled if the sign of the
equations H1 and H2 changes when the sign of ǫ changes. Substitution of Eq. (15) in
the principal minor expressions gives H1

(

KH
c

)

= ǫ (C) and H2

(

KH
c

)

= ǫ
(

KiC
2
)

.
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From the above equations we can appreciate that if we want to have a positive real
part of the eigenvalues of the Jacobian matrix (11), we need that ǫ be negative.
In other words, it is below the value given by Eq. (15) where the limit cycles are
generated. Using KH

c , the eigenvalues of the matrix (11) are given by the roots of
the characteristic polynomial λ(S), which are

S1 =−ǫC

2
+

√
ǫ2C2 − 4CKi

2
(16)

S2 =−ǫC

2
−

√
ǫ2C2 − 4CKi

2
, (17)

where we can notice that the eigenvalues are complex with positive real parts, when

0 > ǫ > −2
√
CKi

C
and Ki > 0.

Eq. (15) is of main importance, because it corresponds to the Hopf bifurcation
and therefore lies in a neighborhood of the value of the parameter where at
least one limit cycle is generated. Note, that the Hopf bifurcation by itself can
not guarantee the uniqueness of the limit cycle, because more than one limits
cycle could appear [7]. Then we need to use additional constraints in order to
find the condition for uniqueness.

5 Uniqueness of Limit Cycles

Xiao and Zhang [10] gave an interesting theorem on the uniqueness of limit
cycles for generalized Liénard systems, under the conditions [A1], [A2] and [A3]
that allows us to prove a novel property of PI-controlled Cholette bioreactors.

Theorem 1. Using the notations G(x) =
∫ x

0 g(x)dx and f(x) = F
′

(x), suppose
that the system (2) - (3) satisfies the following conditions:

(i) there exist x1 and x2, a1 < x2 < 0 < x1 < b1 such that F (x1) = F (0) = 0,
F (x2) > 0 and G(x2) ≤ G(x1); xF (x) ≤ 0 for x2 ≤ x ≤ x1, F

′(x) > 0 for
a1 < x < x2 or x1 < x < b1, and F (x) 6= 0 for 0 <| x |≪ 1.

(ii) F (x)f(x)/g(x) is nondecreasing for x1 < x < b1.

(iii) φ′(y) is nonincreasing as | y | increases.

Then the system (2) and (3) has at most one limit cycle, and it is stable if it exists.

Note that the above result does not guarantee the existence of limit cycles by
itself.

Proposition 3. System (2) and (3) with the functions given by the Eqs. (8)-(10)
and with Ref > 2/K2 and Kc = Kc

H + ǫ∗, where
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ǫ∗ = − K1 (−2 +K2Ref )

2C (1 +K2Ref )
3 , (18)

has a unique limit cycle.

Proof. The existence is given by the Proposition 2, and the uniqueness will be
proved by showing that the system fulfills the conditions of Theorem 1. Let us take
Ref∗ = 2κ/K2 with κ > 1 which agrees with the condition stated in Proposition 3.
Then

Kc
H(ǫ∗, Ref∗) = −1 +

K1κ

C (1 + 2κ)3
.

For these values of the parameters, the function F (x) is simplified to the form

F ∗(x) =
xK1

(

3κ+ κK2
2x2 − 4κ3 + 1

)

(1 + 2κ)3 (1 +K2x+ 2κ)2
. (19)

The real roots of F ∗(x) are 0, x1, and −x1, where

x1 =

√

κ (−1 + κ) (1 + 2κ)

κK2
, (20)

which fulfill the property F (x1) = F (0) = 0. Moreover, taking x2 = −ξx1, where
0 < ξ < 1, one can see that x2 < 0 < x1. To evaluate F ∗(x) in the intervals
x2 < x < 0 and 0 < x < x1, it is sufficient to substitute in Eq. (19) x = β xi, where
i = 1, 2 and 0 < β < 1. Then we can easily verify that

0 > F ∗(β x1) =
(−1 + κ)

(

β2 − 1
)

κK1β
√

κ (−1 + κ)

(1 + 2κ)2
(

κ+ β
√

κ (−1 + κ)
)2

K2

(21)

0 < F ∗(β x2) =−ξ
(−1 + κ)

(

β2 − 1
)

κK1 β
√

κ (−1 + κ)

(1 + 2κ)2
(

−κ+ β
√

κ (−1 + κ)
)2

K2

. (22)

Consequently, xF ∗(x) ≤ 0 for x2 ≤ x ≤ x1. Moreover, G(x) = x2/2 and then
G(x2) ≤ G(x1). Besides, for θ > 1 we have

0 < F ∗′(θx1) =
(−1 + κ)

(

(−1 + 3 θ2)κ+ (θ + θ3)
√

κ (−1 + κ)
)

K1κ
2

(1 + 2κ)3
(

κ+ θ
√

κ (−1 + κ)
)3 .

