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Abstract
Crosslinked polymers are important in a very wide range of applications including dental
restorative materials. However, currently used polymeric materials experience limited durability in
the clinical oral environment. Researchers in the dental polymer field have generally used a time-
consuming experimental trial-and-error approach to the design of new materials. The application
of computational molecular design (CMD) to crosslinked polymer networks has the potential to
facilitate development of improved polymethacrylate dental materials. CMD uses quantitative
structure property relations (QSPRs) and optimization techniques to design molecules possessing
desired properties. This paper describes a mathematical framework which provides tools necessary
for the application of CMD to crosslinked polymer systems. The novel parts of the system include
the data structures used, which allow for simple calculation of structural descriptors, and the
formulation of the optimization problem. A heuristic optimization method, Tabu Search, is used to
determine candidate monomers. Use of a heuristic optimization algorithm makes the system more
independent of the types of QSPRs used, and more efficient when applied to combinatorial
problems. A software package has been created which provides polymer researchers access to the
design framework. A complete example of the methodology is provided for polymethacrylate
dental materials.
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1. Introduction
Polymeric materials, such as dental composites, are increasingly being used to replace
mercury-containing dental amalgam. Composite materials experience a relatively short
clinical lifetime, so researchers are designing polymers with improved longevity (Murray,
Windsor, Smyth, Hafez, & Cox, 2002). Most studies have applied a trial-and-error approach,
in which incremental changes to the chemical structure are used to improve specific
properties. This requires an expensive and time-consuming set of synthesis and testing steps,
and since many properties change with a change in the chemical structure, some properties
may be improved in a step, while others may deteriorate. A design method which estimates
many properties at the same time and seeks to optimize many property values
simultaneously, such as computational molecular design (CMD), can make such research
more efficient. However, the crosslinked random copolymer structure of dental polymers
presents a challenge to any CMD approach, since the exact molecular structure of these
polymers is difficult to determine experimentally or describe in a manner useful for
calculation. The goal of this work is to develop a general mathematical framework for CMD
capable of handling crosslinked random copolymers.

The first step in any CMD study is to build quantitative structure property relationships
(QSPRs) for physical and chemical properties of interest. Experimental property data is
collected to develop QSPRs specific to the type of materials to be designed. In the dental
polymer example used here, QSPRs are needed for crosslinked polymethacrylates. Polymer
properties are often dependent on processing conditions, so it is best to design and conduct a
set of consistent experiments to measure important properties, such as tensile strength,
elastic modulus, chemical resistance, or glass transition temperature. Once experimental data
is collected, the property information and polymer structures are entered into a database. A
novel data structure is employed to ease the computation of structural descriptors. The
particular descriptors chosen for use in QSPRs depend on the polymer system being studied.
These numerical descriptors and property data are then exported to statistical software to
develop QSPRs. The QSPRs are used with optimization techniques to design new materials
which are likely to have desirable properties. The candidate materials are synthesized, tested
experimentally, and the results are used to refine the QSPRs as necessary. After some
iterations of the design process, synthesis and characterization of new materials is achieved.
A review of CMD research is provided in Section 2.

Background information as well as and details of the design methodology used in this work
are provided in the following sections. Section 3 describes how polymer structures are
stored. Section 4 presents how this structural information is used to calculate numerical
descriptors. Section 5 describes how predictive property models are created in this work
employing structural descriptors. Section 6 describes the optimization problem being solved
to design new polymers, as well as the Tabu Search algorithm used to solve it. Finally, a
small example of the complete design process applied to polymeric dental materials is
presented in Section 7.

2. Background
The CMD methodology requires the generation of a predictive model to provide estimated
property values for polymer networks. This work focuses on topological descriptors, which
describe the identity of atoms and how they are connected, but not the overall network
geometry. Calculation of the exact geometry requires complicated molecular simulations;
such simulations are far too computationally expensive to be used within an optimization
framework for molecular design.
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A common way to quantify chemical structure is to use a group contribution method, in
which the number of each type of group in a given molecule describes the chemical
structure. UNIQUAQ and UNIFAC are group contribution methods that can be used to
predict thermodynamic properties in liquid mixtures (Fredenslund, Jones, & Praunsnitz,
1975). Joback and Reid (1987) use a group contribution method to predict several properties
of pure organic substances such as: viscosity, boiling point, freezing point, and heat
capacity. Group contributions have been used to predict vapor liquid equalibria (Gani,
Tzouvaras, Rasmussen, & Fredenslund, 1989). Group contribution methods have also been
applied to polymers (Van Krevelen, 1997), and have been used extensively for CMD, as will
be described later in this section.

