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Abstract 

Hybrid models are mathematical models that comprise both mechanistic and black-box or data-

driven components. Typically, the parameters in the mechanistic part of a hybrid model (if any) 

are assumed to be known. However in this research, a two-level approach is proposed for the 

identification of hybrid models where some parameters in the mechanistic part of the model are 

unknown. At the first level, the black-box component is identified using a regularization method 

with given values for the regularization and mechanistic parameters. At the second level, the 

regularization and mechanistic parameters are determined simultaneously and optimized 

according to a specific criterion placed on the predictive performance of the hybrid model. This 

approach is tested through the modelling of a toluene nitration process, where a support vector 

machine (SVM) model is used to represent the chemical kinetics, with the mass transfer-related 

mechanistic parameters being estimated simultaneously. The case study shows that good results 

can be obtained in terms of both the prediction of the process variables of interest and the 

estimates of the mechanistic parameters, when the measurement error in the training data is 

small whilst when the magnitude of the measurement error increases, the accuracy of the 

estimates of the mechanistic parameters decreases. However, the predictive performance of the 

resulting hybrid model in the latter case is still acceptable, and can be much better than that 

attained from the application of a pure black-box model under certain extrapolation conditions. 
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1. Introduction 

In recent years, mathematical models for the characterization of chemical processes has become 

increasingly important for supporting various types of engineering tasks such as process design 

and process control. Depending on the information available, process modelling may be 

performed through a number of approaches including mechanistic, black-box (or data-driven), 

or hybrid modelling. By bringing together both existing mechanistic knowledge and data 

gathered from the process, a hybrid model that fuses both components has been shown, in a 

number of applications, to be advantageous when compared with a model formulated from 

either limited mechanistic knowledge or one constructed solely from the process data 

(Psichogios, Ungar, 1992; Thompson, Kramer, 1994; Duarte et al., 2004; Oliveira, 2004). The 

advantages of hybrid models have motivated a number of applications, such as the modelling of 

batch polymerization reactors (Tian et al., 2001), fermentation processes (Wang et al., 2009; 

Saraceno et al., 2009) and boilers (Rusinowski, Stanek, 2009). Besides, Teixeira et al. (2007) 

discussed the general role of hybrid modeling in the combination of systems biology and 

process engineering. 

When modelling a chemical process, the black-box model or the black-box component of a 

hybrid model will usually have the characteristics of a “universal approximator,” i.e. one that is 

capable of approximating any arbitrary function. Within this group of models, artificial neural 

networks (e.g. Psichogios, Ungar, 1992; Thompson, Kramer, 1994; Montague, Morris, 1994) 

have most often been considered. More generally, a black-box model will belong to the family 

of non-parametric models (Eubank, 1988; Hastie, Tibshirani, 1990; Green, Silverman, 1994). 

When identifying a non-parametric model, regularization is often applied to address the issue of 

over-fitting, i.e. a regularization parameter is utilized as a weighting factor for the penalty term 

in the criterion for training. Thus, the development of a non-parametric model under 
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regularization typically includes two tasks: the selection of an appropriate value for the 

regularization parameter, and the estimation of the parameters of the non-parametric model 

according to the selected training criterion. A detailed discussion on this topic can be found in 

the non-parametric regression literature (e.g. Geman et al., 1992; Green, Silverman, 1994). 

With respect to the mechanistic component of a hybrid model, the most frequently utilised first 

principles knowledge are the conservation laws. These materialize in the mass/energy balance 

equations being incorporated into the model. In contrast, the mechanistic knowledge often 

missing from a model relates to the so-called constitutive relationships, i.e. those relationships 

that define the rates of (bio)-chemical reactions and transport phenomena, or those relationships 

that model the physical properties. In reported hybrid modelling studies (references cited 

above), black-box models are frequently adopted for approximating the unknown constitutive 

relationships, whilst the rest of the mechanistic knowledge is assumed to be available. The 

systematic methods for identifying this type of models can be found in e.g. Kahrs and Marquardt 

(2008). However, in reality a constitutive relationship may be of a known mechanistic form but 

has unknown parameters that require to be estimated. This relationship, and those described by 

non-parametric, block-box models, may require to be combined to give an overarching model. 

