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bstract

This paper focuses on performance assessment of industrial controllers. Instead of using process or controller models, it is based on process
ata collected at regular time intervals. Data analysis includes a set of tests that are reviewed in the paper and implemented in a software system.

methodology based on the concept of the predictability of controller errors is also proposed for performance monitoring. It considers the time

eries of the error and verifies the existence of predictable patterns beyond the control horizon in each one of the controlled variables of the process.
he result of the analysis is given as a performance index. Examples using industrial data from a refinery are provided.
2006 Elsevier Ltd. All rights reserved.
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. Introduction

The operation of modern process industries is based to a great
xtent in the use of a great number of control loops implementing
variety of control structures. Most of them are PID controllers
nd, more and more, advanced ones, such as MPC and real-time
ptimizers, are present on top of the regulation layer. Neverthe-
ess, it is well known that loop behavior deteriorates with time.
rocess dynamic characteristics change along time and, if not
roperly maintained, a control loop will perform out of speci-
cations after some time, which can lead to degraded process
peration. In particular, problems with the regulation layer can
ancel the benefits of advanced control systems and real-time
ptimization.

With the increasing complexity of control structures and
he sheer number of controllers in modern process plants,

he automation of performance-monitoring tasks is a key
ssue (Thornhill, Oettinger, & Fedenczuk, 1999). In process
lants there are thousands of control loops whose performance
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emands continuous supervision. Human personnel simply can-
ot have the budget of attention to handle this overwhelming task
hich renders many loops to remain open or providing a service
uch below the required standards. Abnormal operation of con-

rol loops can make a significant impact not only in the economy
ut also in the safety of the process.

During the last decade several monitoring techniques have
een developed. One can roughly classify them as model or
ignal based, or deterministic and stochastic (Bezergianni &
eorgakis, 2000). Signal based methods use only process mea-

urements to test loop performance. Perhaps the best known of
hem is the Harris index (Desborough & Harris, 1992, 1993)
ased on the comparison of the actual controller variance to
he ideal situation of a minimum variance controller. Thornhill
t al. (1999), proposed the prediction of the error to determine
he performance of a SISO controller. Ghraizi, Martı́nez, & de
rada (2003, 2004), Ghraizi et al. (2004), suggested a practical

ndex for performance monitoring of a control loop based on
he analysis of the predictability of the error time series empha-

izing proper selection of the control horizon using engineering
udgment.

In a different thinking line, Åström (1991) combined several
lassical loop performance measurements in order to perform

mailto:rachid@autom.uva.es
dx.doi.org/10.1016/j.compchemeng.2006.06.009


4 hemical Engineering 31 (2007) 477–486

q
E
r
e
s
c
t
a
A

a
c
p
t
v
a
s

c
b
t
s
m
s
S

2

c
o
t
d
p
T
d

p
o
a

A

w
d
l

y

w
b
e
i
m
n
i
I
n

c
p

i
h
e
t
r
o
e
p
t
o
d
d
r
b
u
e
t
v

b
(
s
t
e

e

w
d
T
i
i

r

d
e

78 R.A. Ghraizi et al. / Computers and C

ualitative and quantitative assessment of a SISO loops.
riksson and Isaksson (1994) motivated by the fact that the Har-

is index was difficult to interpret and could not incorporate the
ffect of deterministic changes in the control loop, presented
ome alternative indices requiring exact models of both the pro-
ess and its controller. Other methods have been proposed with
he same aim, such as the one that compares closed loop vari-
nce with the open loop one (Bezergianni & Georgakis, 2000).

good recent survey of the topic can be found at Jelali (2006).
The main contribution of our work is based on the proposal of

procedure to obtain an index that allows the monitoring of the
ontroller in closed loop and to evaluate its performance using
redictions to detect the existence of predictable patterns in the
ime series of the error associated to each one of the controlled
ariables of the process. The method was applied off line to
nalyze some loops PIDs in a petrochemical plant, but it is also
uitable for on-line implementation.

This paper focuses on a practical methodology for performing
ontrol loop monitoring. After Section 1, Section 2 explains the
asis of the proposed monitoring index and Section 3 is devoted
o the discussion of its tuning parameters. Section 4 describes a
oftware tool for performing the analysis and review several test
ethods implemented on it, while Section 5 shows and discuss

everal examples of controller analysis using real data. Finally,
ection 6 gives some conclusions.