Connectivity indices, first developed by Randić (1975), have also been applied to property
prediction. The idea of connectivity indices was expanded and applied to pharmaceutical
property prediction by Kier and Hall (1986). More recently, Bicerano (2002) applied
connectivity indices to prediction of a wide variety of straight-chained, non-crosslinked,
limiting molecular weight polymers. Gani, Harper, and Hostrup (2005) has used
connectivity indices to estimate group contributions where a group contribution method
exists with insufficient groups to describe certain molecules.

While group contributions and connectivity indices are effective at describing individual
repeat units, they do not contain information about polymer crosslinking. While these
descriptors are still useful for crosslinked polymers, more information is also needed to
accurately predict properties, since crosslinking has a large effect on many polymer
properties (Van Krevelen, 1997). For example, crosslink density has a significant effect on
the glass transition temperature. The average number of backbone atoms between crosslinks
can be used to estimate the glass transition temperature of polymers using a linear
relationship (Van Krevelen, 1997). Bicerano, Sammler, Carrier, and Seitz (1996) used the
number of rotational degrees of freedom between crosslinks to predict glass transition
temperature. Porter (1995) accounts for crosslinking in polymer property prediction using
degrees of freedom. Cook, Forsythe, Irawati, Scott, and Xia (2003) studied the effects of
crosslinking on the glass transition temperature of dental materials. As seen in dental
materials, processing conditions can affect the crosslink structure. Small rings may form that
do not contribute to crosslinking, and there are areas in the polymer network of varying
crosslink density (Ye, Spencer, Wang, & Misra, 2007).

Most topological descriptors can be calculated from various graphs which represent
molecular structure. Graphs consist of a set of vertices and edges. Edges represent
connections between vertices (West, 2001). In chemical applications, vertices often
represent atoms while edges represent bonds. Hydrogen-suppressed graphs of molecular
structure are used to calculate connectivity indices (Bicerano, 2002; Kier & Hall, 1986).
Many graph theory algorithms can be employed in the calculation of descriptors. The
Ullmann (1976) subgraph isomorphism algorithm can be used to find groups for group
contribution methods, and can be useful for other calculations as well. Other algorithms can
be used to find other important structures, such as backbone and pendant groups, ring
structures, and paths.

Crosslinked random copolymers are more difficult to describe as graphs. The network
structure and random arrangement of monomers make it difficult to define a repeat unit. A
considerable amount of research has been devoted to describing and predicting polymer
network structure. Much of the effort has focused on calculation of the gel point of
polymers. The gel point is the point at with an infinite polymer network would form. Flory
(1941a, 1941b, 1941c) described a method whereby the degree of conversion is used to
calculate the probability that functional groups of a monomer react. As the polymer network

Eslick et al. Page 3

Comput Chem Eng. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



builds, if the expected number of branching points increases, an infinite network will form.
This allows the gel point to be calculated. To improve the gel point predictions, additional
details were added to the network formation (Dušek, Gordon, & Ross-Murphy, 1978;
Gordon, 1962). Methods have been developed which can estimate a more detailed polymer
structure, which can be used in the prediction of polymer properties (Stepto, Cail, & Taylor,
2000).

Property estimation methods can be combined with optimization techniques to design new
chemical products using CMD methods. The optimization problems are usually formulated
as mixed integer linear programming (MILP) or mixed integer non-linear programming
problems (MINLP). Gani and Fredenslund (1993) presented a general molecular design
method to create chemical products having specific properties. Maranas (1996) describes
MILP formulations using group contributions to predict properties of non-crosslinked
polymers. Camarda and Maranas (1999) use connectivity indices to formulate a non-
crosslinked polymer design problem as an MINLP. Sahinidis, Tawarmalani, and Yu (2003)
used a deterministic algorithm to find the solution to a MINLP problem to design new
refrigerants.

Deterministic algorithms may not be practical for large combinatorial problems, particularly
those including highly non-linear constraints. In such cases, heuristic methods are often
useful. Heuristic methods are not guaranteed to find the global optimal solution; however,
due to the limited accuracy of QSPRs, near optimal solutions to the optimization problem
are often as useful in practice. For example, genetic algorithms have been used in the design
of straight-chain polymers using group contribution methods to predict properties
(Venkatasubramanian, Chan, & Caruthers, 1994).

