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Abstract

This note deals with aggregate models for complex distillation systems in large-

scale flowsheets. Group methods were originally devised for simple absorber and

stripper calculations with no major extensions for handling distillation. In this

work, group methods are systematically analyzed and further improved by modi-

fying some of the previously proposed approximations. As a result, the improved

group method exhibits accurate predictions and this is demonstrated using simula-

tion and optimization case studies for a variety of chemical systems and operating

conditions. It is observed that the prediction of output variables is in close agree-

ment with that of the rigorous equilibrium stage model. In case of optimization

problems, the optimal number of trays and feed locations differ by only one or two

trays. The aggregate model can be applied in a sequence of steps in order to improve

the reliability and robustness of the solution procedure. A rounding heuristic is also

proposed which can provide near-optimal solutions with a significant reduction in

computational time.

∗To whom correspondence should be addressed. Email: grossmann@cmu.edu
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1 Introduction

Countercurrent gas liquid operations are an important part of many chemical engineering

applications. The most common and frequently occurring unit operation that involves

countercurrent flow of vapor and liquid is distillation. With advances in algorithms and

computational technology, the recent trend is to use rigorous tray-by-tray models for

representing distillation columns. As an example, synthesis problems that determine

the optimal number of trays and feed locations for a distillation column have been ad-

dressed using rigorous models (Viswanathan and Grossmann, 1990, 1993a,b; Yeomans

and Grossmann, 2000; Lang and Biegler, 2002; Barttfeld et al., 2003). However, such

optimization problems have usually been solved only for small flowsheets having only

one or two columns. Use of such models in the optimization of more complex flowsheets

having many distillation columns and other process equipments is challenging because

of issues like nonlinearity, combinatorial complexity and convergence. Rigorous models

should always be preferred because they are capable of representing the process behavior

more accurately. However, if the resulting problem becomes too complex or intractable,

a better approach would be to use aggregate models, particularly if their performance

closely matches that of rigorous models.

Several types of aggregate models for distillation have been proposed in the literature.

Some of them are based on shortcut/design (Kremser, 1930; Fenske, 1932; Underwood,

1948; Gilliland, 1940), heat/mass transfer (Bagajewicz and Manousiouthakis, 1992; Pa-

palexandri and Pistikopoulos, 1996) and pinch/design (Caballero and Grossmann, 1999).

However, most of these models cannot be directly used in process simulation and opti-

mization mostly because of two issues. First, their accuracy is not as good as rigorous

models like RADFRAC in Aspen Plus (AspenTech, 2006). Second, they are not suitable

for generating complex column configurations or optimizing structural parameters like

number of trays and feed locations. Group methods (Henley and Seader, 1981), which

are based on aggregating a section of stages of the column have some potential but they

have not been thoroughly investigated since their development in 1950s.

Group methods basically use approximate calculations to relate the outlet stream proper-

ties to the inlet stream specifications and number of equilibrium trays. These approxima-

tion procedures are called group methods because they provide only an overall treatment

of the stages in the cascade without considering detailed changes in the temperature

and composition of individual stages. However, they are much easier to solve because of

fewer variables and constraints. They can be used to represent cascade of trays in many
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Figure 1: Rigorous and approximate group method for a counter-current cascade of trays

countercurrent operations like absorption, stripping, distillation, extraction, leaching etc.

In this paper, we investigate the potential of group methods for process simulation

and optimization and propose further improvements specifically for modeling distilla-

tion columns. An equation-oriented analysis of group methods is presented along with

various kinds of approximations used in previous work. As a next step, some of these

approximations are replaced by more realistic constraints based on physical insights. As

a result, the improved group method shows more accurate predictions and this is demon-

strated using simulation and optimization case studies. It is observed that most of the

output variables have less than 5% error, on average as compared to rigorous values and

the optimal number of trays and feed locations are missed by only one or two trays. A

rounding heuristic is also proposed which provides reasonably good solutions and signifi-

cantly reduces the computational time for solving mixed integer nonlinear programming

(MINLP) problems.

2 Analysis of group methods

Group methods were originally devised for simple hand calculations that are performed

in an iterative manner. To investigate the previously proposed approximations in group

methods, it is essential to perform a degree of freedom analysis to understand which

approximations were used and for what purpose. A counter-current cascade of trays and

its corresponding representation by group method is shown in Figure 1. The specifications

for the entering vapor VN+1 and the entering liquid L0 serve as fixed inputs to the model.

