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a b s t r a c t

A multiproduct pipeline provides an economic way to transport large volumes of refined petroleum
products over long distances. In such a pipeline, different products are pumped back-to-back without any
separation device between them. Sometimes, multiproduct pipelines can be connected together, resulting
in a more complex system commonly named multi-pipeline system. This paper proposes a new discrete
mathematical approach to solve short-term operational planning of multi-pipeline systems for refined
eywords:
ultiproduct pipeline
ulti-pipeline system

ransportation
lanning and scheduling
iscrete approach

products. This model is based on a discrete approach that divides both the planning horizon into time
intervals of equal duration and the individual polyducts into packages of equal volume each containing a
single product. Numerical examples are solved in order to show the performance of the proposed model.
All the instances are implemented with the OPL modeling language running CPLEX as solver.

© 2009 Elsevier Ltd. All rights reserved.
ixed-integer linear program

. Introduction

Pipelines have been a widely used mode of transportation for
etroleum products and their derivatives for the last 40 years.
he annual transportation cost in the Petroleum Industry usually
urpasses billions of dollars, since large volumes have to be
ransported over long distances. Evidently, pipeline systems play
n important role in the industry. Although the initial capital
nvestment required to setup these transportation systems is high,
he operating costs are very low compared to other transportation

odes such as rail and highway. Even so, the final price of the
roduct depends on its transportation cost, making the optimiza-
ion of the transportation process a problem of extreme relevance.
onsequently, the related scheduling activities for product dis-
ribution using pipeline systems have been a focus for at least
0 years.

The simplest pipeline has one source, one destination, and
ne type of product to be delivered, e.g. the pipelines used in the
ransportation of crude oil from coastal ports to inland refineries.

t the next level of complexity, the pipeline could have multiple
estinations; and a more realistic pipeline would also handle mul-
iple petroleum products treated in refineries such as kerosene,
aphtha, and gas oil (Sasikumar, Prakash, Patil, & Ramani, 1997).

∗ Corresponding author.
E-mail address: aherrang@fis.ucm.es (A. Herrán).

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2009.11.014
These multiproduct pipelines are commonly named polyducts. In
a polyduct, different products are pumped back-to-back without
any separation devices between them, as shown in Fig. 1.

The main challenge in operating polyduct systems is planning
the optimal sequence, length and starting time of each pumping run
from the refinery to the pipeline, together with the optimal timing
of transferring these products from the pipeline to each depot. The
complexity of this optimization process arises from the typical
operational aspects of these systems. Since there is no physical
separation between different products as they move through the
pipeline, some mixing and consequent contamination at product
interface is inevitable. These product mixtures are called transmixes
and they cannot be simply discarded. They must pass through a
special treatment that usually involves sending them back to a
refinery for reprocessing; the cost associated to this process is very
high (Techo & Holbrook, 1974). The degree of these interface losses
depends on the products that come in contact inside the pipeline
segment. Moreover, if two products are known to generate high
interface losses, the pumping schedule must avoid pumping them
back-to-back into the pipeline. Another consequence of transmixes
is that pumping small quantities of products is not economical.
Hence, each pumping run must fulfill a minimum length to make

the pumping schedule efficient. Finally, the pumping schedule
must take into account the product availability at the refinery and
the consumption of different products at each depot.

All the different aspects mentioned above make the pumping
schedule of multiple petroleum products from a single refinery

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:aherrang@fis.ucm.es
dx.doi.org/10.1016/j.compchemeng.2009.11.014
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Nomenclature

Sets
C set of connections indexed by c = 1, . . ., card(C)
CB set of connections pairs {(c,c′), . . .} representing

reversible polyducts
CIn set of incoming connections at node n
COn set of outgoing connections at node n
Lc set of pipeline segments at each connection c

indexed by b = 1, . . ., card(Lc)
N set of nodes indexed by n = 1, . . ., card(N)
ND subset of destination nodes indexed by

n = card(NS) + card(NI) + 1, . . ., card(N)
NI subset of intermediate nodes indexed by

n = card(NS) + 1, . . ., card(NS) + card(NI)
NS subset of source nodes indexed by n = 1, . . .,

card(NS)
P set of different petroleum derivatives indexed by

p = 1, . . ., card(P)
S set of product pairs {(p,p′), . . .} representing forbid-

den pumping sequences
T set of time periods in the planning horizon indexed

by t = 1, . . ., card(T)

Parameters
A0n,p inventory level of product p at node n at the begin-

ning of the planning horizon
Amaxn,p maximum allowed inventory level of product p at

node n
Aminn,p minimum allowed inventory level of product p at

node n
CAn,p unit inventory cost for product p at node n
CIc,p unit pumping cost to deliver a package containing

product p from its source to its destination through
connection c

CTc start/stop cost at each polyduct (connection c) of the
network

CRp,p′ unit reprocessing cost of interface material involv-
ing different products p and p′

DMn,p demand of product p at node n at the end of the
planning horizon

� period length in hours
Qt,n,p scheduled production of product p in refinery n at

period t
QMmax maximum volume of product that can be supplied

to a local market
soc binary parameter denoting if connection c is pump-

ing some product at the beginning of the planning
horizon

VCp,p′ interface volume between packages pumped con-
secutively through the same polyduct containing
products p and p′

VP unit package volume in m3

xoc,b,p binary parameter denoting if portion b of connection
c is occupied by a package containing product p at
the beginning of the planning horizon