Tabu Search is a heuristic algorithm developed by Glover (1990a, 1990b). This method
keeps a record of recent solutions in a Tabu list to prevent cycling near local optima, and
encourages exploration of the entire search space. Tabu Search has been used in chemical
process optimization (Lin & Miller, 2004a, 2004b), planning and scheduling (Dowsland,
1998; Gendreau, Laporte, & Semet, 1998; Kimms, 1996), and molecular design (Chavali,
Lin, Miller, & Camarda, 2004; Eslick and Camarda, 2006; Lin, Chavali, Camarda, & Miller,
2005; Zhao, Ralston, Middaugh, & Camarda, 2004). Tabu Search is used in this work
because is can handle non-linear combinatorial problems in an efficient manner.

3. Polymer structure
Numerical descriptors of polymer structure need to be calculated for a large number of
candidate structures if they are to be used in QSPRs, so an efficient data structure is needed
to store structural information for crosslinked polymers. The data structure should allow the
efficient calculation of many types of topological descriptors.

In this work, polymer information including structures and experimental data are stored in a
database. Although almost any type of polymer can be managed by the system described,
the focus of this work is crosslinked random copolymers. These types of polymers are
especially difficult to describe due to their ill-defined structures. The crosslinked structure of
the dental polymers is very difficult to determine experimentally, and may vary due to
differences in processing (Ye, Spencer, et al., 2007). Dental resins generally contain a
photoinitiator, and polymerization is initiated by visible light. Factors such as the presence
of solvents, cure time, light intensity, or photoinitiator choice can change the degree of
conversion and crosslinking structure. Once the resin has cured, the presence of solvents or
unreacted monomer will also affect the properties.
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Structural descriptors can be calculated, even though the exact polymer structure is not
known, by making a set of assumptions. The assumptions depend on the system being
studied; details will be provided for the dental polymer case later in this section. It is
generally best to use the simplest possible structure that is adequate to predict properties.
Factors such as the exact crosslinking structure may be difficult to predict and may not be
necessary to consider depending on the nature of property information desired.

In this work, polymer structures are stored using three types of graphs: monomer, polymer,
and full. Monomer graphs are used to store monomer structures. Each vertex represents an
atom or connection point between monomers, and each edge represents a chemical bond.
Polymer graphs contain a representative section of the overall polymer structure. Each
vertex represents a monomer, and each edge represents a bond between monomers. Full
graphs describe a representative section of the chemical structure of polymer networks. The
full graph is formed by replacing the monomer vertices in the polymer graph with the atoms
and bonds of the monomers. Each type of graph is useful for different types of calculations.
Monomer graphs are useful in forming the polymer structure, and may be used to predict
properties of the unreacted monomers such as viscosity. The polymer and full graphs
contain similar information. However, when constructing the polymer structure, it is much
easier to deal with monomer vertices than a complete chemical structure. The polymer graph
gives a clear picture of the arrangement of monomers. Easy access the to identities of the
monomers in the polymer structure are lost in the full graph.

Monomer graphs consist of vertices that represent atoms or connections to another monomer
and edges that represent bonds. Connection vertices are labeled for use in polymer and full
graphs. Every vertex and edge is labeled with a functional group. Each functional group can
have one or more states, which represent ways in which a functional group can react. The
functional group system provides an easy way to enter each monomer once, while having
several possible structures available. The monomer graphs are well suited to systematic
generation of polymer structure due to their ability to exist in several states. When the state
of a monomer graph changes, the vertex and edge indices are resorted so that all of the
vertices and edges in the current state have a lower index than the ones that are out-of-state.
Graph algorithms may then ignore the out-of-state vertices and edges. Fig. 1 shows an
example of two monomer graph states for the 2-hydroxyethly methacrylate (HEMA)
monomer, and Fig. 2 shows four monomer graph states for the 2,2-bis[4(2-hydroxy-3-
methacryloyloxy-propyloxy)-phenyl] (bisGMA) monomer. The dummy Xx atoms represent
connection points to other monomers.