. Monitoring methodology

As mentioned above, several methods have been proposed for
ontroller supervision. Having in mind the idea of monitoring
n-line a large number of PID regulators, it seems reasonable
o propose a methodology in which an index can be used for
ifferentiating those loops which require further analysis from
lant personnel from those that are performing “good enough”.
hen, other tests can be applied to the selected loops in order to
iagnose the ultimate cause of the loop malfunctioning.

The Harris index is intended to be a measurement of the
erformance of the controller in relation to the best possible
ne. It is based on the fact that a minimum variance controller
pplied to a plant characterized by the model

(q−1)y(t) = B(q−1)u(t − k) + C(q−1)ξ(t)

here u(t) and y(t) are the process input and output, k the process
elay and ξ(t) is a zero-mean white noise signal, gives a closed
oop output such as:

MV = σDξ(t)

ith D is made up of the first k coefficients of C/A. As D can
e identified from closed loop operating data, it is possible to
stimate the lower limit of the output variance and construct an
ndex comparing the present variance to the theoretical mini-

um one. Nevertheless, the knowledge of the process delay k is

eeded and, as mentioned above, the Harris index can be of lim-
ted use as a measurement of the actual performance of the loop.
t measures how far a PID is from the best linear controller, but
ot directly how well the loop is behaving. So, for the purpose of

f

e

Fig. 1. Error patterns.

ontroller plant supervision, one can think in a more informative
erformance measurement.

The performance-monitoring concept revolves around the
dea of predictability of controller behavior beyond a chosen
orizon b. If a control loop exhibits “good” performance, we
xpect that it will be able to cancel any disturbance entering
he loop up to present time t, or follow a set point change cor-
ectly, after some sensible time interval b (expressed in terms
f sampling periods). Then, it is suppose that, from t + b on, the
rror cannot be distinguished from a random walk stochastic
rocess so that it cannot be predicted adequately using informa-
ion up to time instant t (see Fig. 1 for details). Nevertheless,
ver the control horizon b, the controller behavior is fully pre-
ictable since it corresponds to its own control policy built-in by
esign. By contrast, the error of a control loop exhibiting “incor-
ect” performance, after time instant t + b, will show patterns of
ehaviour (oscillations, steady error, etc.) that can be predicted
sing present and past measurements. On this ground, there may
xist different alternatives to detect patterns of predictability in
he time series associated to controller errors and manipulated
ariable changes.

It is worth discussing first the meaning of the control horizon
for a regulatory control task. Whatever the internal workings

PID, predictive, etc.) of a controller, the value of b represents a
ound engineering decision that takes into account among other
hings process dynamics, type of service and acceptable control
nergy. Let us denote by a scalar e(t) the controller error,

(t) = w(t) − y(t) (1)

ith w(t) the controller set point, whereas ê(t) stands for the pre-
iction of such error based on past values of the controller error.
he difference between the actual and predicted controller errors

s the residue r(t) whose means and variance provide relevant
nformation regarding the predictability of a controller behavior:

(t) = e(t) − ê(t) (2)

The calculation of a performance index from a given data set
emands some way of estimating future controller errors. The
asiest way to do this is to propose a regression model of the

ollowing form:

ˆ(t + b) = a0 + a1e(t) + a2e(t − 1) + a3e(t − 2) + · · ·
+ ame(t − m + 1) (3)
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here the time indices refer to sampling periods, m the model
rder and ai are the unknown parameters. Several authors
Harris, 1989; Desborough & Harris, 1992; Ghraizi et al., 2003;
tanfelj, Marlin, & MacGregor, 1993) have discussed methods

o estimate prediction models. In our case the parameters will
e fitted upon data, using least-squares regression:

a0, a1, . . . , am]T = (XTX)
−1

XTY (4)

here

=

⎡
⎢⎢⎢⎢⎣

1 e(1) e(2) . . . e(m)

1 e(2) e(3) . . . e(m + 1)
...

...
...

...
...

