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Abstract

This paper focuses on performance assessment of industrial controllers. Instead of using process or controller models, it is based on process
data collected at regular time intervals. Data analysis includes a set of tests that are reviewed in the paper and implemented in a software system.
A methodology based on the concept of the predictability of controller errors is also proposed for performance monitoring. It considers the time
series of the error and verifies the existence of predictable patterns beyond the control horizon in each one of the controlled variables of the process.
The result of the analysis is given as a performance index. Examples using industrial data from a refinery are provided.
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1. Introduction

The operation of modern process industries is based to a great
extent in the use of a great number of control loops implementing
a variety of control structures. Most of them are PID controllers
and, more and more, advanced ones, such as MPC and real-time
optimizers, are present on top of the regulation layer. Neverthe-
less, it is well known that loop behavior deteriorates with time.
Process dynamic characteristics change along time and, if not
properly maintained, a control loop will perform out of speci-
fications after some time, which can lead to degraded process
operation. In particular, problems with the regulation layer can
cancel the benefits of advanced control systems and real-time
optimization.

With the increasing complexity of control structures and
the sheer number of controllers in modern process plants,
the automation of performance-monitoring tasks is a key
issue (Thornhill, Oettinger, & Fedenczuk, 1999). In process
plants there are thousands of control loops whose performance
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demands continuous supervision. Human personnel simply can-
not have the budget of attention to handle this overwhelming task
which renders many loops to remain open or providing a service
much below the required standards. Abnormal operation of con-
trol loops can make a significant impact not only in the economy
but also in the safety of the process.

During the last decade several monitoring techniques have
been developed. One can roughly classify them as model or
signal based, or deterministic and stochastic (Bezergianni &
Georgakis, 2000). Signal based methods use only process mea-
surements to test loop performance. Perhaps the best known of
them is the Harris index (Desborough & Harris, 1992, 1993)
based on the comparison of the actual controller variance to
the ideal situation of a minimum variance controller. Thornhill
et al. (1999), proposed the prediction of the error to determine
the performance of a SISO controller. Ghraizi, Martinez, & de
Prada (2003, 2004), Ghraizi et al. (2004), suggested a practical
index for performance monitoring of a control loop based on
the analysis of the predictability of the error time series empha-
sizing proper selection of the control horizon using engineering
judgment.

In a different thinking line, Astrém (1991) combined several
classical loop performance measurements in order to perform
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qualitative and quantitative assessment of a SISO loops.
Eriksson and Isaksson (1994) motivated by the fact that the Har-
ris index was difficult to interpret and could not incorporate the
effect of deterministic changes in the control loop, presented
some alternative indices requiring exact models of both the pro-
cess and its controller. Other methods have been proposed with
the same aim, such as the one that compares closed loop vari-
ance with the open loop one (Bezergianni & Georgakis, 2000).
A good recent survey of the topic can be found at Jelali (2006).

The main contribution of our work is based on the proposal of
a procedure to obtain an index that allows the monitoring of the
controller in closed loop and to evaluate its performance using
predictions to detect the existence of predictable patterns in the
time series of the error associated to each one of the controlled
variables of the process. The method was applied off line to
analyze some loops PIDs in a petrochemical plant, but it is also
suitable for on-line implementation.

This paper focuses on a practical methodology for performing
control loop monitoring. After Section 1, Section 2 explains the
basis of the proposed monitoring index and Section 3 is devoted
to the discussion of its tuning parameters. Section 4 describes a
software tool for performing the analysis and review several test
methods implemented on it, while Section 5 shows and discuss
several examples of controller analysis using real data. Finally,
Section 6 gives some conclusions.

2. Monitoring methodology

As mentioned above, several methods have been proposed for
controller supervision. Having in mind the idea of monitoring
on-line a large number of PID regulators, it seems reasonable
to propose a methodology in which an index can be used for
differentiating those loops which require further analysis from
plant personnel from those that are performing “good enough”.
Then, other tests can be applied to the selected loops in order to
diagnose the ultimate cause of the loop malfunctioning.

The Harris index is intended to be a measurement of the
performance of the controller in relation to the best possible
one. It is based on the fact that a minimum variance controller
applied to a plant characterized by the model

Al My(t) = Blg™Hu(t — k) + C(g~He@)

where u(?) and y(¢) are the process input and output, k the process
delay and &() is a zero-mean white noise signal, gives a closed
loop output such as:

ymv = oD&(1)

with D is made up of the first k coefficients of C/A. As D can
be identified from closed loop operating data, it is possible to
estimate the lower limit of the output variance and construct an
index comparing the present variance to the theoretical mini-
mum one. Nevertheless, the knowledge of the process delay & is
needed and, as mentioned above, the Harris index can be of lim-
ited use as a measurement of the actual performance of the loop.
It measures how far a PID is from the best linear controller, but
not directly how well the loop is behaving. So, for the purpose of
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controller plant supervision, one can think in a more informative
performance measurement.