Such a situation has received little (if any) consideration to date in the process modelling 

literature†. Lima et al (2007) reported a framework for establishing semi-mechanistic models by 

adding empirical elements into a mechanistic model which itself may have unknown parameters. 

These empirical elements, selected out of an “extension set”, tend to be relatively simple, 

parametric expressions, therefore representing a class of models different from that addressed in 

this work.    

                                                           

†This paper addresses those cases where a black-box model is developed for the modelling of a constitutive relationship. 

However, the proposed solution approach may also be applicable to other types of hybrid models that involve unknown 

mechanistic physical parameters. 
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A hybrid model that combines both a parametric and a non-parametric component can be termed 

a semi-parametric model. Semi-parametric models have been studied in detail in statistics but 

primarily in the context of data-driven modelling (cf. Ruppert et al, 2003; Haerdle et al, 2004). 

In contrast, the semi-parametric models considered in this paper are the result of hybrid 

modelling, where the model structures are typically derived from mechanistic knowledge and 

hence fail to conform to the typical semi-parametric model forms that have been studied in 

statistics, such as the generalized partial linear additive model (Haerdle, et al, 2004). 

Investigating regularisation methods for ill-posed problems, Weese and co-workers (Weese, 

1993; Roths et al., 2001) studied a type of model identification problems, where both an 

unknown function f and a number of unknown parameters ai were to be estimated. More 

specifically, the model to be identified assumes the following form: 

)())(()( thatfKtg
i

ii∑+=  ,        (1) 

where K is a nonlinear operator of f, hi is a function, t is time. Both K and hi are known from 

theory. Regularisation was introduced in the identification process; the regularisation parameter 

was determined by means of optimisation while the parameters of the finite-dimensional 

approximator of f  as well as the “mechanistic” parameters ai were identified simultaneously.         

The focus of this paper is the identification of semi-parametric hybrid models of chemical 

processes which are generally different from those represented by Eq. (1). The problem is 

formulated in Section 2 whilst in Sections 3 and 4, a two-level identification approach and its 

implementation are described, respectively. This approach is different from the one by Weese 

and co-workers and allows to incorporate established black-box modelling algorithms into an 

optimisation framework without changes to these algorithms. An application of the proposed 

approach is reported in Sections 5 and 6 with conclusions being presented in Section 7.  
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2. Problem Formulation  

Consider the following functional relationship as a model, or part of a model, that characterizes 

a chemical process system:  

),,,( pvxfy =  (2) 

),(xhv =  (3) 

where x and y are vectors of the independent and dependent process variables, respectively; v is 

a vector of process quantities which are a function of x; and p is a vector of constant mechanistic 

parameters. When the defined process is in a transient state, x, y, and v may vary with time.  

This paper considers hybrid modelling scenarios that satisfy the following assumptions:  

(a) The form of the function f is known as a consequence of underlying mechanistic knowledge;  

(b) The form of the function h is unknown, hence a black-box model requires to be developed to 

approximate its form; and  

(c) p is unknown and requires to be estimated.  

Furthermore it is assumed that the structure of f and/or the measurements of y and x are such 

that, according to Eq. (2), v can be computed analytically or numerically at the sampling points 

of x and y for a given estimate of p: 

).ˆ,~,~(:~ 1 pyxfv −=  (4) 

It is noted that noisy measurements can pose problems for the computation of v~ . This issue is 

discussed in the case study in Section 6. 

Based on these assumptions, the task of hybrid modelling, as studied in this paper, can be stated 

as follows: for a given set of measurements, x and y, an estimate of p and an approximation of h 

is obtained such that the resulting model has acceptable capability in terms of predicting the 

behaviour of the chemical process being modelled. 
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3. A Two-level Solution Approach 

To identify the hybrid models described above, a two-level approach, which is an adaptation of 

the framework for identifying non-parametric (black-box) models with regularization, is 

developed. Details of the regularized identification of the black-box models are first presented. 