1 e(n − b − m + 1) · · · . . . e(n − b)

⎤
⎥⎥⎥⎥⎦ (5)

= [ e(m + b) e(m + b + 1) . . . e(n) ]T (6)

The Predictability Index (PI) is calculated to bear some sim-
larity with the one proposed by Harris (1989) to measure the
urrent performance regarding the best performance that can be
chieved using a minimum variance controller. More precisely,
he PI index is defined as:

I = 1 − σ2
r

σ2
e

(7)

here σ2
r is the variance of the residuals r(t) and σ2

e is the vari-
nce of the actual errors e(t):

ˆ 2
r = 1

n − 1

n∑
i=1

(r(i) − r̄)2 (8)

ˆ 2
e = 1

n − 1

n∑
i=1

(e(i) − ē)2 (9)

Both of them estimated from a set of n plant data. Similar
alculations can be used to define a measure of the predictability
f controller outputs. For a given interval of time, if a controller is
erforming well, so that it does not exhibit a predictable behavior
eyond the control horizon, the variance of the residuals will be
imilar to the one of the errors, σ2

r ≈ σ2
e giving rise to a near

ero value of the PI index. As the controller behavior is more
redictable, the residuals will decrease in amplitude so that σ2

r

ill decreases relative to σ2
e , which in turn increases PI. For a

ontroller exhibiting an easily predictable behavior (e.g., output
aturation) σ2

r � σ2
e , and PI = 1.

It is possible to define confidence intervals for sample esti-
ations of the predictability index, which allow using control

harts to detect excursions associated to loop malfunctions. It is
nown that, assuming independence, the expressions

(n − 1)σ̂2
r

2 and
(n − 1)σ̂2

e

2 (10)

σr σe

here σ̂ means the estimate of σ, follow a χ2 distribution with
− 1 degrees of freedom, so that its ratio will follow an F distri-
ution with n − 1, n − 1 degrees of freedom. The estimate of the

t
p

a
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onfidence interval is then carried out according to the following
quation:(

σ̂2
r

σ̂2
e

F−1
0.5α,n−1 ≤ σ2

r

σ2
e

≤ σ̂2
r

σ̂2
e

F0.5α,n−1

)
= 1 − α (11)

here F1−a/2,n−1 is the F statistic, α the level of confidence, n
nd σr are, respectively, the size of the subset of data (group)
nd the variance of the residuals.

. Parameter tuning

It is necessary to provide some guidelines on how the three
arameters, m, n and b involved in the calculation of PI should
e selected. As all of them are expressed in terms of a number
f sampling time, the selection of the sampling rate should be
onsidered too.

Parameter m, represents the order of the regression model.
his parameter should have a value that is big enough to capture

he characteristics of the time series of the error to reflect the
redictable components in the model. As a rule of thumb, m
hould have a value slightly bigger than the loop settling time
nd, on any case, bigger than the control horizon b. Typical
alues are around 30–40. Too high a value for f creates problems
f overfitting while a value too low will lead to poor extrapolation
apabilities in the model all of which will affect the sample
stimation of the PI index. m will also affect the computing time.

Parameter n is the size of the data sample and it should take
nto account the trade off between index variance and data homo-
eneity. A very small size of the data set increases the size of the
onfidence interval of the PI index but presents more sensibility
o local changes in the loop performance, while a too big data set

ixes heterogeneous data, which may mask a lot of important
nformation. Since index calculation uses the error of controller
nd not the controlled variables, it is not necessary that the set
oint of the loop remains constant, but it is important that the
haracteristics of the loop are the same throughout (Ghraizi et
l., 2003), such that, sensors, valves, control algorithms should
ot be altered by calibration or tuning. Values of n around 1000
ata samples provide a good compromise.

Parameter b represents also the prediction horizon for the time
eries model and should be equal to the time beyond which a
ontroller performing “well” should have rejected a disturbance.
t has been analysed by different authors like Harris (1989),
esborough and Harris (1992), Stanfelj et al. (1993), Harris,
ourdreau, MacGregor (1996) and Ghraizi et al. (2004). In our
ork, we have observed that b should be equal to the expected

losed loop settling time, including any possible delay, indepen-
ently of the type of the loop so that so it can reflect the necessary
rediction characteristics in a control loop. A too short value of b
ill give good predictions of the error, that is, high values of the
I index, even if the loop has a good response because the error
annot fully not be cancelled in such this short period of time.
y the contrary, a value of b too high will make more difficult
o identify poorly performing loops and to compute predictions
roperly. Typical values of b are around 15.