Variables
at,n,p inventory level of product p at node n at

period t

qmt,n,p amount of product p transferred at period t from
destination node n to its local market

st,c binary variable denoting if a package is pumped
through connection c at period t

vt,c,p,p′ interface volume between the package pumped at
period t through connection c and the package occu-
pying the first portion of the same connection if they
contains products p and p′, respectively

xt,c,b,p binary variable denoting if portion b of connection
c is occupied by a package containing product p at
period t

yt,c,p binary variable denoting if the package pumped

through connection c at period t contains product
p

to multiple destinations a complex activity. A few papers have
been published on this subject in the last decade. The optimiza-
tion techniques reported in these papers can be categorized as
knowledge-based search heuristics and mathematical program-
ming approaches, where the latter can be further classified as
discrete or continuous-time based models. Sasikumar et al. (1997)
presented a knowledge-based heuristic search technique providing
a monthly pumping schedule to minimize interface and pumping
costs. The heuristic search also took into account several problem
constraints such as product availability, demand satisfaction,
inventory limits and other logical pipeline operational constraints.
Rejowski and Pinto (2003) developed a discrete-time MILP model
for the scheduling of a real-world multiproduct pipeline system
with multiple destinations. Four products: gasoline, diesel oil,
liquefied petroleum gas (LPG) and jet fuel were considered. Two
models based on disjunctive programming and on discrete–time
representation were presented. The first one proposes dividing the
pipeline into packages of equal size, while the second one does not.
The total cost to be minimized includes inventory, pumping and
interface costs. Key decisions involve loading and unloading opera-
tions of depots and the pipeline. Results include the inventory levels
at all locations, the operations of all segments of the pipeline and
the best sequencing of products inside the pipeline. Rejowski and
Pinto (2004) developed a model to improve the computational effi-
ciency from their previous work (Rejowski & Pinto, 2003). Special
and non-intuitive practical constraints were added to the original
MILP. The resulting model was analyzed in terms of computational
performance and solution quality. Additionally, the same authors
(Rejowski & Pinto, 2008) developed a novel continuous-time rep-
resentation to model the same process considered in their previous
papers. On the other hand, Cafaro and Cerdá (2004) developed a
continuous-time MILP model for the scheduling of a single pipeline
transporting several refined petroleum products from an oil refin-
ery to several distribution terminals. Batch sizing and sequencing
are optimally selected by the model to meet all product demands
at minimum cost over a single planning period. The approach
accounts for slug sequencing constraints, forbidden slug sequences,
mass balances, pipeline and depot loading and unloading oper-
ations, depot permissible levels and feasibility conditions for
transferring material from pipeline slugs to depots. The objective
is to minimize pumping, inventory and transportation costs while
satisfying all problem constraints. Transportation costs include
material losses and interface reprocessing costs at the depots.
In a subsequent work, Cafaro and Cerdá (2008) extended their
formulation considering multiple delivery due dates. Recently,
other authors, i.e. Mirhassani and Ghorbanalizadeh (2008) devel-
oped an integer programming formulation to deal with the same

problem.

All the papers reviewed above consider the pumping schedule
of multiple products for a single pipeline system. However, the
polyducts in a specific geographical area (region, country, etc.)
are connected together, resulting in a more complex system
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Fig. 1. Typical opera

ommonly named multi-pipeline system (Cruz, Andrés, Herrán,
esada, & Fernández, 2003; Cruz, Herrán, Risco, & Andrés, 2005).

n these systems, several pumps are strategically distributed along
he network in order to move the products to their destinations.
ence, from an operative point of view, a polyduct network is com-
osed of a set of nodes with storage and pump capacity and a set of
olyducts interconnecting these nodes. These polyducts are mostly
nidirectional but, for operative flexibility reasons, they could also
e reversible. The network topology depends on the oil activity and
he conditions at each geographical area. Fig. 2 shows an example of
multi-pipeline system. This network has two source nodes (1 and
), two intermediate nodes (3 and 4) and three destination nodes
5, 6 and 7). Moreover, the product can flow in both directions
hrough the reversible polyduct joining nodes 3 and 4. Source nodes
ould be refineries or other supply systems, for example ports.
estination nodes are the final distribution centers with a specific
emand that has to be fulfilled at the end of each planning horizon.

ntermediate nodes (3 and 4) distribute the product received
rom the sources to the destinations in order to meet demands at
hese points.

On a logistic level, the problem is to plan the way in which

ifferent products are temporally transported from source nodes
o destination nodes, passing through intermediate nodes in
rder to meet product demands at all pipeline depots before the
nd of the planning horizon. Furthermore, constraints related to
he product availability at each source node must be dealt with,

Fig. 2. Multi-pipeline
f a polyduct system.

and proper physical conditions after network utilization, namely
maximum/minimum inventory levels, must be satisfied. An opti-
mal planning should also tend to reduce the number of product
interfaces in order to lose as little as possible via product contam-
ination. This paper proposes both a mathematical formulation to
model these systems and a solution using MILP. The remainder of
this paper is organized as follows: Section 2 shows the problem
description. Section 3 shows the proposed model together with
a simplified model that, under certain operative conditions, can
be derived from the original one. In Section 4, two numerical
examples are presented to show the utility of the proposed MILP
models. Finally, conclusions are shown in Section 5.

2. Problem description

This paper considers a simplified model of an actual network.
The pipeline network under study can be initially represented
by a set of nodes (N), connections (C) and products (P), whose
activity is determined by a time interval T (planning horizon)
in which the demand must be fulfilled. Regarding the network
components N = NS ∪ NI ∪ ND is the set of nodes, where NS, NI and

ND are the subsets of source, intermediate and destination nodes,
respectively. C is the set of the network connections and CB is the
two-dimensional subset of the reversible ones. Also, CIn is defined
as the subset of incoming connections to node n and COn is defined
as the outgoing ones. As an example, the network shown in Fig. 2

system model.
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• Direct transfer of product packages between consecutive
pipelines is not allowed.

• Every package of product pumped into an individual pipeline
Fig. 3. Pumping sequence.

as C = {c1,c2,c3,c4,c5,c6,c7,c8} and CB = {(c3,c6),(c6,c3)}, and the
hird node has CI3 = {c1,c6}and CO3 = {c3,c4,c5}.