The approximate model based on group method evaluates the outlet stream properties
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like pressure, temperature, flow and composition of exiting vapor V1 and exiting liquid

LN . For the sake of argument, we consider adiabatic and isobaric operation of the cascade.

Thus, the pressure variables corresponding to the two outlet streams can be eliminated.

If C denotes the set of components involved in the system, then the total number of

variables in the model is 2 (|C| + 1) due to the two outlet streams without the pressure

variables.

The fundamental equations for group methods are the component mole balances,

VN+1,i yN+1,i + L0,i x0,i = V1,i y1,i + LN,i xN,i i ∈ C (1)

and the energy balance,

VN+1 HV
N+1 + L0 HL

0 = V1 HV
1 + LN HL

N (2)

which are written around the complete set of trays forming the cascade. Note that (1)

provides |C| equations while (2) provides just one equation. The performance equation

of the cascade is given by,

v1,i = vN+1,i φA,i + l0,i (1− φS,i) i ∈ C (3)

Equation (3) was originally derived by Kremser (1930) for the design of absorbers where

it was written only for the key component. Here, it is written for all the components and

hence it results in |C| equations. A quick analysis up to this point shows that there is

one degree of freedom. The φA,i and φS,i in (3) denote the recovery factors for absorption

and stripping and are given by,

φA,i =
Ae,i − 1

AN+1
e,i − 1

; φS,i =
Se,i − 1

SN+1
e,i − 1

, i ∈ C (4)

Here, Ae,i and Se,i stand for effective absorption and stripping factors and they represent

average values of absorption and stripping factors for all trays contained in the cascade.

The averaging scheme proposed by Edmister (1943),

Ae,i = [AN,i (A1,i + 1) + 0.25]0.5 − 0.5

Se,i = [S1,i (SN,i + 1) + 0.25]0.5 − 0.5
(5)

uses absorption and stripping factors at the top (A1,i and S1,i) and bottom (AN,i and SN,i)
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of the cascade. These factors, are in turn calculated using the following expressions,

A1,i =
L1

K1,i V1

; AN,i =
LN

KN,i VN

S1,i = 1/A1,i ; SN,i = 1/AN,i , i ∈ C

(6)

Note that each of the equations from (4) to (6) will be used to evaluate the variable on the

left hand side of these equations. Consequently, the degree of freedom of unity up till the

point before equation (4) still remains unsatisfied. Furthermore, equation (6) introduces

two new variables L1 and VN that denote the liquid and vapor flow from the first and the

last tray respectively. These variables were not defined previously in the model and hence

two additional equations are needed to account for these variables. This, along with the

previously unsatisfied degree of freedom of unity leads to three degrees of freedom. As

will be seen in the next section, previous work on group methods accounted for these

three degrees of freedoms using different kinds of approximations.

3 Approximations used for group methods

Kremser (1930) proposed the following three approximations:

L1 ≈ L0 (7)

VN ≈ VN+1 (8)

TN ≈ T0 + TN+1

2
(9)

Kremser (1930) also replaces the energy balance (2) by

T1 ≈ T0 + TN+1

2
(10)

Equation (7) suggests that the flow of entering liquid does not change much after passing

through first tray. A similar approximation is made in (8) for entering vapor flow as it

passes through the last stage. Equations (9) and (10) suggest that Kremser (1930) used

identical approximations for temperatures of the vapor and liquid streams exiting the cas-

cade and they are both considered to be equal to the arithmetic mean of the temperature

of entering vapor and liquid streams. Note that Kremser (1930) originally made these

approximations for recovery of gasoline components from natural gas where only a small

fraction of the feed gas is absorbed. The next major improvement to group methods was
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proposed by Edmister (1957) for handling distillation systems. Unlike Kremser (1930),

Edmister (1957) retains the energy balance (2) for the cascade. However, he uses a dif-

ferent set of approximation equations depending upon whether the cascade behaves as an

absorber or a stripper. The three approximation equations corresponding to behavior as

an absorber are

VN ≈ VN+1

(
V1

VN+1

)1/N

(11)

L1 = L0 + V2 − V1 (12)

TN − T1

TN − T0

≈ VN+1 − V2

VN+1 − V1

(13)

Equation (11) provides an approximate expression for VN and assumes that the vapor

contraction per stage is the same percentage of the vapor flow to the stage in question.

