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The problem of optimal synthesis of an integrated water system is 

addressed in this work, where water using processes and water treatment 
operations are combined into a single network such that the total cost of 
designing the network and operating it optimally is globally minimized. The 
network design has to be feasible and optimal  over a given set of scenarios in 
which different operational conditions hold. We propose a superstructure whose 
optimization is formulated as a multiscenario non-convex Mixed Integer Non-
Linear Programming (MINLP) problem. A Lagrangean decomposition based 
algorithm is proposed for the global optimization of such large multiscenario 
models. An example is presented for the global optimization of an integrated 
network operating under uncertainty using the proposed algorithm.          
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1.  INTRODUCTION 
 Process synthesis under uncertainty is in general a very challenging 
problem. A number of parameters usually change during the operation of a 
process network and for which the data is not known exactly. The major 
objective when synthesizing a network operating under uncertainty is that the 
design should be optimal and feasible over a range of values of the uncertain 
parameters. The problem of ensuring feasibility of design has been addressed by 
Grossmann et al. [1] where the control variables in the system can be adjusted 
for the parameter changes. In a stochastic programming based approach, the 
emphasis is on achieving optimality accounting for the fact that the recourse 
variables can be adjusted for each parameter realization (see Acevedo and 
Pistikopolous [2] and Liu and Sahinidis [3]). A recent review of the major 
techniques for optimization under uncertainty is given in Sahinidis [4].  

This paper addresses the optimization of integrated water networks 
operating under uncertain operational conditions. We pose the design problem 
as a two stage stochastic program formulating it as a deterministic multiscenario 
Mixed Integer Non-Linear Programming (MINLP) problem since the uncertain 
parameters can take on a finite number of realizations. An algorithm is proposed 
to solve the problem to global optimality. We present an example to illustrate 
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that the algorithm solves the problem in significantly less time than the MINLP 
solver BARON (Sahinidis [5]). 
2.  PROBLEM STATEMENT 
 In this work, we consider the optimal synthesis of an integrated water 
network consisting of water using process units, water treating units and mixers 
and splitters, operating under uncertain operational conditions. The amounts of 
contaminants generated in the process units and the contaminant removal ratios 
in the treatment units are the uncertain parameters which take different values in 
each scenario. The objective is to synthesize a network such that the costs of 
designing the network and the expected cost of operating the network optimally 
over all scenarios is minimized.  

The first stage costs include the investment cost for piping which 
depends on the maximum flowrate allowable in a pipe, and the design cost of 
each treatment unit, which is dependent on the maximum flow of wastewater 
handled by that treatment unit. The operating costs of the network appear in the 
second stage, which include the cost of obtaining freshwater for use in the 
process units, the cost of pumping a certain flow of water through the pipes 
(which should be less than the maximum flow allowable in the pipes) and the 
operating costs of treating wastewater in the treatment units. The synthesis 
problem is formulated as a multiscenario non-convex MINLP which is solved to 
global optimality.  
 
3.  MODEL 
 We extend the non-convex NLP formulation for the synthesis of 
integrated water networks given in Karuppiah and Grossmann [6] to construct 
the multiscenario MINLP model. A detailed nomenclature of the terms used 
here is given in [6]. 
Objective function:  
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Here, pn is the probability assigned to scenario n, i

pC is the cost coefficient 

corresponding to existence of pipe i, IPi ( iF̂ )δ  is the investment cost of a pipe i, 
while PMi i

nF  is the cost of pumping water inside a pipe i in scenario n. 
The design variable yi pertains to the existence of a stream/pipe i. The 
vector iF̂ is the set of first stage design variables which pertains to the maximum 

flows allowable in the pipes while the vector i
nF  is the set of second stage state 

variables which correspond to the flows in the pipes in each scenario n.  
Mixer Units:  
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Here i
jnC  is the concentration of contaminant j (ppm) in stream i in scenario n.  

 
Splitter Units:   
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The contaminant load of contaminant j inside a process unit p for each scenario 
n is different and is given by p

jnL .  
Treatment Units:  
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The contaminant removal ratios in the treatment units are different in each 
scenario n and so t

jβ  which is defined as t
jβ  = 1 – {(Removal ratio for 

contaminant j in unit t (in %)) / 100} takes on different values ( )t
jnβ  in each 

scenario n. 
Bound strengthening cuts: 
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Design Constraints:  
iyFFyF iiUiiiL ∀≤≤ ˆˆˆ              (11) 

Linking constraints: The “hard” constraints that link the variables of each 
scenario with the design variables are given in eq (12).  
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The multiscenario MINLP model (P) comprises equations (1) – (12).  
 