Product balance at intermediate nodes is the most difficult
rocess to model in this problem. This is due to the fact that inter-
ediate nodes can not only receive but also send products at any

ime instant. As it will be seen in the next section, this process can be
asily modeled assuming a discrete transport approach. It is based
n the following assumption: the type of product pumped by each
ource or intermediate node can only change at some predefined
ime instants t = 0�, 2�, 3�, . . ., T�, where � is the time duration of
ach pumping run. Hence, the planning horizon is discretized into a
umber of periods of length �. An example of a pumping sequence
f different products through a single pipeline is shown in Fig. 3.
hus, fluid transportation can be seen as the transport of discrete
ackages. Each package contains the amount of product continu-
usly pumped into the pipeline during one period. Fig. 4 shows the
emporal evolution of different packages inside of a polyduct for
he pumping sequence shown in Fig. 3. Each cylindrical segment
epresents the volume occupied by a package inside the polyduct
nd is also the unit employed to measure the polyduct length. So,
he polyduct length is divided into as many segments as the num-
er of packages that the polyduct can store. As a result of product

ncompressibility, when a new package is pumped into the pipeline
ll the packages inside move one segment. Obviously, in a fixed
lanning schedule, as � → 0 this approach tends to a continuous
ransportation mode, with the associated increase of the number of
ariables.

Fig. 4 shows a stop on the pumping sequence at period 4. Such
umping stoppage and the next pumping start at period 5 lead
o a high operational cost. In addition, the interface losses are
igher when the flow in the network is started or stopped, due to
he transient rate of flow which occurs until it reaches a steady

tate. As a consequence, an optimal pumping schedule should
nly use stops when strictly necessary: this includes reversal of
he pumping direction at reversible polyducts or a stoppage of the
umping sequence due to inventory availability.

Fig. 4. Pipeline state associated to the p
l Engineering 34 (2010) 401–413

In order to simplify the problem it is assumed that all polyducts
have the same diameter and characteristics and that all products
flow with the same speed occupying a similar volume in the
polyduct. A crucial aspect of this kind of transportation system
is that each polyduct must always be full. It forces a continuity
of flow which implies that local changes in the sequence of
inputs have impacts on the sequence of deliveries that are far
apart in terms of distance and time. Every node of the network
has depots to store many different products. Moreover, every
depot has a maximum and minimum inventory level specified
in terms of the number of packages that it can store. To sum-
marize the problem description the following information is
given:

• Network configuration: number of source, intermediate and des-
tination nodes, number of polyducts and their length, connection
topology and number of products.

• The initial state of the network and the length of the planning
horizon.

• Scheduled production at each refinery according to the planning
horizon.

• Maximum/minimum allowed product inventory for each depot
at each node.

• Product inventory at each node at the beginning of the planning
horizon.

• Product demand to be satisfied at each consumer node at the end
of the planning horizon.

• Cost associated to each operation process in the network.

In addition, the following assumptions are made:

• Each individual pipeline is composed of an integral number of
packages, all of which feature the same volume and contain single
product.

• Each package is injected at the same pump rate regardless of the
product that it contains. In this way, the planning horizon can be
divided into an integral number of time intervals featuring the
same length.
comes from the tank farm of a depot located at the pipeline inlet.
• Simultaneous package injections into several pipelines from the

same source or intermediate depot located at their common inlet
are permitted.

umping sequence shown in Fig. 3.
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Every product demand at all pipeline depots must be satisfied
before the end of the planning horizon.
Shutdown and restarting operations for each individual pipeline
have a finite cost that can change with the polyduct.

The objective is to establish the optimal sequence of products
ssigned to each new package pumped through each polyduct of
he network in order to: (1) meet product demands at each destina-
ion node before the end of the planning horizon; (2) keep inventory
evels in each node within its permissible range; and (3) minimize
he pumping cost, start/stop cost, interface losses, and inventory
arrying costs. At the same time, the inventory levels in each node
ust be tracked over the planning period, and forbidden product

equences must be avoided.

. Model development

In order to solve this problem it is necessary to develop a
athematical model composed of an objective function and a set

f constraints. This section shows equations using the nomencla-
ure defined in this paper, resulting in a MILP that can be solved
ith any commercial solver.

.1. Objective function

The objective function of the model, given in Eq. (1) below, com-
rises four different terms. The first one is the pumping cost, with
different cost factor CIc,p for each connection and product. The

econd term is the start/stop cost of each polyduct, with a different
ost factor CTc for each connection. The third term is the reprocess-
ng cost of the interface volume between adjacent packages with
ifferent products p and p′. It has a different cost factor depending
n the products p and p′ and the interface volume could also vary.
inally, the last term stands for the cost of holding product inven-
ory in each node of the network (refineries, intermediate stations
nd consumer nodes). The cost factor CAn,p is different for each node
nd product:

in z =
T∑

t=1

C∑

c=1

P∑

p=1

CIc,p · VP · yt,c,p +
C∑

c=1

CTc ·
∣∣soc − s1,c

∣∣

+
T∑

t=2

C∑

c=1

CTc ·
∣∣st−1,c − st,c

∣∣

+
T∑

t=1

C∑

c=1

P∑

p=1

P∑

p′=1

CRp,p′ · vt,c,p,p′

+
T∑

t=1

N∑

n=1

P∑

p=1

CAn,p · � · VP × at,n,p (1)

.2. Model constraints

The model has also a set of constraints that have been grouped
n the following subsets:

Constraints related to the pumping of new packages through each
polyduct of the network. Eq. (2) states that only one package

entering a polyduct per period is allowed. Eq. (3) avoids the
simultaneous usage of both sending directions in reversible
polyducts. It fixes the maximum number of packages (in this
case 1) that can be pumped through both connections belonging
to a reversible polyduct at each period. Interface volume between
l Engineering 34 (2010) 401–413 405

adjacent packages with different products is considered in Eq.
(4). Moreover, because of high product contamination, some
product sequences are not allowed. This feature is added to
the problem formulation through Eq. (5), where S is the set of
forbidden sequences:

P∑

p=1

yt,c,p ≤ 1 ; ∀(t, c) (2)