Polymer graphs show how monomers are bonded. Each vertex represents a monomer, while
edges represent bonds between monomer units. For simple polymers such as linear block
copolymers, polymer graphs can be constructed manually by arranging a pattern of
monomers. In more complex cases such as random crosslinked copolymers, the graphs can
be constructed systematically given a set of rules. The rules can be very simple, or more
complex based on knowledge of the polymer chemistry. Whether a simple set of rules or a
complicated molecular simulation is used to generate the polymer structure, the overall
design framework is equally effective. The size of the generated polymer depends on what is
needed to adequately represent the structure. An example polymer graph is given in Fig. 3.

Simple polymers have a well-defined regular repeating pattern; however, crosslinked
random copolymers form a network with no obvious repeat unit. To solve problems
associated with descriptor calculation, a large representative section of polymer is generated.
Crosslinked polymer networks are normally treated as infinite, but the polymer graphs must
be finite, so the representative sections will have many cut ends. The concept of a core and
buffer section is used to minimize the impact of the cut ends on descriptor calculation.
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Calculations are carried out on the core, while some number of buffer monomers separates
the core from the cut ends. The use of the buffer section is dependent on the descriptors
being calculated. An example of descriptor calculation is provided in the next section.

To generate desirable polymer structures in this work, a number of assumptions are made.
The exact crosslinked structure of the example network is not known, but the degree of
conversion is measured experimentally. As a starting point, it is assumed that all double
bonds in the methacrylate monomers have equal reactivity, and that no intramolecular
reactions occur during polymerization. While it is known that some level of intermolecular
crosslinking does exist in the actual polymer networks, the degree of conversion and
estimated crosslink density are used as structural descriptors, which are inexact descriptions
of the electronic structure of a polymer network. As long as the intermolecular reactions are
all of a similar level in the various experimental systems considered, the statistical nature of
the correlations will allow the QSPR models to be reasonably accurate, even with inexact
descriptors.

The following example shows how a structure is generated for a polymer consisting of 45 wt
% HEMA and 55 wt% bisGMA. The degree of conversion of carbon–carbon double bonds
measured experimentally for this case is 76.93%.

First, the percentage of each monomer state contained in the polymer network is calculated.
The fraction of unreacted monomer is also calculated, but unreacted monomer is not part of
the polymer network. Unreacted monomer is removed from the overall composition for the
purpose of generating a polymer structure. The composition, in mole fraction, for the
example above is 0.7236 HEMA in state B (Fig. 1), 0.0518 bisGMA in state B (Fig. 2),
0.0518 bisGMA in state C and 0.1728 bisGMA in state D. Probabilities based on the
composition are used to generate a polymer graph describing the connectivity of the
monomers. The graph is a tree because it was assumed that no intramolecular reactions
occur; however, polymer graphs are not necessarily trees. The information included in the
polymer graph, along with the degree of conversion, is then used to compute the estimated
crosslink density and the other structural descriptors. The method for computation of the
crosslink density, which is adapted slight from Cook et al. (2003), is as follows. Given that
the number of vinyl groups in each monomer is known, the molecular weight of each
monomer is known, and the weight fraction of each monomer in the mixture is known (and
the weight fractions sum to one), the crosslink density may be computed via

(1)

where CD is the crosslink density, DC is the degree of conversion, wi is the weight fraction
of monomer i, nvi is the number of vinyl groups in monomer i,MWi is the molecular weight
of monomer i, and i runs over all of the monomers present in the polymer network. The
assumptions used here lead to the simplest method of generating polymer structure, while
still providing sufficient information for the prediction of many important physical
properties. Fig. 3 shows a small graph for this example.

Full graphs are large graphs which show the detailed chemical structure of a representative
section of polymer. The full graph is obtained by combining the information in the monomer
and polymer graphs, and can be used to calculate most topological structure descriptors in a
straightforward way. While this graph provides a detailed chemical structure, information
about the monomer connectivity provided in the polymer graph is difficult to extract. Fig. 4
shows a small example of a full graph for poly(HEMA).
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The simplicity of using a fixed representative section of polymer greatly accelerates
computation of structural descriptors needed for property prediction.

4. Calculation of structural descriptors
While there are many options in terms of numerical descriptors of chemical structure to be
used to predict the properties of polymeric systems, we have chosen to focus on connectivity
indices in this work. Connectivity indices have been used successfully in QSPRs and require
relatively little computational effort (Kier & Hall, 1986; Bicerano, 2002). Of course, other
descriptors are need for crosslinked polymers, some of which will be described in Section 7.
Most topological descriptors can be easily calculated from the polymer structure information
described in the previous section.