Regarding the sampling interval tm, it is necessary to avoid
n excessive or slow sampling. Common rules for sampling
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ime selection can be applied, such as obtaining 15–20 sam-
les in the closed loop settling time. Nevertheless, having in
ind that the application is not control, but supervision, slightly

igger sampling times are recommended, shortening comput-
ng times in this way. Of course the choice depends on the
oop dynamics. Values of 5 s are recommended for fast loops
uch as pressure or flow, while others such as temperature
an operate with 1 min. As mentioned above, all other param-
ters are affected by the choice of tm. If the data are fre-
uently sampled, the impulse response of the closed loop is
ot established inside the m samples. With low frequency sam-
ling, the impulse response is only established inside a few
amples and the important loop characteristics are not cap-
ured between the samples (Thornhill et al., 1999; Stanfelj et
l., 1993), so that poor error predictions can be expected. In
he same way, low sampling times will lead to large num-
er of data n or prediction horizon b, increasing computation
imes.

. Analysis tools

In order to help performing plant loop monitoring, a Matlab
oolbox was developed which implements several tests and aux-
liary functions. The main screen of the toolbox, called ACCI,
an be seen in Fig. 2. The slide buttons on the upper left part
llows selecting a batch of data and fixing the parameters tm,
, n, b to carry out the monitoring method. The menus on the

c
o
a
t

Fig. 2. Main screen of the
cal Engineering 31 (2007) 477–486

ottom left part are used to perform loop analysis using indexes
uch as the proposed PI, as well as other methods. The graphs
hown in the screen correspond the different signals and the
esults of the analysis.

The proposed methodology for the analysis of a batch of data
f size n, first analyses the type of loop in order to identify
ts desired dynamic behaviour and set accordingly the value of
ts parameters. Then, it uses the above-mentioned PI index for
creening if the loop is exhibiting the desired behavior or it is
candidate to further analysis. Once a loop shows a high PI

alue, several other tests can be applied to it in order to confirm
he problem and getting additional insight about it. These tests
re linked to the type of loops and its objectives, and include
he trend of PI values (to discriminate a punctual problem from
persistent one), percentage of time a manipulated variable is

aturated, as well as other tests based on spectral analysis, cor-
elations, etc. If the loop requires retuning, the Harris index can
rovide a good measurement of the margin for improvement and
he impulse response of the error can give directions on how to
etune the loop. Next, we will refer briefly to these tests:

The first one is the Harris index, will indicate how far the
ctual output variance is from the one provided by a minimum
ariance controller. For its computation an estimate of the pro-

ess delay is required, which can be an added difficulty. A value
f the Harris index close to one means that no improvements
re expected from re-tuning the controller, while a value near
o cero means that there is a wide margin for improvement.

monitoring Toolbox.



R.A. Ghraizi et al. / Computers and Chemical Engineering 31 (2007) 477–486 481

anipu

N
t
o
i

t
i
t
p
u
i
s
f
m
p
l
A
s

o
o
t
e
a
s
w
B
2

s
e
a
A
w

o
s
t
d
t
o

5

w
s
t
l

5

o
i
o
v
t
v
c
i
b
(
u
w
l
1
P
t
t

t
i
l
p
t
e
d
t

Fig. 3. Set point and controlled and m

evertheless, a value close to one does not means that the con-
roller is performing well, but a bad behavior can come from
ther sources, for instance input signal saturation, not necessar-
ly from bad tuning.

Spectral analysis of the error and control signals gives fur-
her information on the controller functioning. As it is known,
t provides the frequency content of a signal. High values of
he spectrum of the error signal at low frequencies mean that
oor tracking of the set point takes place. In the same way
nacceptable fast changes in the control signal will be reflected
n significant values of the high frequency components of its
pectrum. More interesting is to compare the same range of
requencies in the different signals, set point, controlled and
anipulated variables and error signal to see which signals are

owered or attenuated so that responsibilities on possible oscil-
ations can be assigned to the controller or external disturbances.
lso, similar frequency peaks in different loops can indicate the

ource of external disturbances or couplings between them.
Autocorrelation coefficients of the error for different values

f the index k indicates how much the error at time t + k depends
n the error at time t. In full agreement with the ideas behind
he PI index, after b samples, in a well functioning loop the
rror should be independent of the previous errors, so that the
utocorrelation coefficient should drop to zero for k > b. In the
ame way, oscillations in the graph will indicate over-tuning,
hile a slow drop will indicate too loose a tuning (Biao, Shah,
admus, & Vishnubhotla, 2000) (Shah, Patwardhan, & Huang,
001).