Extensions to the approach are then proposed to address the estimation of the mechanistic 

parameters. 

3.1 Regularized identification of black-box models 

Following the notation defined above, a black-box model is considered: 

),(ˆˆ θxhv = , (5) 

where ĥ  is an estimate of h (defined in Eq. (3)) which represents the form of the black-box 

model; θ  is the vector of parameters of the black-box model. Under a regularization framework, 

estimation of the parameters,θ , is achieved through the minimization of a general function that 

takes the form: 

.)ˆ,~(
1

1 RvvcI
M

i
ii λ+= ∑

=

 
(6) 

In Eq. (6), the first term on the right-hand side defines the fitness of the model to the training 

data set, where M is the size of the data set, iv~  is measured or derived from the measurements; 

and iv̂  is the corresponding estimate, i = 1,…,M.  A common form for this term is the mean or 

sum of the squared errors. The second term introduces the regularization (or penalty) function, 

where λ  is a (weighting) regularization parameter, and R denotes a function of the estimator ĥ  

(or of its parameters θ ).  

3.2 Optimal tuning of the regularization parameter 

Clearly evaluation of the identification criterion as defined in Eq. (6) requires that the 

regularization parameter λ  is determined a priori. To select an appropriate value for λ , a 

specific criterion or risk function requires to be defined, this is usually an estimate of the 
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expected generalization error of the model. A large number of the existing criteria cited in the 

literature belong to the family of cross validation (Craven & Wahba, 1979) and its 

approximations. A generic form of the criterion for selecting λ  is denoted as: 

).(2 θgI =  (7) 

A concrete criterion (leave-one-out Cross Validation) will be given later (cf. Eq. 11).  

3.3 Consideration of the unknown mechanistic parameters 

The preceding sections essentially propose a two-level framework for identifying a black-box 

model with regularization. For the first level, the parameters θ  are estimated by minimizing I1 in 

Eq. (6) for a given value of λ ; at the second level, the optimal value for λ  is computed 

according to a specific form of Eq. (7). The entire identification task is then completed by 

iterating between these two levels, until an acceptable result (usually in terms of the value of I2) 

is attained. 

Returning to the hybrid modelling problem under consideration, an additional task is the 

estimation of the unknown mechanistic parameters p in the mechanistic part of the model (cf. 

Eq. (2)). To retain the identification framework described above, it is proposed to treat the 

unknown mechanistic parameters, p, as “tuning parameters” in a similar manner to the treatment 

of λ . That is, the values are determined at the second level together with λ  according to Eq. 

(7), i.e. through the minimization of the expected generalization error. This approach is 

comparable to that adopted by Wahba and co-workers (Gong et al., 1998) for solving a 

variational weather prediction problem, where the weighting, smoothing, and mechanistic 

parameters were simultaneously estimated. However, the problem addressed in their work was 

that of state estimation (based on a parametric model) as opposed to semi-parametric model 

identification which is the focus of the research reported in this paper.   
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It is worth emphasizing that the criterion for tuning the regularization and mechanistic 

parameters in the setting up of the hybrid model is computed for the entire hybrid model, and 

not just for the black-box component. That is, when generalization performance is considered, it 

considers the entire hybrid model with respect to the prediction of y in Eq. (2) as opposed to 

simply focusing on v in Eq. (3). 