A number of graph theoretic algorithms have been implemented to aid in the calculation of
topological descriptors. A subgraph isomorphism algorithm (Ullmann, 1976) is used to
identify particular functional groups. Group identification is needed to calculate some types
of topological descriptors such as group contributions. A block finding algorithm (Gibbons,
1985) is used (slightly modified) to distinguish the backbone from pendant groups.
Backbone and pendant groups may have different effects on properties so it is often
important to distinguish between them (Bicerano, 2002).

The data structures used in this work for polymer storage make descriptor calculation
relatively easy. Since a representative section of polymer is generated, descriptors can be
calculated as they would for any simple molecule. A feature of this system is the use of core
and buffer sections of the polymer network. Calculation of descriptors often requires
information about neighboring polymer sections; the buffer provides this information while
calculating descriptors for the core section. The accuracy and repeatability of the descriptor
calculations for random copolymers depend on the size of the representative section. Larger
sizes cause the calculations to take longer. The time required for descriptor calculation in
analysis of experimental polymer data is generally insignificant, since the number of
polymers for which properties are measured is generally less than 500. However, descriptor
calculation time may a be concern when using optimization to find new structures, since an
optimization routine may evaluate thousands of polymer structures while searching for those
likely to have desired properties.

The system for descriptor calculation employed in this work saves a significant amount of
time in preliminary analysis of structural descriptors and property models. Many different
descriptors can be evaluated without the need to deal with complex probability calculations.
This allows for much flexibility in terns of the structural descriptors and property models to
be used. Two simple examples of structural descriptor calculation are presented. The first
example is the calculation of the zeroth-order connectivity index in which the core and
buffer concept is not needed. The second example describes the calculation of the second-
order connectivity index, which demonstrates the use of the core and buffer sections.

To calculate connectivity indices, each non-hydrogen atom is assigned a delta value based
on its hybridization and the number of hydrogen atoms attached (Bicerano, 2002; Kier &
Hall, 1986). The order of a connectivity index indicates the path length used to calculate the
connectivity index. For example, a second-order connectivity index is calculated from all
unique paths in the hydrogen-suppressed graph of length two. The equation for calculating
the zeroth-order connectivity index is given by Eq. (2), and Eq. (3) gives the second-order
equation. The indices i, j, and k label the three atoms in any path of length two.
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(2)

(3)

The obvious problem when trying to calculate higher order connectivity indices of polymers
is that many paths can extend beyond the defined repeat unit, so information on neighboring
monomers is needed. The problem becomes even more complicated when calculating
connectivity indices for a random polymer network.

To calculate the zeroth-order connectivity indices, only the structures of the monomers are
needed. To simplify the example, we will consider a poly(HEMA) homopolymer. Fig. 4
shows the structure of poly(HEMA). Only the core is needed for the zeroth-order
calculation. The zeroth-order connectivity index is 6.906.

The core and buffer concept can be used to calculate the second order connectivity index for
poly(HEMA). Of course, this is more useful with a more complex structure, but this
example is intended to illustrate the concept. Paths that extend into the buffer area can be
included, but these paths are not entirely in the core. Paths that are only partly in the core are
multiplied by the fraction of atoms in the core before being added to the sum. For example,
the contribution of a path that has two atoms in the core and one in the buffer is multiplied
by two-thirds when added to the sum as shown in Eq. (4). The second order connectivity
index for poly(HEMA) is 3.874.

(4)

It is clear from the calculations the magnitudes of the connectivity indices depend on the
size of the polymer section that is used to calculate them. To determine a connectivity index
that is independent of size, the values are usually scaled by the number of non-hydrogen
atoms in the section. Size-dependent connectivity indices are useful for polymers that have a
unique repeat unit, when they can be used to predict extensive properties such as molar
volume or cohesive energy (Bicerano, 2002). In this work, values corresponding to size-
independent connectivity indices will be used to predict polymer properties such as tensile
strength, modulus of elasticity, and glass transition temperature.

5. Quantitative structure property relations
To create a predictive model, numerical descriptors of structure are related to physical or
chemical properties of the polymeric systems. While phenomenological models are more
accurate in terms of property prediction, QSPRs based on structural descriptors allow rapid
estimation of properties directly from the chemical structure, and are straightforward to
include within the optimization framework for the design of novel polymer networks.