The performance-monitoring concept revolves around the
idea of predictability of controller behavior beyond a chosen
horizon b. If a control loop exhibits “good” performance, we
expect that it will be able to cancel any disturbance entering
the loop up to present time ¢, or follow a set point change cor-
rectly, after some sensible time interval b (expressed in terms
of sampling periods). Then, it is suppose that, from ¢+ b on, the
error cannot be distinguished from a random walk stochastic
process so that it cannot be predicted adequately using informa-
tion up to time instant ¢ (see Fig. 1 for details). Nevertheless,
over the control horizon b, the controller behavior is fully pre-
dictable since it corresponds to its own control policy built-in by
design. By contrast, the error of a control loop exhibiting “incor-
rect” performance, after time instant #+ b, will show patterns of
behaviour (oscillations, steady error, etc.) that can be predicted
using present and past measurements. On this ground, there may
exist different alternatives to detect patterns of predictability in
the time series associated to controller errors and manipulated
variable changes.

It is worth discussing first the meaning of the control horizon
b for a regulatory control task. Whatever the internal workings
(PID, predictive, etc.) of a controller, the value of b represents a
sound engineering decision that takes into account among other
things process dynamics, type of service and acceptable control
energy. Let us denote by a scalar e(¢) the controller error,

e(r) = w(r) — y(1) ey

with w(r) the controller set point, whereas &(¢) stands for the pre-
diction of such error based on past values of the controller error.
The difference between the actual and predicted controller errors
is the residue r(f) whose means and variance provide relevant
information regarding the predictability of a controller behavior:

r(r) = e(r) — e(r) @

The calculation of a performance index from a given data set
demands some way of estimating future controller errors. The
easiest way to do this is to propose a regression model of the
following form:

e(t+b)=ag+ aje(t) + are(t — 1)+ aze(t —2)+ - - -
+amet —m+1) 3)
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where the time indices refer to sampling periods, m the model
order and a; are the unknown parameters. Several authors
(Harris, 1989; Desborough & Harris, 1992; Ghraizi et al., 2003;
Stanfelj, Marlin, & MacGregor, 1993) have discussed methods
to estimate prediction models. In our case the parameters will
be fitted upon data, using least-squares regression:

lao. ar. ... an]" = (XTX) " XTY @)
where

1 e(1) e(2) e(m)

1 e(2) e(3) e(m+1)

1 em—b—m+1) e(n —b)
Y=[em+b) em+b+1) ... em] (6)

The Predictability Index (PI) is calculated to bear some sim-
ilarity with the one proposed by Harris (1989) to measure the
current performance regarding the best performance that can be
achieved using a minimum variance controller. More precisely,
the PI index is defined as:

Ur
PI=1- -7 7
e

where 0,2 is the variance of the residuals r(f) and 062 is the vari-
ance of the actual errors e(7):

o = nilgmn —7 ®)
6= ];e(,-) ~o7 ©)

Both of them estimated from a set of n plant data. Similar
calculations can be used to define a measure of the predictability
of controller outputs. For a given interval of time, if a controller is
performing well, so that it does not exhibit a predictable behavior
beyond the control horizon, the variance of the residuals will be
similar to the one of the errors, 03 ~ 03 giving rise to a near
zero value of the PI index. As the controller behavior is more
predictable, the residuals will decrease in amplitude so that 0,2
will decreases relative to 062, which in turn increases PI. For a
controller exhibiting an easily predictable behavior (e.g., output
saturation) o2 < 02, and PI=1.

It is possible to define confidence intervals for sample esti-
mations of the predictability index, which allow using control
charts to detect excursions associated to loop malfunctions. It is
known that, assuming independence, the expressions

-1 A2 -1 A2
0V ' o
oy o,

where 6 means the estimate of o, follow a xz distribution with
n — 1 degrees of freedom, so that its ratio will follow an F distri-
bution with n — 1, n — 1 degrees of freedom. The estimate of the

confidence interval is then carried out according to the following
equation:

A2 2 a2

p(Zpl <% %R —1— (11)
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where F1_4n.,—1 is the F statistic, « the level of confidence, n

and o, are, respectively, the size of the subset of data (group)

and the variance of the residuals.