Equation (13) is a relation between temperature and vapor flowrates and assumes that the

temperature change of the liquid is proportional to the volume of gas absorbed. Although

equation (12) is a rigorous expression for L1 based on mole balance, it contains a new

variable V2 not defined previously. V2 is approximated by the following equation, which

is analogous to (11):

V2 ≈ V1

(
VN+1

V1

)1/N

(14)

The approximation equations for the stripper are similar to that of absorber except that

most of the dependencies are based on molar flow of liquid instead of vapor. These

equations are as follows

L1 ≈ L0

(
LN

L0

)1/N

(15)

VN = VN+1 + LN−1 − LN (16)

T0 − T1

T0 − TN

≈ L0 − L1

L0 − LN

(17)

LN−1 ≈ LN

(
L0

LN

)1/N

(18)

Clearly, some physical insight about the separation system such as chemical components

involved and the operating conditions is required in order to identify whether a cascade

of trays behaves as an absorber or a stripper. Although identifying this behavior is trivial

for conventional absorbers and strippers, it is not obvious when many such cascades

are connected together as in multicomponent distillation involving multiple feeds and/or
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side-draws.

4 Proposed modifications

Our proposed modifications involve identifying three constraints to satisfy the degrees of

freedom as described earlier. The first two of our proposed constraints are based on the

underlying principles of distillation. We expect that since the outlet streams are coming

out of first and last tray of the cascade, they should be under vapor liquid equilibrium

conditions and an aggregate model, of whatever order of simplicity, should capture these

phenomena just like mass and energy balances. Hence, for the outlet vapor, we impose a

constraint that it should be at dew point conditions i.e.

∑
i∈C

y1,i

K1,i

= 1 (19)

Similarly, the outlet liquid is at bubble point conditions i.e.

∑
i∈C

KN,i xN,i = 1 (20)

It is worth mentioning that equations (19) and (20) are implicit in equilibrium stage

models, and thus they can be considered to be physically realistic constraints for group

methods. If needed, these equations can be appropriately modified for non-equilibrium

behavior. Only our third equation given by

L1 − LN ≈ V1 − VN (21)

is an approximation. Equation (21) is based on an approximation of mole balance with

an assumption that the decrease in vapor at the bottom is approximately equal to the

increase in liquid at the top and vice versa. Note that it is a linear constraint and unlike

the approach by Edmister (1957), this single equation can handle both absorption and

stripping effects. The model given by (1) - (6) along with (19) - (21) forms a general

purpose group model for a cascade of trays in a distillation column. Aggregate models

for any complex columns configurations can be easily generated by connecting such group

models to rigorous or aggregate process models of condenser, reboiler, feed or side-draw

stages through input and output streams interconnections.

As will be shown in the next section, the use of our proposed modifications leads to an
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Table 1: Data for the simulation case study

Column configuration Feed characteristics
Total number of stages 45 – Main and 2nd feed
Location of first feed 32ndstage Molar flow rate (kmol/s) 3.0
Location of second feed 21st stage N2 fraction (mol %) 70.8155
Location of vapor side-draw 9th stage O2 fraction (mol %) 27.9439

Ar fraction (mol %) 1.2407
Operating conditions Temperature (mol %) 96.7

Column pressure (bar) 5 – Top feed
Reboil ratio 3.5 Molar flowrate (kmol/s) 1.0

N2 fraction (mol %) 99.6717
Side-draw specification O2 fraction (mol %) 0.2687

Molar flowrate (kmol/s) 2.0 Ar fraction (mol %) 0.0586
Temperature (mol %) 93.8

improved group method with better predictive capabilities for distillation. In our opinion,

it would be unfair to compare the improved group method with that of Kremser (1930)

because that work was tailored for absorption under mild conditions. Comparison with

the work of Edmister (1957) is more appropriate, but is not straightforward. This is

because for complex columns having n cascades (n > 2), Edmister (1957)’s methodology

will result in 2n different solutions depending on what kind of behavior (absorber or

stripper) is specified for each of the existing cascades. Then, it is not clear which of these

solutions (or the behavior of the cascades) is the most appropriate representation of the

column behavior and suitable for comparison with our aggregate model or the rigorous

model. This aspect is highlighted using a simulation example in the next section.