This work focuses mainly on linear regression as a means to develop property models due to
the limited experimental data collected on the systems being studied. Nothing in the
framework, however, prevents use of other types of models. Non-linear regression can be
used to estimate parameters if there is reason to believe a property model has a particular
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functional form that is non-linear with respect to the parameters. Partial least squares
regression (PLS) is an effective method when a large number of descriptors are to be used
(Oprea, 2005). This section provides a brief description of the method used to develop
preliminary QSPRs for the example dental resin design problem explored in this work.

A small preliminary set of descriptors is selected including connectivity indices, degree of
conversion, and crosslink density. Information about the particular descriptors will be
provided in Section 7. After collecting experimental property data for a set of dental
polymers, the structural descriptors are calculated.

Multiple linear regression is used to develop property models, and no transformations of the
data are considered. It is possible to use linear regression to find polynomial, logarithmic or
any other models where the parameters have a linear relationship to each other. To find the
best sets of descriptors, the LEAPS package (Lumley, 2004) for the R statistical software (R
Development Core Team, 2007) is used. Combinations of descriptors are obtained which
provide the best correlation coefficient for QSPRs containing different numbers of
descriptors. Once these models are found, it is still necessary to select those with the most
appropriate number of descriptors.

There are several methods to determine the best number of descriptors to use in a model.
Measures which weigh the quality of fit against the degrees of freedom, such as adjusted
correlation coefficient, are often employed; these values tend to overestimate the number of
descriptors that are useful. It is also valid to consider the statistical significance of the model
and of the parameters. The most effective means of determining model size is to use cross-
validation, in which part of the experimental data is left out when making the model (Efron
and Tibshirani, 1993). Error is then measured for the predicted values of data not used to
create the model. If too many descriptors are used, large errors occur in the predictions. The
QSPRs used in this work will be described in Section 7.

6. Formulation and solution of the MILP problem
The goal of this CMD study is to determine new polymer structures which are likely to
possess desirable properties for use in dental materials. To find these new polymers, the
QSPRs are included in an optimization framework. Structural requirements, such as valency
restrictions, are combined with the QSPR model to form the constraint set for this problem.
The objective function seeks to minimize variation in the predicted properties from the user-
specified target values. Eq. (5) shows a typical CMD optimization formulation (Siddhaye,
Camarda, Topp, & Southard, 2000). M is the set of properties of interest, and m is a property

in the set M. Pm is the predicted value,  is a scaling factor, and  is the target for
property m. The vector y is a set of structural descriptor values, and fm is a QSPR for
property m. The functions that define the structural descriptors are the vector g. The identity
of group i is stored in wi. The binary variable aijk indicates whether a bond of type k
connects groups i and j. The functions hc are constraints which ensure a feasible structure.

(5)

If the functions in Eq. (5) are linear, the optimization problem. Then becomes an MILP.
Otherwise an MINLP results. Some instances of the CMD optimization problem have been
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solved using deterministic approaches (Maranas, 1996; Sahinidis et al., 2003). In this work,
a framework is described which can accept non-linear property prediction constraints and a
non-linear objective function. Thus the problem is reformulated and solved via a heuristic
approach (Tabu Search).

As discussed previously, many approaches have been used to solve specific instances of the
CMD optimization problem. This work focuses on the Tabu Search method to allow for
flexibility in the types of property models used. Tabu Search is a heuristic method, and does
not necessarily find the global optimum to a problem. Due to the limited accuracy of
QSPRs, a list of near optimal structures may be as practically useful as the global optimum.

Tabu Search methods vary in implementation, but they generally operate by generating a list
of neighbor solutions similar to a current solution (Glover, 1990a, 1990b). A solution is
Tabu if it is too close to a solution in a Tabu list, which contains some number of recent
solutions. Comparing solutions will be discussed later in this section. The Tabu list prevents
the solution from cycling around local optima, and encourages new areas to be explored.
The best neighbor that is not Tabu becomes the new current solution. Tabu Search can also
be repeated with different starting points to try to get a more diverse solution set. A record is
kept of good solutions which are structures estimated to have acceptable properties. The list
of good solutions can be used to determine which new structures to synthesize and test
experimentally, thus accelerating the design process.

The implementation of Tabu Search in this work is somewhat different to what has been
used previously for molecular design. The polymers are stored in the data structures
described in a previous section. Neighboring structures are created by modifying monomer
structures, or changing composition. For optimization, the monomers are built from several
small groups of atoms. Structures of the monomers are modified by adding, deleting, or
replacing groups. Sufficient groups are provided such that nearly any reasonable monomer
can be made. Monomers are modified in such a way that only feasible structures will result.
The method of structure modification eliminates the need for most formal mathematical
constraints. Some constraints may still be required to maintain a valid resin composition.