4.  SOLUTION STRATEGY 

 The multiscenario models grow quickly in size with the number of 
scenarios and are very difficult to solve to global optimality without the help of 
specialized techniques. A decomposition scheme is proposed for the generation 
of tight lower bounds (within a branch and bound setting), where we use 
Lagrangean relaxation to decompose the model (P) into single scenario sub-
problems that are solved to global optimality. A heuristic is used for the 
generation of good upper bounds. These lower and upper bounds are converged 
within a specified tolerance in a spatial branch and bound algorithm. 
4.1.  Generation of tight lower bounds: In order to construct a Lagrangean 
relaxation of the original MINLP problem, we dualize the linking constraints 
(eq (12)) between the different scenarios. To do this, we create copies of the 
design variables iF̂ and iy for each scenario, given by i

nF̂ and i
ny  respectively, 
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and replace iF̂ and iy  by these newly created variables in model (P). Hence, 
eqs (11) and (12) get modified to yield eqs (13) and (14) respectively.   
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The objective function is also altered as shown in eq (15), where iF̂ in the 
original objective function is replaced by iF1̂ . 
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Finally, we add eqs (16) and (17) to (P) to get a reformulated model (RP). 
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Further, we multiply the eqs (16) and (17) with ( )NnNnf
in <∈∀ ,λ  and 

( )NnNny
in <∈∀ ,λ  respectively and transfer these constraints to the objective 

function to get a Lagrangean relaxation of the original problem (P), which is 
denoted by (LRP) and is decomposable into smaller sub-problems that are easier 
to solve. The parameters f

inλ and y
inλ  are known as Lagrange multipliers. The 

model (LRP) is then decomposed into N  smaller models that contain variables 
pertaining to only one scenario. It is to be noted that the bounds of the variables 
in all the sub-problems are the same as in the original problem. A set of 
decomposed problems is as follows: 
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 Each of these sub-problems is globally minimized to obtain a 
solution *

nz . The sum ∑
∈Nn

nz*  yields a valid lower bound to the solution of (P). 

Instead of using such a lower bound we generate valid cuts in the space of the 
original design and state variables based on the solutions *

nz , which are given in 
eqs (18) – (20). 
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These cuts are then added to the model (P). Futhermore, the Lagrange 
multipliers can be updated using sub-gradient methods so as to derive additional 
cuts, in the same way as before, to add to the original problem (P). The initial 
values of the Lagrange multipliers are chosen arbitrarily. This procedure of 
updating the multipliers and adding cuts is arbitrary and can be performed any 
number of times. The problem (P) with these cuts added is convexified by 
constructing convex envelopes for the non-convex nonlinear terms and the 
resulting MILP (model (R)) is solved to predict a valid lower bound to the 
solution of (P).  
 
4.2.  Upper bound generation: A heuristic procedure is used to generate upper 
bounds at every node of the branch and bound tree. We solve the single scenario 
model (obtained from (P) by taking a single element in the set N) for all the 
given scenarios n ∈ N to global optimality, and superimpose the resulting 
structures. We fix the design variable yi to 1 if there exists a non-zero flow i

nF  

in the solution of at least one of the N single scenario sub-problems. The 
problem (P) is transformed from a non-convex MINLP to a non-convex NLP 
which is solved to get an upper bound.  

 
5.  NUMERICAL EXAMPLE 
 We consider a network consisting of two water processing units and two 
water treatment units whose superstructure is shown in Fig. 1.  
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PU2

SU2

SU3

TU1

TU2

SU4

SU5

Freshwater

MU1

MU2

MU3

MU4

MU5
Discharge

Fig. 1 Superstructure of a 2 Process unit – 2 Treatment unit integrated 
network 
 It is a system involving two contaminants A and B, which are generated 
in the process units and removed using the treatment units. The concentration of 
these pollutants has to be reduced to less than 10 ppm in the effluent stream 
discharged into the environment. This system operates over a set of 10 scenarios 
in one year, where the uncertainties correspond to the contaminant loads in the 
process units and the contaminant removal ratios in the treatment units. The data 
used for optimizing this integrated water network can be obtained from the 
authors. This multiscenario MINLP corresponding to this example involves 28 
binary variables, 868 continuous variables, 1044 constraints and 490 non-
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convex terms and was initially solved using GAMS/BARON 7.2 on an Intel 3.2 
GHz machine with 1 GB memory. The termination criterion used was that the 
gap between the upper and lower bounds should be less than the specified 
tolerance of 1 %. On directly using BARON to solve the problem, it could not 
verify global optimality of the upper bound it generated in more than 10 hours. 
The application of the proposed algorithm yields an expected cost of 
$651,653.06, which is the global solution to the problem. It is also found that 
the lower and upper bounds converge to within the specified tolerance at the 
root node of the branch and bound tree. The proposed algorithm takes a total of 
62.8 CPUsecs to solve which is drastically less than the time taken by BARON 
to optimize the original model. The optimal network topology is shown in Fig. 2 
where, alongside the pipe connections, the maximum flowrates that can be 
handled by the pipes are shown.  
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Fig. 2 Optimal solution for a 2 Process unit – 2 Treatment unit system 
 operating  under uncertainty 
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