5 Simulation case study using aggregate models

The effectiveness of using the improved group method in aggregate models for distilla-

tion columns is first demonstrated using a simulation case study. A complex column is

considered which closely represents the low pressure column in cryogenic air separation.

This column has two conventional feeds with a cascade of trays in between, a vapor side-

draw with a cascade of trays above and below it, and a liquid feed at the top instead

of a condenser. The specifications used for the simulation of this column are given in

Table 1. An aggregate representation of this complex column is shown in Figure 2 where

each of the four set of contiguous stages is represented by the improved group method.

The process models for the reboiler, feed stages and the side-draw stage in this aggregate

representation are rigorous just like in the equilibrium tray-by-tray model. A comparison

of the simulation results using the aggregate model and the rigorous model (RADFRAC

of Aspen Plus) is shown in Table 2. Also included in Table 2 is the corresponding result
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Figure 2: Aggregate representation of the complex column for the simulation case study

using the Edmister (1957) method. As discussed earlier, the methodology of Edmister

(1957) requires selecting independently the behavior (absorption or stripping) for the four

cascades thus resulting in sixteen possible solutions. The comparison in Table 2 uses the

solution that most closely resembles the result of the rigorous model. As can be seen, most

Table 2: Results for simulation case study

Rigorous Model Aggregate Model Aggregate Model
(Aspen Plus) (Improved Group Method) (Edmister, 1957)

Top Product

Flowrate (kmol/s) 3.6557 3.6555 3.6355
N2 fraction 0.9552 0.9553 0.9584
O2 fraction 0.0409 0.0411 0.0382
Ar fraction 0.0038 0.0036 0.0033
Temperature (K) 95.236 95.237 94.342

Bottom Product

Flowrate (kmol/s) 1.3442 1.3445 1.3645
N2 fraction 6.82E-05 3.31E-04 0.001137
O2 fraction 0.9657 0.9642 0.9625
Ar fraction 0.0342 0.0355 0.0363
Temperature (K) 108.69 108.679 108.657

Side-draw Product

N2 fraction 0.87674 0.87655 0.87988
O2 fraction 0.11575 0.11641 0.11347
Ar fraction 0.007503 0.007035 0.006642
Temperature (K) 97.113 97.12 97.808

Reboiler duty (MW) 28.5178 28.5168 28.3492
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Table 3: Specifications for optimization case study I

Chemical system Feed specification
Binary system (Benzene-Toluene) Flowrate: 100 kmol/s
Thermodynamics: Ideal Composition (mol %): (0.7,0.3)

Temperature: 359.6 K
Column configuration

Single feed Additional constraints
Fixed Number of stages: 25 Reflux ratio ≤ 1
Candidate stages for feed location: {8, 9 · · · 22} Top benzene purity ≥ 0.99

Operating conditions Objective
Column Pressure: 1.12 bar Maximize: Distillate − 50r

of output variables for the improved group method and the rigorous model match within

three to four significant digits. Although the performance of the Edmister (1957) method

is relatively good, it is less accurate particularly in the prediction of reboiler duty and

temperatures. The use of better and realistic constraints guarantees that the improved

group method will outperform the Edmister (1957) method for every distillation system

and that too at no additional computational cost as the number of variables and equations

remains unaffected. The strongest point in the favor of the improved group method is

that we need not specify a priori whether the cascade of trays behaves as an absorber or a

stripper whereas this specification is required for the Edmister (1957) method. Thus, the

Edmister (1957) method may require several trials including knowledge of physical system

and configuration while the improved group method provides a more accurate result with

no additional insight needed.

6 Optimization case studies

The efficacy of the improved group method is also demonstrated using optimization case

studies. The first case study involves finding the optimal feed location for a binary

distillation column operating at constant pressure with fixed total number of trays. The

specifications for this case study are described in Table 3. This problem is solved using

both rigorous tray-by-tray model and the aggregate model. The representation for both

these models is shown in Figure 3. The problem was originally solved by Viswanathan

and Grossmann (1990) using the rigorous equilibrium stage model. Their model allows

the feed to be inserted on all candidate feed location and uses binary variables and logic

constraints to enforce that the feed is inserted on exactly one tray. Our aggregate model

for this problem is based on using a fixed feed stage which is connected to a cascade

of trays below and above it. The feed location is automatically changed by varying the
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Figure 3: Rigorous and aggregate representations for the first optimization case study

number of trays in the two cascades. The total number of trays is fixed by enforcing

that the sum of the number of trays in both the cascades is constant. Instead of binary

variables, two integer variables are used to represent the number of stages in the cascades.