To determine whether a monomer matches one on the Tabu list, the structural descriptors of
a solution can be compared to solutions in the Tabu list. The structures cannot be compared
just using the groups they contain. A given set of chemical groups or atoms can be arranged
to form many different structural isomers. A certain amount of difference is allowed, so
structures do not have to exactly match those on the list to be considered the same as a
previous structure. The amount of difference allowed is an adjustable parameter. Solutions
can be refined by allowing them to be close to those in the Tabu list, and diversification can
be encouraged by requiring a large difference.

7. Example: design of polymethacrylate dental adhesives
Over two-thirds of restorative dentistry involves replacement of failed restorations (Murray
et al., 2002). Clearly restorative dental materials with improved durability are needed. This
example is preliminary work to describe our methodology for the design of novel monomers
to improve the durability of dentin adhesives.

Properties of a small set of polymethacrylates were measured experimentally, and QSPRs
were created by relating this data to topological indices and formulation. The properties
include tensile strength, modulus of elasticity, glass transition temperature, initial
polymerization rate, and degree of conversion. The details of the experimental methods used
to measure these properties are described by Ye, Spencer, et al. (2007) and Ye, Wang,
Williams, and Spencer (2007). Polymer samples were prepared in a consistent way. The
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polymers were composed of 45 wt% HEMA, 30 wt% bisGMA and 25 wt% of a third
monomer. Seven monomers were used as the third monomer: bisGMA, triethyleneglycol
dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A polyethylene
glycol diether dimethacrylate (bisEMA), polyethylene glycol dimethacrylate (PEGDMA),
trimethylol-propane mono allyl ether dimethacrylate (TMPEDMA), and 1,1,1-tri-[4-
(methacryloxyethylaminocarbonyloxy)-phenyl]ethane (MPE). TMPEDMA and MPE are
newly synthesized monomers (Park et al., 2007). Figs. 5–10 show the structures of these
monomers. Resins samples were cured without water and with 11 wt% water, so 14 total
samples were used.

A short list of structural descriptors is compiled for use in development of QSPRs. The
degree of conversion (DC) is used as a descriptor even though it is experimentally measured,
since it is needed to characterize the crosslink density. Future work will attempt to predict
DC based on the chemical structure of the monomers and curing procedure. The maximum
crosslink density (CDmax) and estimated crosslink density (CD) as described by Cook et al.

(2003) are also used. The zeroth- and first-order valence and simple connectivity (ξ0, , ξ1,

and ) indices were used in their size independent form (Bicerano, 2002), since there are no
obvious repeat units for the polymers in this example, and the properties of interest are
intensive.

Using LEAPS (Lumley, 2004), the best combinations of descriptors were found. The
appropriate number of descriptors to include in each model is selected by evaluating
statistical significance. Since this is preliminary work and more data must be collected
cross-validation was only performed with the tensile strength model, and this evaluation
confirmed the model size choice. The property models are shown in Table 1.

These property models are then used to create an objective function for optimization. Target
properties are selected which are expected to yield a more durable dental polymer. In cases
where a property was to be maximized, a target near the upper limit of applicability of the
property model was selected. The first row of Table 2 shows the target properties, and Eq.
(6) provides the objective function.

(6)

The goal of the optimization problem was to design an improved monomer, while holding
composition used in the experiments constant. In this example, solutions to the optimization
problem are monomer structures. The composition and structure of the first two monomers
is fixed. The monomer structures are constructed from small groups of atoms. The groups
include: a methacrylate functional group, ring structures such as aromatic rings, and small
basic groups. Sufficient groups are supplied such that almost any methacrylate monomer of
interest can be generated. Groups can be added, deleted, or replaced to generate neighbor
solutions to a current solution. These changes can only lead to new solutions which are
feasible. Other CMD methods may also consider infeasible solutions. The number of
functional groups is fixed by the starting solution, and variations are included by using
starting points with different numbers of functional groups.

Several starting points are selected for Tabu Search, including currently used monomers
such as bisGMA, as well as randomly generated monomers with different numbers of
functional groups. The Tabu Search algorithm is run until a certain number of non-
improving iterations are reached, in this case 300. A list of the best solutions found was
compiled. Figs. 11–15 show five of the resulting structures. Table 2 shows objective
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function values of the candidate monomers as compared to bisGMA, which is typically used
in commercial dental adhesives. The solutions shown all have a better objective function
than bisGMA. The results provide numerous structures, which can be further evaluated for
use in polymethacrylate dentin adhesives.