3. Parameter tuning

It is necessary to provide some guidelines on how the three
parameters, m, n and b involved in the calculation of PI should
be selected. As all of them are expressed in terms of a number
of sampling time, the selection of the sampling rate should be
considered too.

Parameter m, represents the order of the regression model.
This parameter should have a value that is big enough to capture
the characteristics of the time series of the error to reflect the
predictable components in the model. As a rule of thumb, m
should have a value slightly bigger than the loop settling time
and, on any case, bigger than the control horizon b. Typical
values are around 30—40. Too high a value for f creates problems
of overfitting while a value too low will lead to poor extrapolation
capabilities in the model all of which will affect the sample
estimation of the Pl index. m will also affect the computing time.

Parameter n is the size of the data sample and it should take
into account the trade off between index variance and data homo-
geneity. A very small size of the data set increases the size of the
confidence interval of the PI index but presents more sensibility
to local changes in the loop performance, while a too big data set
mixes heterogeneous data, which may mask a lot of important
information. Since index calculation uses the error of controller
and not the controlled variables, it is not necessary that the set
point of the loop remains constant, but it is important that the
characteristics of the loop are the same throughout (Ghraizi et
al., 2003), such that, sensors, valves, control algorithms should
not be altered by calibration or tuning. Values of n around 1000
data samples provide a good compromise.

Parameter b represents also the prediction horizon for the time
series model and should be equal to the time beyond which a
controller performing “well” should have rejected a disturbance.
It has been analysed by different authors like Harris (1989),
Desborough and Harris (1992), Stanfelj et al. (1993), Harris,
Bourdreau, MacGregor (1996) and Ghraizi et al. (2004). In our
work, we have observed that b should be equal to the expected
closed loop settling time, including any possible delay, indepen-
dently of the type of the loop so that so it can reflect the necessary
prediction characteristics in a control loop. A too short value of b
will give good predictions of the error, that is, high values of the
PI index, even if the loop has a good response because the error
cannot fully not be cancelled in such this short period of time.
By the contrary, a value of b too high will make more difficult
to identify poorly performing loops and to compute predictions
properly. Typical values of b are around 15.

Regarding the sampling interval ¢, it is necessary to avoid
an excessive or slow sampling. Common rules for sampling
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time selection can be applied, such as obtaining 15-20 sam-
ples in the closed loop settling time. Nevertheless, having in
mind that the application is not control, but supervision, slightly
bigger sampling times are recommended, shortening comput-
ing times in this way. Of course the choice depends on the
loop dynamics. Values of 5s are recommended for fast loops
such as pressure or flow, while others such as temperature
can operate with 1 min. As mentioned above, all other param-
eters are affected by the choice of #,. If the data are fre-
quently sampled, the impulse response of the closed loop is
not established inside the m samples. With low frequency sam-
pling, the impulse response is only established inside a few
samples and the important loop characteristics are not cap-
tured between the samples (Thornhill et al., 1999; Stanfelj et
al., 1993), so that poor error predictions can be expected. In
the same way, low sampling times will lead to large num-
ber of data n or prediction horizon b, increasing computation
times.

4. Analysis tools

In order to help performing plant loop monitoring, a Matlab
Toolbox was developed which implements several tests and aux-
iliary functions. The main screen of the toolbox, called ACCI,
can be seen in Fig. 2. The slide buttons on the upper left part
allows selecting a batch of data and fixing the parameters f,,,
m, n, b to carry out the monitoring method. The menus on the
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bottom left part are used to perform loop analysis using indexes
such as the proposed PI, as well as other methods. The graphs
shown in the screen correspond the different signals and the
results of the analysis.

The proposed methodology for the analysis of a batch of data
of size n, first analyses the type of loop in order to identify
its desired dynamic behaviour and set accordingly the value of
its parameters. Then, it uses the above-mentioned PI index for
screening if the loop is exhibiting the desired behavior or it is
a candidate to further analysis. Once a loop shows a high PI
value, several other tests can be applied to it in order to confirm
the problem and getting additional insight about it. These tests
are linked to the type of loops and its objectives, and include
the trend of PI values (to discriminate a punctual problem from
a persistent one), percentage of time a manipulated variable is
saturated, as well as other tests based on spectral analysis, cor-
relations, etc. If the loop requires retuning, the Harris index can
provide a good measurement of the margin for improvement and
the impulse response of the error can give directions on how to
retune the loop. Next, we will refer briefly to these tests:

The first one is the Harris index, will indicate how far the
actual output variance is from the one provided by a minimum
variance controller. For its computation an estimate of the pro-
cess delay is required, which can be an added difficulty. A value
of the Harris index close to one means that no improvements
are expected from re-tuning the controller, while a value near
to cero means that there is a wide margin for improvement.
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Nevertheless, a value close to one does not means that the con-
troller is performing well, but a bad behavior can come from
other sources, for instance input signal saturation, not necessar-
ily from bad tuning.