P∑

p=1

(yt,c,p + yt,c′,p) ≤ 1 ; ∀(t, c, c′) : (c, c′) ∈ CB (3)

vt,c,p,p′ ≥ VCp,p′ · (xt−1,c,1,p + yt,c,p′−1) ; ∀(t, c, p, p′) : t > 1

v1,c,p,p′ ≥ VCp,p′ · (xoc,1,p + y1,c,p′ − 1) ; ∀(c, p, p′)

vt,c,p,p′ ≥ 0 ; ∀(t, c, p, p′)

(4)

xt−1,c,1,p + yt,c,p′ ≤ 1 ; ∀(t, c, p, p′) : t > 1, (p, p′) ∈ S

xoc,1,p + y1,c,p′ ≤ 1 ; ∀(c, p, p′) : (p, p′) ∈ S
(5)

• Constraints related to the exact placement of each package pumped
into the network. Initial placement of each package into the
network is given by the parameter xoc,b,p. If a package is pumped
through connection c at period t, the value of variable st,c is set to
1 according to Eq. (6). Because of the product incompressibility,
if st,c = 1 the package pumped at period t through connection c
pushes all the packages in the same polyduct to the next segment
of the polyduct. This package movement is translated to the
problem formulation by Eqs. (7) and (8). Eq. (7) applies to all
the polyducts while Eq. (8) only applies to the reversible ones.
Finally, if st,c = 0 no package movement takes place at connection
c at period t, and all packages at this connection remain at the
same position as they were at the previous period. This condition
is stated by Eqs. (9) and (10) for unidirectional and reversible
polyducts, respectively. Note that depending on the value of st,c

some of the constraints in Eqs. (7)–(10) are inactive:

st,c =
P∑

p=1

yt,c,p ; ∀(t, c) (6)

xt,c,b,p ≤ xt−1,c,b−1,p − (st,c − 1)

xt,c,b,p ≥ xt−1,c,b−1,p + (st,c − 1)
; ∀(t, c, b, p) : t > 1, b > 1

x1,c,b,p ≤ xoc,b−1,p − (s1,c − 1)

x1,c,b,p ≥ xoc,b−1,p + (s1,c − 1)
; ∀(c, b, p) : b > 1

xt,c,1,p ≤ yt,c,p − (st,c − 1)

xt,c,1,p ≥ yt,c,p + (st,c − 1)
; ∀(t, c, p)

(7)

xt,c,b,p ≤ xt−1,c,b+1,p − (st,c′ − 1)

xt,c,b,p ≥ xt−1,c,b+1,p + (st,c′ − 1)
; ∀(t, c, c′b, p) : t > 1, (c, c′) ∈ CB, b < Lc

x1,c,b,p ≤ xoc,b+1,p − (s1,c′ − 1)

x1,c,b,p ≥ xoc,b+1,p + (s1,c′ − 1)
; ∀(c, c′b, p) : (c, c′) ∈ CB, b < Lc

xt,c,Lc ,p ≤ yt,c′,p − (st,c′ − 1)

xt,c,Lc ,p ≥ yt,c′,p + (st,c′ − 1)
; ∀(t, c, c′, p) : t > 1, (c, c′) ∈ CB

(8)

xt,c,b,p ≤ xt−1,c,b,p + st,c

xt,c,b,p ≥ xt−1,c,b,p − st,c

; ∀(t, c, b, p) : t > 1, c /∈ CB

x1,c,b,p ≤ xoc,b,p + s1,c

x1,c,b,p ≥ xoc,b,p − s1,c

; ∀(c, b, p) : c /∈ CB

(9)
xt,c,b,p ≤ xt−1,c,b,p + (st,c + st,c′ )

xt,c,b,p ≥ xt−1,c,b,p − (st,c + st,c′ )
; ∀(t, c, b, p) : t > 1, (c, c′) ∈ CB

x1,c,b,p ≤ xoc,b,p + (s1,c + s1,c′ )

x1,c,b,p ≤ xoc,b,p − (s1,c + s1,c′ )
; ∀(c, b, p) : (c, c′) ∈ CB

(10)
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tional polyducts can be removed from the current model. This
model also uses Eq. (11) to keep inventory product at each node
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Constraints are needed to keep track of the inventory level along
the planning horizon. Each time a node pumps or receives a new
package its inventory level, at,n,p, changes. This variable must be
kept within its maximum and minimum allowed levels for each
node. This condition is stated by Eq. (11). In order to satisfy this
constraint the value of at,n,p has to be correctly calculated for
each period. Eq. (12) shows the constraints that must be added
to the problem formulation to model the temporal evolution
of inventory levels at source nodes. As it can be seen, the first
constraint is a balance equation, whereas the second one applies
only to the first period making use of A0n,p. Finally, Eqs. (13) and
(14) are similar to Eq. (12) but for intermediate and destination
nodes, respectively.

Aminn,p ≤ at,n,p ≤ Amaxn,p ; ∀(t, n, p) : n ∈ N (11)

at,n,p = at−1,n,p −
∑

c ∈ COn

yt,c,p + Qt,n,p ; ∀(t, n, p) : t > 1, n ∈ NS

a1,n,p = A0n,p −
∑

c ∈ COn

y1,c,p + Q1,n,p ; ∀(n, p) : n ∈ NS

(12)

at,n,p = at−1,n,p −
∑

c ∈ COn

yt,c,p +
∑

c ∈ CIn

xt−1,c,Lc ,p · st,c ; ∀(t, n, p) : t > 1, n ∈ NI

a1,n,p = A0n,p −
∑

c ∈ COn

y1,c,p +
∑

c ∈ CIn

xoc,Lc ,p · s1,c ; ∀(n, p) : n ∈ NI

(13)

at,n,p = at−1,n,p +
∑

c ∈ CIn

xt−1,c,Lc ,p · st,c − qmt,n,p ; ∀(t, n, p) : t > 1, n ∈ ND

a1,n,p = A0n,p +
∑

c ∈ CIn

xoc,Lc ,p · s1,c − qm1,n,p ; ∀(n, p) : n ∈ ND

(14)