The Tabu Search algorithm did not always yield the same solution, so numerous candidate
monomers where found. While there is no guarantee that the globally optimal solution was
found, each of these strong candidate monomers was generated in about 30 s on average.
The Tabu Search algorithm was terminated after 300 non-improving iterations. The
computation time depends on a number of Tabu Search parameters, including the length of
the Tabu list, and further refinement of the algorithm parameters is expected to improve
solution time and solution quality.

A CMD methodology for complex polymer systems has been implemented. With the
framework in place, preliminary work for the design of dentin adhesives can progress
rapidly as more experimental data is collected. With additional data, further evaluation of
new structural descriptors and QSPRs, and the addition of more properties, the newly
designed polymers are more and more likely to have practical value.

8. Conclusions and future work
A software tool, which implements the methodology described in this work, has been
developed. The system employed for storing polymer structure can accommodate practically
any type of polymer, and is particularly useful for random polymer networks. The structure
and the core and buffer concept allow most topological structure descriptors to be calculated
relatively easily.

The Tabu Search implementation provides considerable flexibility in the types of QSPRs
and formulations that can be used with CMD. Tabu Search and the formulation used in this
work also help manage the combinatorial increase in problem size when designing large
molecules.

In future work with polymethacrylate dentin adhesives, a larger set of property data will be
obtained. The expanded data set will provide several improvements to the QSPRs. A larger
set of structural descriptors will also be examined. Non-linear QSPRs will be developed
when needed using transformations of the descriptors. The larger variety of polymers will
allow the QSPRs to be applicable to a wider range of polymers, and increase confidence in
property predictions. Synthesis and testing of the monomers designed in the CMD process
will provide valuable new data which will improve the accuracy of the QSPRs resulting in
improved candidate monomers.

Work has also started in calculating several higher order connectivity indices, and treating
backbone and pendant groups independently. This works leads to a large number of
descriptors, and PLS regression will be used to create QSPRs based on these more accurate
structural descriptors. Also new experiments will help to quantify the crosslinking structure
of the polymers. With this information, an improved model for polymer property prediction
will be devised. The inclusion of this model in within our optimization framework will lead
to the creation of more realistic structures.
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Fig. 1.
HEMA monomer graph states.
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Fig. 2.
BisGMA monomer graph states.
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Fig. 3.
Example polymer graph.
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Fig. 4.
Full graph for poly(HEMA).
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Fig. 5.
Structure of TEGDMA monomer.
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Fig. 6.
Structure of UDMA monomer.
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Fig. 7.
Structure of BisEMA monomer.
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Fig. 8.
Structure of PEGDMA monomer.
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Fig. 9.
Structure of TMPEDMA monomer.
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Fig. 10.
Structure of MPE monomer.
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Fig. 11.
Candidate monomer 1.
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Fig. 12.
Candidate monomer 2.
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Fig. 13.
Candidate monomer 3.
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Fig. 14.
Candidate monomer 4.
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Fig. 15.
Candidate monomer 5.
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Table 1

QSPRs.

Property model R 2

Tensile strength, σ = 1406.6−7484.5 1ξ+6611.6 1ξv + 78231.7CDmax −149268.6CD 0.94

Modulus, E = 257.362−135.89 0ξ−276.37 1ξ−78.24 1ξv + 0.02336DC−0.03146WC 0.97

Glass transition temperature, Tg = 11664.9−14036.5 1ξ−15286.9 1ξV + 94671.6CD 0.82

Initial polymerization rate, IPR =−4028.55 + 6510.10 0ξ−2394.13 1ξv 0.82
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Table 2

Objective function values.

Monomer σ (MPa) E (GPa) IPR (mol/L/s) Tg (°C) Objective

Target 80 3.0 130 120 0.000

bisGMA (exp.) 70 1.2 96 119 0.497

bisGMA (pred.) 68 1.0 107 115 0.444

Candidate 1 79 1.4 98 132 0.372

Candidate 2 77 1.3 105 134 0.365

Candidate 3 88 1.7 119 148 0.262

Candidate 4 85 1.3 116 143 0.367

Candidate 5 86 1.4 121 134 0.299
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