Cross correlation can be used to check dependencies between
everal variables. In particular, ideally, in a well tuned loop the
rror should not depend after some time on the manipulated vari-
ble (but the manipulated variable would depend on the error).
lso, prediction error residuals should not depend on the error,
hich could be check using its cross covariance.
Finally, the impulse response computed from an AR model

f the error can be used to obtain dynamic characteristics of this
ignal, which provide and additional information about settling

imes, delays, oscillating behaviour, etc. and can be useful for
eciding how to retune the loop if necessary. As before, oscilla-
ions in the graph will indicate over-tuning, while a slow decline
f the coefficients will indicate too loose a tuning.

t
t
e
r

lated variables, PI and Harris indexes.

. Industrial data analysis

In order to test the proposed methodology, several analysis
ere performed with the ACCI toolbox using data from a wide

et of different loops taken from a petrochemical plant. In par-
icular we will present here two cases from different types of
oops.

.1. A flow control loop

In Fig. 3 (left) one can observe 17 batches of 1000 data each
f a flow loop operating as the internal loop of a cascade so that
ts set point is changing continuously. It behaves correctly most
f the times, so that it is difficult to distinguish the controlled
ariable, named output variable or process variable (PV), from
he set point (SP) in the upper left graph, being the manipulated
ariable, named input variable, control variable or Output to Pro-
ess (OP), the one shown in the bottom left graph. Nevertheless,
ts performance deteriorates at the 13th batch (after data 12,000),
ecause the new operating point has saturated the control signal
bottom left). The performance index PI is represented on the
pper right graph. At the beginning, it does not have high values
hat indicates that the loop is performing well and the error has

ittle predictability, as shown in the right hand side. But in the
3th batch of data, the manipulated variable saturates and the
I almost is equal to one. For the computation of the PI index,

he parameters were chosen according to the nature of the loop:
m = 5 s, b = 12, m = 30.

Fig. 4 shows this information in more detail. Referring to
he upper graph, it corresponds to the controlled variable and
ts set point in a time interval around sample 9600, where the
oop is working correctly, while the values of the error and its
redictions for this range are shown in middle graph. Notice
hat the prediction error model fails to predict future errors as
xpected. On the contrary, as shown in the lower graph, which
isplays also the error and its predictions for a range belonging
o the 13th batch where the controller does not work properly,

he error can be predicted easily this time, which corresponds
o a high PI. Once the process returns to its normal state, the
rror, and the index take small values again. In Fig. 3 bottom
ight, the Harris index is displayed for the shake of comparison:
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Fig. 4. Flow Data with their errors and PI.
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Fig. 5. Power spectrum of the PV, OP, SP

Fig. 6. Autocorrelation co
cal Engineering 31 (2007) 477–486

he values around 0.4 from most of the samples did not give
clear indication of good behaviour, but provides information

hat a margin for improvement does exist in the controller. At
he same time, it shows also the abnormal behaviour at the 13th
atch, obviously not due to bad tuning.

From a different point of view, the power spectrum of the
ontrolled variable (PV), manipulated variable (OP), set point
SP) and error signal, represented in Fig. 5 for data batches 1st
nd 13th displays the different behaviours of the loop: on the left
raphs, the error (graph d) has no low frequency components,
ndicating good set point following. Also, the low frequency
ange of the controlled and manipulated variables (graphs a–c)
llows to infer that changes in the output are due to set point
hanges and not to the behavior of the controller, but around the
requency 0.05 the action of the controller seems to be respon-
ible of the output oscillations, notice that they do not appear
n the right hand side graphs. On the contrary, in these graphs,
he error (graph h) shows low frequency components, that are
teady errors, and we can infer that the saturation of the con-
roller is responsible of the bad behaviour because it suppresses
he normal action of the controller.