In other words, F ∗′(x) > 0 for x1 < x < b1. From Eq. (8) we can see that F ∗(x) 6= 0
for 0 <| x |≪ 1. In addition, since φ′(y) = CKi, no matter how | y | increases,
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φ′(y) remains constant. Finally, we can write Ψ(x) ≡ F ∗(x)f(x)/g(x) = (A+B)/C,
where

A=2 + κ
(

16κ2 +K2
3x3
)

− κ (1 + 2κ) (xK2 (3K2x+ 8κ+ 4)− 12) (23)

B=2 ln (1 +K2x+ 2κ) (1 + 2κ)3 (1 +K2x+ 2κ) (24)

C=
K1

2

2 (1 + 2κ)6 K2
2 (1 +K2x+ 2κ)3

. (25)

Performing the derivative of Ψ(x), evaluating it at x = x1α for α > 1, and plotting
ϑΨ′(x1α), where

ϑ =
(1 + 2κ)5

(

κ+ α
√

κ (−1 + κ)
)4

K2

K1
2κ3

, (26)

we get the positive function displayed in Fig. 2. Thus, F ∗(x)f(x)/g(x) is nonde-
creasing for x1 < x < b1. In this way, we checked each of the three conditions
of Theorem 1. The unique limit cycle can be seen in Fig. 3 that illustrates the
numerical simulation corresponding to the results obtained until now.

6 Case Study

With the aim of illustrate the results given in the previous sections, we perform
numerical simulation using the values of the parameters given by Chidambaram
[5]. All our calculations are performed for a flow characterized by the value of
the Damköhler number (Da = K1V/F ) equal to 300, as reported by Sree and
Chidambaram [4].

Table 2
The values of the parameters of Cholette’s model [4].

Symbol Value Units

F 3.333 × 10−5 [m3/s]

V 10−3 [m3]

K1 10 [1/s]

K2 10 [m3/Kmol]

n 0.75 [dimensionless ]

m 0.75 [dimensionless ]

10



Fig. 2. The function ϑΨ′(αx1), for α > 1, and κ > 1. We see that this is a strictly
positive function.

Fig. 3. The phase portrait of the PI-controlled Cholette model subjected to the
uniqueness conditions. The employed values of the parameters are those given in
Table 1.

In Fig. 4 a plot of the evolution in time of the variable x is given for two values of the
integral parameterKi. It indicates that the oscillation frequency can be manipulated
through this control parameter.
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Fig. 4. Time evolution of the variable x. The left hand side plot corresponds to
Ki = 0.5, while the right hand side plot corresponds to Ki = 10. This is a graphical
representation of the fact that oscillation frequency is a function of the control gain
parameter Ki.

7 A Local Center of the Generalized Liénard System ?

We begin this section by recalling that a limit cycle is an isolated closed
orbit, while a critical point is a center if all orbits in its neighborhood are
closed. To the best of our knowledge the literature on period annuli for Liénard
systems is well developed only for polynomial cases and moreover it focuses
on Hamiltonian type systems [11], [15], [16].
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Notice that for Kc(Ref ∗) = KH
c (Ref ∗) + ǫ and ǫ in the following interval

ǫ∗ < ǫ < 0 the existence of limit cycles is proved but without guaranteeing
uniqueness. It is precisely in this interval where our numerical simulations
point to the existence of a local center in a neighborhood of the origin. Fig. 5
shows the phase portrait of the PI-controlled generalized Liénard system with
a value of Kc in the same interval and close to KH

c .

Fig. 5. The phase portrait of the PI-controlled generalized Liénard system with a
value of KH

c (Ref∗) + ǫ in the interval ǫ∗ < ǫ < 0 and close to KH
c . The upper

plot shows the state space with the limit cycle and the possible annulus in the
neighborhood of the origin, while the lower plot displays the configuration of the
vector field close to the origin.
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8 Conclusions

The main result of this paper is that the Cholette CSTR model under PI
control can be mapped into a generalized Liénard dynamical system of non-
polynomial type. Thus, we establish a new important application of this class
of nonlinear oscillators that allows us to make a detailed study of the oscilla-
tory dynamical behavior of these interesting bioreactors.

Sufficient conditions for the existence and uniqueness of limit cycles of this
generalized Liénard system are stated in this paper together with numerical
simulations that indicate the possibility of the existence of a local center (pe-
riod annulus) when the gain proportional parameter Kc of the control law is
close to the value KH

c corresponding to the existence condition of limit cy-
cles. We also notice that the oscillation frequency is a function of the integral
control gain parameter Ki, a result that could have practical applications.
We mention that similar results have been obtained by Albarakati, Lloyd, &
Pearson [17] for the polynomial case.

Our work also shows that the Liénard representation of dynamical systems
and its associated results could have a remarkable potential as an effective
tool in the control theory for the closed-loop dynamical analysis in the plane.
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