Fulfillment of market demands. The amount of product transferred
from each destination node to its local market must be high
enough to meet the market demands according to Eq. (15).
Moreover, the maximum flow rate at which this amount can be
delivered to the local market is limited by Eq. (16):

DMn,p =
T∑

t=1

qmt,n,p ; ∀(n, p) : n ∈ ND (15)

0 ≤ qmt,n,p ≤ QMmax ; ∀(t, n, p) : n ∈ ND (16)

Linearization of nonlinear terms. Since Eqs. (1), (13) and (14) are
nonlinear equations, a linearization process is needed in order to
get a MILP model, which can be easily solved by a standard solver
for instance CPLEX. The first nonlinearity appears in the second
term of Eq. (1) as the absolute value of two binary variables.
This term can be easily linearized by incorporating additional
non-negative real variables f defined as in Eq. (17) together
with the necessary constraints, shown in Eq. (18), to make both
models (linear and nonlinear) equivalent:

ft,c =
∣∣st−1,c − st,c

∣∣ ; ∀(t, c) : t > 1

f1,c =
∣∣soc − s1,c

∣∣ ; ∀(c)
(17)

−ft,c ≤ st−1,c − st,c ≤ ft,c ; ∀(t, c) : t > 1

−f1,c ≤ soc − s1,c ≤ f1,c ; ∀(c)
(18)

The second nonlinearity appears in the first term of Eqs. (13)
and (14) as the product of two binary variables (x and s). Such
a term can be easily linearized by incorporating additional non-

negative real variables: e defined as in Eq. (19). Furthermore, the
constraints shown in Eq. (20) are needed to make both models
(linear and nonlinear) equivalent:

et,c,p = xt−1,c,Lc,p · st,c ; ∀(t, c, p) : t > 1 (19)
l Engineering 34 (2010) 401–413

et,c,p ≤ xt−1,c,Lc,p ; ∀(t, c, p) : t > 1

et,c,p ≤ st,c ; ∀(t, c, p) : t > 1

et,c,p ≥ xt−1,c,Lc,p + st,c − 1 ; ∀(t, c, p) : t > 1

et,c,p ≥ 0 ; ∀(t, c, p) : t > 1

(20)

3.3. Simplified model

Under certain conditions, it is possible to reduce the number
of variables and constraints of the previous model, resulting in a
smaller model able to solve the same problem. As it was shown
in Eq. (1), there is a cost associated with starting/stopping the
pumping process in each polyduct of the network. This cost is
usually high since it involves a change in the operation system
of all the machinery used for that purpose. Furthermore, the
interface losses are higher when the flow in the network is started
or stopped, due to the transient rate of flow which occurs until
it reaches a steady state. As a consequence, an optimal polyduct
schedule should only use stops when strictly necessary. It can be
translated to the optimality constraint shown in Eq. (21). In such a
situation, Eq. (6) forces st,c = 1 for all the unidirectional polyducts,
and all these variables can be removed from the current model.
In this case, one package must be pumped to each unidirectional
polyduct at each period. Reversible polyducts still make use of Eq.
(2), since these polyducts need to stop pumping at least through
one of either sending direction and, in some cases, a reversal
of the flow direction could be necessary. Hence, Eq. (2) is now
defined only for reversible polyducts. The simultaneous usage of
both sending directions in reversible polyducts is also forbidden
through Eq. (3) but only defined for these polyducts:

P∑

p=1

yt,c,p = 1 ; ∀(t, c) : c /∈ CB (21)

Interface volume between adjacent packages with different
products can now be considered by Eq. (23) instead of Eq. (4), and
forbidden product sequences are now avoided by Eq. (24) instead
of Eq. (5). Again, Eqs. (23) and (24) are used only for unidirectional
polyducts, since the reversible ones still work with Eqs. (4) and (5):

vt,c,p,p′ ≥ VCp,p′ · (yt−1,c,p + yt,c,p′ − 1) ; ∀(t, c, p, p′) : t > 1, c /∈ CB

v1,c,p,p′ ≥ VCp,p′ · (xoc,1,p + y1,c,p′ − 1) ; ∀(c, p, p′) : c /∈ CB

vt,c,p,p′ ≥ 0 ; ∀(t, c, p, p′) : c /∈ CB

(22)

yt−1,c,p + yt,c,p′ ≤ 1 ; ∀(t, c, p, p′) : t > 1, c /∈ CB, (p, p′) ∈ S

xoc,1,p + y1,c,p′ ≤ 1 ; ∀(c, p, p′) : c /∈ CB, (p, p′) ∈ S
(23)

Now, the set of constraints used for tracking inventory product
at each node during the planning horizon is composed by Eq.
(12) for source nodes and the constraints shown in Eqs. (24) and
(25) for intermediate and destination nodes, respectively. These
constraints replace the ones shown in Eqs. (13) and (14) for all
the unidirectional polyducts. Eqs. (13) and (14) still work in the
simplified model but are only defined for reversible polyducts.
As it can be seen, these constraints can now be written without
the variables x. Then, in this case, constraints (6)–(10), related
to the package tracking on the network, are only defined for
reversible polyducts and all the x variables defined for unidirec-
within its maximum and minimum allowed levels and uses Eqs.
(15) and (16) to fulfill the market demands at consumer nodes.
Finally, the simplified model also includes Eqs. (17)–(20), defined
for the linearization of all the nonlinear terms of the model, but
they are only applied to reversible polyducts.
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at,n,p = at−1,n,p −
∑

c ∈ COn

yt,c,p +
∑

c ∈ CIn
c /∈ CB
t ≤ Lc

xoc,Lc+1−t,p +
∑

c ∈ CIn
c /∈ CB
t > Lc

yt−Lc,c,p

a1,n,p = A0n,p −
∑

c ∈ COn

y1,c,p +
∑

c ∈ CIn
c /∈ CB

xoc,Lc,p

at,n,p = at−1,n,p +
∑

c ∈ CIn

c /∈ CB
t ≤ Lc

xoc,Lc+1−t,p +
∑

c ∈ CIn
c /∈ CB
t > Lc

yt−Lc,c,p − qmt,n,p ;

a1,n,p = A0n,p +
∑

c ∈ CIn
c /∈ CB

xoc,Lc,p − qm1,n,p ;