The optimal solutions obtained using the rigorous and the aggregate model are shown in

Table 4. The aggregate model can be solved in a sequence of steps. As a first step, the

number of stages in the enriching and stripping cascades can be relaxed as continuous

variables in order to solve a much simpler NLP problem. The solution of this NLP is

shown in the third column of Table 4. The fractional values for enriching and stripping

stages in the solution of this relaxed NLP can then be rounded off to the nearest integer

values and the resulting NLP can be solved again with fixed integer values for the stages.

We refer to this scheme as the rounding heuristic. The integer solution obtained by

the rounding heuristic is shown in the fourth column of Table 4. Even if the rounding

Table 4: Results for optimization case study I

Rigorous Model Aggregate Model Aggregate Model Aggregate Model
(Viswanathan and (Relaxed) (Integer solution (best integer solution
Grossmann, 1990) by rounding) by search)

Objective 20.34 21.96 21.821 21.821
Reflux ratio 0.985 0.975 0.978 0.978
Distillate 69.6 70.707 70.707 70.707
Feed location 15th stage – 17th stage 17th stage
Enriching stages 13 14.9 15 15
Stripping stages 9 7.1 7 7
Continuous variables 235 90 88 88
Discrete variables 15 – – 2 integer variables

(but 15 candidates)
Total variables 250 90 88 103
Total constraints 264 82 82 82
Number of NLPs solved 1 1 1 2
CPU time (s) 0.08 0.05 0.04 0.07
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Table 5: Specifications for optimization case study II

Chemical System Operating conditions
Ternary system (Benzene-Toluene-o-xylene) Reboiler Pressure: 1.25 bar
Thermodynamics: Ideal Condenser Pressure: 1.05 bar

Linear pressure profile
Column configuration

Single feed Additional constraints
Maximum number of trays: 30 Distillate: 0.4 kmol/s

Reflux ratio ≤ 15
Feed specification Bottom o-xylene purity ≥ 0.995

Flowrate: 1 kmol/s
Composition (mol %): (0.15, 0.25, 0.6) Objective
Temperature: 391.172 K Minimize: 5 r + Stages

heuristic is not used, all candidate integer solutions can still be searched using an outer-

approximation or a branch-and-bound algorithm to determine the best integer solution.

For this problem, the best integer solution turns out to be same as that given by the

rounding heuristic. The number of variables and constraints in the aggregate model is

almost one third of that in the rigorous model. In this case study, there is no noticeable

difference in the computational time for the rigorous and the aggregate models. This is

because the relaxed NLP for the rigorous model gives an integer solution and hence only

one NLP is solved. While this can be treated as a heuristic and can be argued from an

exergetic view point as negating the effect of mixing, it does not hold necessarily for all

distillation systems. In spite of this, the NLPs for the aggregate model are smaller and

solved marginally faster. We also see that the optimal feed location is missed by only two

trays. The objective function of the aggregate model is overestimated by 7% due to the

small differences in the reflux ratio and distillate flow rate.

In the second optimization case study, the total number of stages is also optimized along

with the feed location. As compared to the case study I, this problem involves a ternary

system and uses a pressure profile that varies linearly from the reboiler to the condenser.

The specifications for this problem are given in Table 5 and the representations for the

aggregate and rigorous models is shown in Figure 4. This problem was originally solved by

Viswanathan and Grossmann (1993a) using the rigorous equilibrium stage model. Their

model is based on fixing the feed at a particular stage and varying the location of the tray

where the reflux and reboiled vapor enter by using corresponding binary variables. Trays

above the entry point of the reflux and below the entry point of the reboiled vapor are

automatically disabled. The strategy for our aggregate model is same as that described

in case study I except that sum of the trays in the two cascade is not fixed but restricted

by an upper bound. The computational results for this problem are shown in Table 6. In

this case, we observe that the number of variables and constraints in the aggregate model
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Figure 4: Rigorous and aggregate representations for the second optimization case study

is almost one fourth of that in the rigorous model. It is also significantly faster consuming

less than a second as compared to sixteen seconds for the rigorous model. The aggregate

model predicts one additional tray and the feed location is also missed by only one tray.