Spectral analysis of the error and control signals gives fur-
ther information on the controller functioning. As it is known,
it provides the frequency content of a signal. High values of
the spectrum of the error signal at low frequencies mean that
poor tracking of the set point takes place. In the same way
unacceptable fast changes in the control signal will be reflected
in significant values of the high frequency components of its
spectrum. More interesting is to compare the same range of
frequencies in the different signals, set point, controlled and
manipulated variables and error signal to see which signals are
powered or attenuated so that responsibilities on possible oscil-
lations can be assigned to the controller or external disturbances.
Also, similar frequency peaks in different loops can indicate the
source of external disturbances or couplings between them.

Autocorrelation coefficients of the error for different values
of the index k indicates how much the error at time ¢+ k depends
on the error at time 7. In full agreement with the ideas behind
the PI index, after b samples, in a well functioning loop the
error should be independent of the previous errors, so that the
autocorrelation coefficient should drop to zero for k> b. In the
same way, oscillations in the graph will indicate over-tuning,
while a slow drop will indicate too loose a tuning (Biao, Shah,
Badmus, & Vishnubhotla, 2000) (Shah, Patwardhan, & Huang,
2001).

Cross correlation can be used to check dependencies between
several variables. In particular, ideally, in a well tuned loop the
error should not depend after some time on the manipulated vari-
able (but the manipulated variable would depend on the error).
Also, prediction error residuals should not depend on the error,
which could be check using its cross covariance.

Finally, the impulse response computed from an AR model
of the error can be used to obtain dynamic characteristics of this
signal, which provide and additional information about settling
times, delays, oscillating behaviour, etc. and can be useful for
deciding how to retune the loop if necessary. As before, oscilla-
tions in the graph will indicate over-tuning, while a slow decline
of the coefficients will indicate too loose a tuning.

5. Industrial data analysis

In order to test the proposed methodology, several analysis
were performed with the ACCI toolbox using data from a wide
set of different loops taken from a petrochemical plant. In par-
ticular we will present here two cases from different types of
loops.

5.1. A flow control loop

In Fig. 3 (left) one can observe 17 batches of 1000 data each
of a flow loop operating as the internal loop of a cascade so that
its set point is changing continuously. It behaves correctly most
of the times, so that it is difficult to distinguish the controlled
variable, named output variable or process variable (PV), from
the set point (SP) in the upper left graph, being the manipulated
variable, named input variable, control variable or Output to Pro-
cess (OP), the one shown in the bottom left graph. Nevertheless,
its performance deteriorates at the 13¢4 batch (after data 12,000),
because the new operating point has saturated the control signal
(bottom left). The performance index PI is represented on the
upper right graph. At the beginning, it does not have high values
what indicates that the loop is performing well and the error has
little predictability, as shown in the right hand side. But in the
13th batch of data, the manipulated variable saturates and the
PI almost is equal to one. For the computation of the PI index,
the parameters were chosen according to the nature of the loop:
tm=5s,b=12, m=30.

Fig. 4 shows this information in more detail. Referring to
the upper graph, it corresponds to the controlled variable and
its set point in a time interval around sample 9600, where the
loop is working correctly, while the values of the error and its
predictions for this range are shown in middle graph. Notice
that the prediction error model fails to predict future errors as
expected. On the contrary, as shown in the lower graph, which
displays also the error and its predictions for a range belonging
to the 13¢h batch where the controller does not work properly,
the error can be predicted easily this time, which corresponds
to a high PI. Once the process returns to its normal state, the
error, and the index take small values again. In Fig. 3 bottom
right, the Harris index is displayed for the shake of comparison:
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Fig. 4. Flow Data with their errors and PIL.

the values around 0.4 from most of the samples did not give
a clear indication of good behaviour, but provides information
that a margin for improvement does exist in the controller. At
the same time, it shows also the abnormal behaviour at the 13t
batch, obviously not due to bad tuning.