The simplified model should only be used in a high demand
cenario and when the pumping cost is very low compared to start/
top costs. Otherwise, the complete model should be used, since
ulfillment of depot demands would not require pump operations
uring the entire planning horizon. If a high demand does not exist,
he use of the simplified model would deliver an excessive number
f product packages to depots and the additional inventory and
umping costs may surpass the savings in pipeline restarting costs.
oreover, the simplified model could lead to constant depletion or

n increase of inventory product at intermediate nodes when the
umber of incoming and outgoing connections does not coincide.
ence, a previous analysis of the data specific to the problem
as to be done before using the simplified model. At any rate,
he complete model could solve any situation, but with a higher
omputational cost than that required by the simplified model. To
llustrate this idea, several scenarios are solved in the next section.

. Numerical examples

The proposed MILP approaches will be illustrated by solving

n application example under several scenarios. The first scenario
llustrates the utility of the complete model, while the second
nd third illustrate the utility of the simplified model. All the
cenarios involve the network shown in Fig. 2 transporting four
efined petroleum products (P1: gasoline; P2: diesel oil; P3: LPG;

able 1
ommon data for all the scenarios.

Product Parameter Node Ni (S: source, I: intermedi

N1(S) N2(S)

P1

Min capacity (VP m3) 5 5
Max capacity (VP m3) 40 40
Initial state (VP m3) 20 5
Inventory cost (US$/(m3 h)) 0.006 0.006

P2

Min capacity (VP m3) 5 5
Max capacity (VP m3) 40 40
Initial state (VP m3) 20 20
Inventory cost (US$/(m3 h)) 0.008 0.008

P3

Min capacity (VP m3) 5 5
Max capacity (VP m3) 40 40
Initial state (VP m3) 5 20
Inventory cost (US$/(m3 h)) 0.007 0.007

P4

Min capacity (VP m3) 5 5
Max capacity (VP m3) 40 40
Initial state (VP m3) 20 20
Inventory cost (US$/(m3 h)) 0.006 0.006
l Engineering 34 (2010) 401–413 407

(t, n, p) : t > 1, n ∈ NI

(n, p) : n ∈ NI

(24)

n, p) : t > 1, n ∈ ND

p) : n ∈ ND

(25)

P4: jet fuel) from two sources (N1–N2) to three distribution
terminals (N5–N7). There are also two intermediate nodes
(N3–N4) connecting sources to destinations with different
polyducts. Products within these intermediate nodes can flow
in both directions through a reversible polyduct. Thanks to this
reversible polyduct it is possible that for the same planning horizon
a product only available at node N2 could arrive at node N5 at
the same time that the product only available at node N2 could
arrive at node N7. All the examples were solved on an Intel Xeon IV
2.8 GHz/2 GB RAM processor with CPLEX using ILOG OPL Studio 4.2
(ILOG Inc., 2006). A relative MIP gap tolerance equal to 1 × 10−4 and
an integrity tolerance of 1 × 10−5 were adopted in all examples.

Common data for all the scenarios are shown in Table 1. This
table shows lower and upper limits for all depots in the network
together with their initial values and the inventory cost. These data
together with the demand for all the scenarios are selected to force
the pumping of the product through the reversible polyduct in
both directions. The demand must be fulfilled at the end of the

planning horizon, composed by 20 time periods of length � = 5 h
(100 h). Consequently, the problem dimensions are N = 7 nodes,
C = 8 connections, P = 4 products and T = 20 periods. The length of
all polyducts is L = 3, measured in terms of the number of packages
that a polyduct is able to store. A value of VP = 5000 m3 is used as the

ate, D: destination)

N3(I) N4(I) N5(D) N6(D) N7(D)

2 2 2 2 2
30 30 20 20 20
15 2 10 10 10

0.009 0.009 0.012 0.012 0.012

2 2 2 2 2
30 30 20 20 20
15 15 10 10 10

0.011 0.011 0.016 0.016 0.016

2 2 2 2 2
30 30 20 20 20

2 15 10 10 10
0.010 0.010 0.014 0.014 0.014

2 2 2 2 2
30 30 20 20 20
15 15 10 10 10

0.009 0.009 0.012 0.012 0.012
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Table 2
Scheduled production runs at each refinery.

Refinery N1 Refinery N2

Product Volume (VP m3) Rate (m3/h) Time interval (h) Product Volume (VP m3) Rate (m3/h) Time interval (h)

P1 5 1000 0–25
P2 5 1000 25–50
P3 5 1000 75–100
P4 5 1000 50–75

Table 3
Initial content and operational state of each polyduct.

Section C1 C2 C3 C4 C5 C6 C7 C8

1 P1 P3 P2 P1 P2 P2 P4 P3

u
p
a
s
T
i
i
F
u
f
×

4

N
d
s
p
t
t
c
t
t
t
t
n

p

T
C

T
D

2 P1 P3 P2 P1 P2 P2 P4 P3
3 P1 P3 P2 P4 P1 P2 P4 P3

State ON ON ON ON ON OFF ON ON

nit package volume. Therefore, the pumping rate is 1000 m3/h. The
umping cost, CIc,p, is usually proportional to the polyduct length,
nd in this case it is set to L US$/m3 for all c and p. Table 2 shows the
cheduled production along the planning horizon at each refinery.
able 3 shows the initial content of the network (which product
s contained inside each section of each polyduct) together with
ts initial operational state (if each polyduct is initially working).
inally, Table 4 shows the interface material cost and contact vol-
me for each ordered pair of products. In this table, there are two
orbidden product sequences (P1–P3) and (P3–P4), denoted with a

symbol.