Similar analysis can be performed using correlation func-

ions as in Fig. 6 where the autocorrelation coefficient of the
rror is displayed for the previous two data batches, showing the
ontrast between them. On the left, the error, after b samples,
oes not depends on its previous values, but shows some oscilla-

and error in batches 1st and 13th.

efficient of the error.
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Fig. 7. Data set and PI and Harris indexes.

Fig. 8. A pressure control loop.

Fig. 9. Autocorrelation of the error and cross-correlation of the error and OP.
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ory behaviour. On the right a clear dependence is shown, which
orresponds to high values of the PI index.

.2. Other case studies

Moving now to a different kind of control loops, we will show
ow the plain observation of the graphs trends is not sufficient
o asses correctly the state of the loop.

First, a pressure loop also placed as the internal loop of a
ascade, will be considered, but this time with very smooth
ovements of the set point. The whole set of n = 960 data,
V plus SP and OP can be seen on the left hand side of
ig. 7 with the PI and Harris indices on the right. In this
ase six batches of data with tm = 15 s, b = 12, m = 30, were
sed. The PI index indicates a bad behaviour, with a small
mprovement in batch 3, even if the absolute value of the error
s small, which is corroborated by the oscillatory behaviour
fter sample 5000. The Harris index is in accordance with this
iagnosis, indicating a performance far away from the mini-
um variance one and, so, a wide range for improvement does

xist.
Fig. 8 shows the Acci Toolbox screen with a zoom over the

rst batch of data. The set point and controlled variable are dis-
layed on the upper right and the manipulated variable in the
ottom right, with the error and its predictions on the upper
eft. It is worth noting the good predictions of the error, as
ell as the oscillations of the output around the set point orig-
nated by a too active control which explains the high value of
he PI.

Fig. 9 provides information from the point of view of the
orrelation functions. On the left, the autocorrelation coefficient

o
s

p

Fig. 11. Pressure data with
Fig. 10. Impulse response of the error.

f the error shows a big dependence of the error on its past values
or delays bigger than b, confirming the bad performance of the
oop. On the right, the error also shows a noticeable dependence
f the error with the manipulated variable, which should not
ppear in a well performing loop, where the errors, after some
ime, should be the result of the stochastic disturbances entering
he loop.

From the model error used to compute the Harris index, it
s possible to obtain the impulse response of the error. This is
isplayed in Fig. 10, and shows a long settling time as well as

scillations due to overtuning, probably due an integral time too
hort, in line with the previous analysis.

Finally, we will present other pressure control loop. In the left
art of Fig. 11, we can observe some batches of data and their

their errors and PI.
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Fig. 12. Temperature d

nalyses, while in the right part of the graph we can see a zoom of
certain area of them to visualize some details. The upper graph
orresponds to the controlled variable and its set point, while the
alues of the error and its predictions are in the middle of the
raph. Finally, in the lower one, the values of the performance
ndices PI and Harris are displayed. Even if the pressure data on
he left could suggest a too strong tuning and an oscillatory loop,
he low value of the PI index indicate good performance, which
s supported by the Harris index, which indicates small margin
or improvement, as well as by the zoom of the PV and SP on the
pper right graph and the prediction errors in the middle right
raph.

The parameters were adjusted to the nature of the loop. In this
ay, we choose tm = 5 s, b = 12 (number of samples), m = 30.
or level ones tm = 60 s, b = 30, m = 30, (in this case n = 720),
or pressure tm = 5 s, b = 5, m = 30, and for temperature tm = 60 s,
= 15, m = 30.

Finally, Fig. 12 displays data from a cascade loop in which a
emperature output is following a changing set point very slowly
ith a significant steady error. In this case, the PI has high values

ll the time, and in the extended graph of the right is seen that
he error is completely predictable as expected. In addition, the
arris index is consistent with this result.

. Conclusions
This paper presents results showing a promising way of
nalysing the performance of industrial controllers using a time
eries of the control loop error to detect the existence of pre-
ictable patterns. An index was computed to achieve this anal-

H

ith their errors and PI.

sis evaluating the residuals between the controller’s error and
ts prediction and some rules have been proposed to adjust the
arameters of the method. Finally, it was applied to several
ndustrial plant data sets showing that it can be a good tool for
etecting bad loop behaviour.
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