Just like the first case study, the best integer solution found by rigorous search is same as

that given by the rounding heuristic. The optimal objective function of aggregate model

in this case is overestimated by around 8.5%. It is interesting to note that if the rigorous

model is solved with a fixed structural configuration corresponding to that of the optimal

aggregate solution, the objective increases by only 0.28%, reflux is reduced by 7.81% while

the computational time is 0.4 CPU seconds since only one rigorous NLP is solved. Thus,

it may also be worthwhile to use the optimal solution of the aggregate model to fix the

structural configuration and solve the rigorous model as a much simpler NLP problem.

Note that the previous two case studies used ideal thermodynamics for vapor liquid equi-

Table 6: Results for optimization case study II

Rigorous model Aggregate model Aggregate model Aggregate model
(Viswanathan and (Relaxed) (Integer solution (Best integer solution
Grossmann, 1993a) by rounding) by search)

Objective 28.76 31.2 31.2266 31.2266
Reflux ratio 2.35 2.72 2.645 2.645
Number of stages 17 17.58 18 18
Feed location 9th stage – 10th stage 10th stage
Enriching stages 7 7.73 8 8
Stripping stages 9 8.85 9 9
Continuous variables 400 109 107 107
Discrete variables 23 – – 2 integer variables

(but 23 candidates)
Total variables 423 109 107 130
Total constraints 474 99 99 99
Number of NLPs solved 150 1 1 6
CPU time (s) 15.92 0.04 0.02 0.11
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Table 7: Specifications for optimization case study III

Chemical System Operating conditions
Ternary system (n-hexane-n-heptane-n-nonane) Feed pressure: 1.7301 bar
Thermodynamics: RKS cubic EOS Reboiler pressure: 1.7404 bar

Condenser pressure: 1.3785 bar
Column configuration Linear pressure profile

Two feeds
Maximum number of trays: 35 Additional constraints

Reflux ratio ≤ 5
Feed 1 specification Heptane in top ≤ 1% of feed

Flowrate: 50 kmol/s Hexane in bot ≤ 1% of feed
Composition (mol %): (0.3,0.1,0.6)
Temperature: bubble point Objective

Minimize: 3.64E-3QReb + Stages + 2
Feed 2 specification

Flowrate: 50 kmol/s
Composition (mol %): (0.4,0.3,0.3)
Temperature: bubble point

librium (VLE). In order to demonstrate that the modified group method works fairly well

even for nonideal systems, we present a third case study that uses non-ideal thermody-

namics in form of Soave-Redlich-Kwong (SRK) cubic equation of state. This problem

involves two feeds instead of a single feed as discussed in the previous two case studies.

The objective of this problem is same as that of case study II, i.e. to find the optimum

total number of stages and feed locations. The specifications for this problem are given

in Table 7 while the representation of the rigorous and aggregate models is shown in Fig-

ure 5. This problem was originally solved by Viswanathan and Grossmann (1993b) using

the rigorous equilibrium stage model. This model is similar to the rigorous model in the

previous case study except that the location of the reboiled vapor is fixed and only the

location of the reflux is allowed to vary. The structure of the aggregate model, on the

other hand is slightly different from the previous two case studies because of the presence

of two feeds which requires an additional cascade of trays. Additional mixers and splitters

are introduced to account for the possibility that any of the two feeds could be placed at

the top or the bottom of the intermediate cascade. Binary variables are used for splitter

outlets along with logic constraints to enforce that exactly one feed is introduced on each

of the feed stages. Since group methods require a minimum of two trays in a cascade,

the aggregate model cannot handle cases where the feed locations differ by less than two

trays. The computational results for this problem are shown in Table 8. The number

of variables and constraints in the aggregate model is almost one fourth of that in the

rigorous model. In terms of computational speed, the aggregate model is a clear winner

consuming just 0.68 seconds as compared to 20 mins for the rigorous model. The total

number of stages is the same while the feed tray location is missed by only two trays for

the first feed and one tray for the second feed. The deviation in the condenser and reboiler
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Figure 5: Rigorous and aggregate representations for the third optimization case study

loads is around 10%. As was reported for the second optimization case study, if the rigor-

ous model is solved as an NLP using a fixed structural configuration corresponding to the

optimal aggregate solution, it is found that the objective function increases by only 1.3%.