.1. Scenario I-A: general case solved by the simplified model

Table 5 shows the demand for all the consumer nodes (N5,
6 and N7) used in this first scenario. As it was said above, these
emands, together with the data shown in Table 1, have been
elected to force the pumping of product through the reversible
olyduct in both directions. The start/stop cost factor CTc is set
o 100,000 US$ for all polyducts. First, this scenario is solved by
he simplified model. This model has 2959 variables and 5360
onstraints. The optimal solution is found after 2348 s of compu-
ation and has a total cost of 3,512,280 US$. This cost corresponds
o 1,995,000 US$ due to the pumping cost, 200,000 US$ due to
he start/stop cost, 41,400 US$ due to the reprocessing of 13

ransmixes and 1,275,880 US$ due to the inventory cost at all
odes of the network.

Fig. 5 shows the optimal pumping sequence reached by the sim-
lified model for all the polyducts of the network. White has been

able 4
ontact characteristics.

Product Contact volume (m3) Reprocessing cost (US$/m3)

P1 P2 P3 P4 P1 P2 P3 P4

P1 0 30 × 35 0 100 100 100
P2 30 0 37 38 100 0 × 100
P3 × 37 0 × × 100 0 ×
P4 35 38 × 0 100 100 × 0

able 5
emand (VP m3) for Scenarios I and II.

Product D1 (N5) D2 (N6) D3 (N7)

P1 10 10 10
P2 10 10 10
P3 10 10 10
P4 10 10 10
P1 5 1000 75–100
P2 5 1000 0–25
P3 5 1000 25–50
P4 5 1000 50–75

used to denote a stop on the pumping sequence. As it can be seen,
products P1 and P3 are never in contact since this is a forbidden
sequence. The same happens with products P3 and P4. Pumping
should be continuous in all the polyducts, whenever it is possible,
in the same conditions given at the beginning of the planning hori-
zon. The initial state is defined by the previously pumped product,
under the symbol � shown in Fig. 5, and by the state shown in
Table 3. Note that connections C3 and C6 correspond to the same
reversible polyduct. Connection C3 starts pumping at the beginning
of the planning horizon. First, two packages of P1 are sent through
this polyduct between periods 1–2 from N3 to N4 (connection C3)
followed by three packages of P2 to pump the previous ones to
N4, and then another eight packages of P3 are sent through the
same polyduct between periods 13–20 from N4 to N3 (connection
C6). In other words, this polyduct is able to stop pumping through
one of its sending directions when it is necessary. Such stoppage
at C3 followed by a starting at C6 is strictly necessary in order to
deliver the demanded amount of P1 to N7 and P3 to N5. All the
unidirectional polyducts do not stop pumping since this pumping
sequence was calculated by the simplified model in this example.

Note that some product fragmentations are needed to fulfill all
the constraints. For example, if connection C3 pumps the sequence
5P1 instead of 2P1–3P2, product P3 pumped through C6 at period
13 would be in contact with product P1, which can not be since this
is a forbidden sequence. A similar situation happens at connections
C7 and C8. So, the existence of forbidden product sequences com-
bined with maximum deadlines to meet customer demands makes
the problem of finding the best pumping sequence a non-trivial
matter. Fig. 6 shows the variations of product inventory over time
at each node associated with the pumping sequence shown in
Fig. 5. As can be seen, all inventory levels remain between their
permissible ranges.

4.2. Scenario I-B: general case solved by the complete model

Given the characteristics of Scenario I, it would be possible to
stop pumping through any polyduct, since the cost for doing so
is not very high and the amount of product in demand at each
consumer node does not require continuous pumping from the
sources. Therefore, the simplified model could give non-optimal
solutions, making it necessary to solve this scenario by the complete
model. This model has 5245 variables and 13,086 constraints. The
optimal solution is found after 19,475 s of computation and has a
total cost of 2,803,800 US$. This cost corresponds to 840,000 US$
due to the pumping cost, 700,000 US$ due to the start/stop cost,
41,400 US$ due to the reprocessing of 13 transmixes and 1,222,400
US$ due to the inventory cost at all nodes of the network. Table 6
shows a comparison among the cost factors shown in Eq. (1) asso-
ciated with the optimal solution found by each model for Scenario
I. As it can be seen, the cost savings in pumping and inventory costs
using the complete model surpass the increase of start/stop costs.
The quality of the solution given in the simplified model can
be measured by the gap between its optimal cost achieved and
its lower limit which is given in the solution reached by the
complete model. Table 7 shows how the simplifications made in
this model lead to a 20.17% difference from the optimal cost.
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Fig. 5. Optimal pumping sequence reached by the simplified model for Scenario I.
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Fig. 6. Variations of inventor
owever, the simplified model is able to find its optimal solution
n 2348 s compared with 19,475 s in the complete model. Thus, in
cenarios where both models give the same solution, the simpli-
ed model could speed up the convergence towards the optimal
olution.

able 6
ost factors associated to the optimal solution found by each model for Scenario I.

Model Obj1 (US$) Obj2 (US$)

Simplified model 1,995,000 200,000
Complete model 840,000 700,000

able 7
nventory cost of the optimal solutions reached for Scenario I.

Model Optimal cost (US$) Lower

Simplified model 3,512,280 2,803
Complete model 2,803,800 2,803
ls over time for Scenario I-A.
Fig. 7 gives the pumping sequence for the complete model
showing how in this case some stops are performed in order to
minimize the overall cost. Fig. 8 shows the variations of product
inventory over time at each node. Again, all inventory levels
remain between their permissible ranges, trying to remain close to

Obj3 (US$) Obj4 (US$) Total (US$)

41,400 1,275,880 3,512,280
41,400 1,222,400 2,803,800

bound (US$) Difference (US$) Gap (%)

,800 708,480 20.17%
,800 0 0.00%



410 A. Herrán et al. / Computers and Chemical Engineering 34 (2010) 401–413

ched

t
i

4

s
C
t
s
p
t
t
d
4
U
s
C

Fig. 7. Optimal pumping sequence rea

heir minimum possible values throughout the planning horizon
n order to minimize the overall inventory cost.