From a different point of view, the power spectrum of the
controlled variable (PV), manipulated variable (OP), set point
(SP) and error signal, represented in Fig. 5 for data batches 1st
and 13th displays the different behaviours of the loop: on the left
graphs, the error (graph d) has no low frequency components,
indicating good set point following. Also, the low frequency
range of the controlled and manipulated variables (graphs a—c)
allows to infer that changes in the output are due to set point
changes and not to the behavior of the controller, but around the
frequency 0.05 the action of the controller seems to be respon-
sible of the output oscillations, notice that they do not appear
in the right hand side graphs. On the contrary, in these graphs,
the error (graph h) shows low frequency components, that are
steady errors, and we can infer that the saturation of the con-
troller is responsible of the bad behaviour because it suppresses
the normal action of the controller.

Similar analysis can be performed using correlation func-
tions as in Fig. 6 where the autocorrelation coefficient of the
error is displayed for the previous two data batches, showing the
contrast between them. On the left, the error, after b samples,
does not depends on its previous values, but shows some oscilla-
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tory behaviour. On the right a clear dependence is shown, which
corresponds to high values of the PI index.

5.2. Other case studies

Moving now to a different kind of control loops, we will show
how the plain observation of the graphs trends is not sufficient
to asses correctly the state of the loop.

First, a pressure loop also placed as the internal loop of a
cascade, will be considered, but this time with very smooth
movements of the set point. The whole set of n=960 data,
PV plus SP and OP can be seen on the left hand side of
Fig. 7 with the PI and Harris indices on the right. In this
case six batches of data with t,,=15s, b=12, m=30, were
used. The PI index indicates a bad behaviour, with a small
improvement in batch 3, even if the absolute value of the error
is small, which is corroborated by the oscillatory behaviour
after sample 5000. The Harris index is in accordance with this
diagnosis, indicating a performance far away from the mini-
mum variance one and, so, a wide range for improvement does
exist.

Fig. 8 shows the Acci Toolbox screen with a zoom over the
first batch of data. The set point and controlled variable are dis-
played on the upper right and the manipulated variable in the
bottom right, with the error and its predictions on the upper
left. It is worth noting the good predictions of the error, as
well as the oscillations of the output around the set point orig-
inated by a too active control which explains the high value of
the PI.

Fig. 9 provides information from the point of view of the
correlation functions. On the left, the autocorrelation coefficient
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Fig. 10. Impulse response of the error.

of the error shows a big dependence of the error on its past values
for delays bigger than b, confirming the bad performance of the
loop. On the right, the error also shows a noticeable dependence
of the error with the manipulated variable, which should not
appear in a well performing loop, where the errors, after some
time, should be the result of the stochastic disturbances entering
the loop.

From the model error used to compute the Harris index, it
is possible to obtain the impulse response of the error. This is
displayed in Fig. 10, and shows a long settling time as well as
oscillations due to overtuning, probably due an integral time too
short, in line with the previous analysis.

Finally, we will present other pressure control loop. In the left
part of Fig. 11, we can observe some batches of data and their
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Fig. 11. Pressure data with their errors and PI.
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Fig. 12. Temperature data with their errors and PI.

analyses, while in the right part of the graph we can see a zoom of
a certain area of them to visualize some details. The upper graph
corresponds to the controlled variable and its set point, while the
values of the error and its predictions are in the middle of the
graph. Finally, in the lower one, the values of the performance
indices PI and Harris are displayed. Even if the pressure data on
the left could suggest a too strong tuning and an oscillatory loop,
the low value of the PI index indicate good performance, which
is supported by the Harris index, which indicates small margin
for improvement, as well as by the zoom of the PV and SP on the
upper right graph and the prediction errors in the middle right
graph.

The parameters were adjusted to the nature of the loop. In this
way, we choose t,;,=5s, b=12 (number of samples), m=30.
For level ones 1, =60s, b=30, m=30, (in this case n=720),
for pressure t,, =5's, b =5, m =30, and for temperature #,, =60s,
b=15,m=30.

Finally, Fig. 12 displays data from a cascade loop in which a
temperature output is following a changing set point very slowly
with a significant steady error. In this case, the PI has high values
all the time, and in the extended graph of the right is seen that
the error is completely predictable as expected. In addition, the
Harris index is consistent with this result.

6. Conclusions

This paper presents results showing a promising way of
analysing the performance of industrial controllers using a time
series of the control loop error to detect the existence of pre-
dictable patterns. An index was computed to achieve this anal-

ysis evaluating the residuals between the controller’s error and
its prediction and some rules have been proposed to adjust the
parameters of the method. Finally, it was applied to several
industrial plant data sets showing that it can be a good tool for
detecting bad loop behaviour.
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