Furthermore, the comparison between the rigorous and the aggregate model can be made

more fair by introducing additional logic constraints in the rigorous model to enforce that

the feed locations differ by at least two trays. The optimal solution of this restricted

rigorous model is shown in the last column of Table 8. As can be seen, when the same

restriction on the feed location is used for both models, it is observed that only one feed

location is missed by a single tray and the difference in the performance of the aggregate

and rigorous models reduces further. Finally, if the rigorous model in these optimization

case studies are solved as simulation problems by fixing degrees of freedom (reflux ratio,

Table 8: Results for optimization case study III

Rigorous model Aggregate model Aggregate model Aggregate model Rigorous model
(Viswanathan and (Relaxed) (Integer solution (Best integer solution (Restriction on
Grossmann, 1993b) by rounding) by search) feed location)

Objective 32.557 33.936 34.0657 33.9838 32.777
Number of stages 20 19.84 19 20 20
Reflux ratio 2.641 3.061 3.326 3.03 2.701
Condenser duty (MW) 3.661 4.084 4.35 4.053 3.721
Reboiler duty (MW) 3.999 4.422 4.688 4.391 4.059
Feed 1 location 10th stage – 8th stage 8th stage 9th stage
Feed 2 location 11th stage – 11th stage 12th stage 12th stage
Continuous variables 1226 318 315 315 1226
Discrete variables 99 – – 3 integer variables 3 integer variables

(but 72 candidates) 4 binary variables
Total variables 1325 318 315 387 1325
Total constraints 1494 270 270 270 1659
Number of NLPs solved 1522 1 1 10 1274
CPU time (s) 1246 0.16 0.03 0.68 1045
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Table 9: Comparison of optimal solution of aggregate model and corresponding simulation
using rigorous model

Optimization case study II Optimization case study III
Aggregate solution Rigorous simulation Aggregate solution Rigorous simulation

Top temperature (K) 370.473 370.425 352.324 352.294

Bottom temperature (K) 425.297 425.412 421.058 421.119

Condenser duty (MW) 4.8813 4.8752 4.0534 4.0517

Reboiler duty (MW) 5.2194 5.2144 4.3912 4.3906

top flowrate) and structural configuration corresponding to the optimal solution of the

aggregate model, then important output variables like heat loads and temperatures do

not differ significantly. This is demonstrated in Table 9 and further emphasizes that the

aggregate model can be used with sufficient reliability for simulation case studies.

7 Conclusions

This work has addressed the use of aggregate models for complex distillation columns

with the aim of simplifying or reducing computational effort without significant loss of

accuracy and reliability of the desired objective. Group methods are identified as one of

the very few aggregate methods that can not only provide reasonably accurate predictions,

but also handle mixed-integer optimization problems like determining optimum number

of trays and feed locations. With the aid of systematic degree of freedom analysis, the

previously proposed approximations used in group methods were analyzed and only the

ones fundamental to the method were retained whereas certain approximations related to

absorption or stripping are replaced by more realistic constraints based on the principles of

distillation. As a result, the improved group method turns into a general purpose model

for a cascade of trays in counter-current gas liquid operations. The most important

advantage, as compared to previous work is that the behavior of the cascade of trays as

an absorber or a stripper need not be specified a priori.

The capability of the aggregate models developed using the improved group method was

demonstrated using simulation and optimization capabilities. These aggregate models

have fewer variables and constraints thereby resulting in smaller problems that are much

easier to solve. In spite of their approximation nature, the output variables of the aggre-

gate model are in close agreement with that of the rigorous model. For the optimization

case studies, it was observed that the optimal number of trays and feed locations are

missed by only one or two trays. For such problems, the aggregate model can be applied
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in a sequence of steps starting from a relaxed NLP problem to a rigorous search of all

integer solutions. This stepwise application leads to a robust and reliable solution pro-

cedure. A rounding heuristic was also proposed, which is based on solving the relaxed

NLP and then rounding off the solution to the nearest integer. The rounding heuristic

often generates near-optimal solutions with a significant reduction in computational time.

Since the case studies involved different kinds of binary and ternary systems, ideal and

nonideal thermodynamics, and a wide variety of structural and operating conditions, we

expect that the aggregate models will work well on many related problems.
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