.3. Scenario II: high start/stop cost

Second scenario uses the same demand used for Scenario I
hown in Table 5. However, in this case, the start/stop cost factor
Tc is set to 500,000 US$ for all polyducts. Given such a high cost fac-
or CTc, an optimal pumping schedule should only use stops when
trictly necessary. In this case, it may only include reversal in the
umping direction at reversible polyducts. In such a situation, both
he simplified and complete models give the same solution with a
otal cost of 3,512,280 US$. This cost corresponds to 1,995,000 US$

ue to the pumping cost, 200,000 US$ due to the start/stop cost,
1,400 US$ due to the reprocessing of 13 transmixes and 1,275,880
S$ due to the inventory cost at all nodes of the network. Table 8

hows the problem dimensions for each model together with the
PU time needed to solve this example. As it can be seen from this

Fig. 8. Variations of inventory leve
by the complete model for Scenario I.

table, the usage of the simplified model instead of the complete model
reduces the problem dimensions approximately by half and the CPU
time needed to reach the optimal solution decreases more than one
order of magnitude.

Fig. 9 shows the pumping sequence for the optimal solution
in this scenario. As it can be seen, all the unidirectional polyducts
are continuously being pumped throughout the planning horizon
since pumping cost is very low compared to start/stop costs. Fig. 10
shows the variations of product inventory over time at each node
associated with the pumping sequence shown in Fig. 9. It also shows
that all inventory levels remain between their permissible ranges.

4.4. Scenario III: high demand pattern
The third scenario consists of a high demand pattern. Table 9
shows the demand for all the consumer nodes (N5, N6 and N7).
These demands together with the data shown in Table 1 have been
selected again to force the pumping of the product through the

ls over time for Scenario I-B.
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Table 8
Problem dimensions and CPU time associated to each model for Scenario II.

Model Constraints Variables Non–zero coefficients CPU Time (s)

Simplified model 5360 2959 17,832 889
Complete model 13,086 5245 39,507 9227

Fig. 9. Optimal pumping sequence reached by both models for Scenario II.

Fig. 10. Variations of inventory levels over time for Scenario II.

Fig. 11. Optimal pumping sequence reached by both models for Scenario III.
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Fig. 12. Variations of inventory lev

Table 9
Demand (VP m3) for Scenario III.

Product D1 (N5) D2 (N6) D3 (N7)

P1 13 18 13

r
C
t
p
c
s
a
t
t
t
n
t
p
n
F
n
O
r
t

5

t

P2 13 18 13
P3 13 18 13
P4 13 18 13

eversible polyduct in both directions. The start/stop cost factor
Tc has been set again to 100,000 US$ for all polyducts. However,
he high demand imposed at this scenario requires continuous
umping during the entire planning schedule. Thus, this scenario
an be solved again by the simplified model to get the same optimal
olution given by the complete model. In this case, the total cost
ssociated to this solution is 4,312,270 US$. This cost corresponds
o 1,995,000 US$ due to the pumping cost, 1,000,000 US$ due
o the start/stop cost, 41,400 US$ due to the reprocessing of 13
ransmixes and 1,275,870 US$ due to the inventory cost at all
odes of the network. Fig. 11 shows the pumping sequence for
he optimal solution in this scenario. Again, all the unidirectional
olyducts are continuously being pumped throughout the plan-
ing horizon in order to meet demands at consumer nodes. Finally,
ig. 12 shows the variations of product inventory over time at each
ode associated with the pumping sequence shown in Fig. 11.
nce again, all inventory levels remain between their permissible

anges and depots at destination nodes tend to remain close to
heir minimum values to minimize the overall inventory cost.
. Conclusions

This paper proposes a MIP model for planning the transporta-
ion of multiple petroleum products in a multi-pipeline system. On
els over time for Scenario III.

a logistic level, the problem in such systems is how to plan the way
in which different products taken from refineries are temporally
transported to meet customer demands at delivery points in due
time. Product balance at intermediate nodes is the most difficult
process to model; however, it can be easily modeled assuming a
discrete transport approach that divides both the planning horizon
into time intervals of equal duration and the individual polyducts
into packages of equal volume containing a single product. The
model proposed in this paper considers the minimization of the
total cost composed of four different terms: pumping, start/stop,
reprocessing and inventory costs. Under certain conditions, it is
possible to reduce the number of variables and constraints of the
proposed model, resulting in a smaller model able to solve the
same problem. This simplified model should only be used in a high
demand scenario and when the pumping cost is very low com-
pared to start/stop costs. Otherwise, the complete model should be
used, since fulfillment of depot demands would not require pump
operations during the entire planning horizon.

To illustrate the model applications, a numerical example was
solved under several scenarios. Data for all the examples were
selected to force the pumping of product through the reversible
polyduct in both directions. The first scenario shows how when
low demand and start/stop costs are given, the complete model
should be used, since this scenario does not require continuous
pumping from the sources, and as a consequence the simplified
model could give non-optimal solutions. However, if there is a high
start/stop cost (Scenario II) or a high demand pattern (Scenario III),
the simplified model is able to reach the same optimal solution

as given by the complete model within more than one order of
magnitude less time.

Finally, notice how in Scenario I-A, the complete model has 5245
variables and 13,086 constraints. In this general case, the MIP algo-
rithm was running over 20,000 s to reach the optimal solution with
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his model. This fact gives an idea of the complexity of the problem
ere considered. The problem addressed is a NP-hard combinato-
ial problem. For this reason, the authors are currently working
n developing several metaheuristic algorithms to efficiently solve
hese kinds of problems by the models here proposed.
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