A schematic of the computational procedure of the two-level approach for solving the problem 

can now be described (see Figure 1): 

a. Initialization. Initial guesses for λ  and P (i.e. λ0 and P0 ) are defined for Levels 1 and 2. 

b. Level 1: Derive v̂  from the measurements of x and y (i.e. yx ~,~ ) at each sampling point 

according to Eq. (4). Construct a training set from ( vx ˆ,~ ). Estimate θ  in the black-box model 

(Eq. (5)) according to the identification criterion defined in Eq. (6), and pass the resulting 

estimate of θ  to Level 2. 

c. Level 2: Evaluate the criterion 2I  for selecting λ  and P according to Eq. (7), adjust λ  and 

P by using an optimization algorithm, and pass the new values of λ  and P back to Level 1. This 

process continues until the stopping condition of the optimisation algorithm is met. The 

condition is usually in terms of the maximum number of iterations, the lower limit of the 

objective function value, etc. A global optimization algorithm would be required if multiple 

local optima exist. 

The convergence property of the approach is essentially embodied within the two-level 

approach as a consequence of the solvability of the master problem, i.e. the optimization 

problem at Level 2. In principle, a solution to this problem is obtainable, if the optimization 

objective (i.e. the measure of model prediction performance) is sensitive to the optimization 

variables (i.e. the mechanistic and regularization parameters). In comparison with the approach 

by Weese and co-workers (Weese, 1993; Roths et al., 2001) which co-estimates the parameters 

of the black-box model and the mechanistic parameters, the above approach identifies the black-
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box model alone at Level 1 and hence allows to retain the standard algorithm for this purpose. 

On the other hand, co-tuning of the regularization and the mechanistic parameters at Level 2 

may increase the possibility of encountering multiple local optima as opposed to the tuning of 

the regularization parameter alone, although the latter alternative has to deal with multiple local 

optima as well in some circumstances (e.g. Roths et al., 2001).   

4. Realization of the Two-level Approach 

When the identification approach presented in the previous section is realized, a number of 

technical alternatives exist for the individual steps. In this section, the details of the techniques 

used in this study for testing the proposed approach are briefly described. 

4.1 The black-box model and its identification 

As one of a number of non-parametric approaches cited in the literature, the Support Vector 

Machine (SVM) regression model is considered within this paper due to its simplicity in training 

(Vapnik, 1999). The SVM has been applied by Yan et al. (2004) and Wan et al. (2005), among 

others, in process engineering. The SVM model can be defined as follows: 

,),()(ˆ ∑
=

=
P

i
ii xxKaxh

1

 (8) 

where ia  is an element of the parameter vector, ix  is a vector of independent variables at the ith 

sampling point, K is a function referred to as the kernel and P is the number of parameters or the 

number of samples included (these two are the same). Where the proximity of the model and the 

measurements is represented by the sum of squared errors, criterion (6) becomes: 

.ˆ)ˆ~(
2

1

2
1 hvvI

M

i
ii λ+−= ∑

=

 (9) 

By incorporating function (8) into such a criterion and then deriving the optimality conditions, 

the optimal estimate of the model parameters ia , i=1,…,P can be obtained by solving a linear 

equation system. Details of SVM models and their identification can be found in the literature 
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(e.g. Vapnik, 1999). Of a number of possible alternatives, K is defined as the radial basis 

function: 

),
2

exp(),(
2

2

σ

ji

ji

xx
xxK

−−
=  

(10) 

where σ is a real-valued parameter of the kernel. To finally determine model (8), the value of σ 

requires to be defined. It is reasonable to assume that through the determination of σ,  the 

expected generalization error of the hybrid model of which the SVM model is the black-box 

component should be reduced. Therefore, the approach adopted is to tune σ at the second level 

of the identification framework presented earlier, i.e. determine σ together with the 

regularization parameter λ and the mechanistic parameters P. 

4.2 Tuning of level-2 parameters: Criterion and optimization algorithm 

To demonstrate the approach, leave-one-out cross validation (CV) was selected as the criterion 

for tuning the parameters at Level 2 due to its simplicity of implementation: 

,))ˆ(ˆ~(
1

2
2 ∑

=
−−=

M

i
iii ayyI  (11) 

iy~  is the ith measurement; ia−ˆ  is the vector of parameters in function (8) and is estimated using 

a training data set which excludes the ith measurement; and )ˆ(ˆ ii ay −  is the prediction of the ith 

measurement based on ia−ˆ . This implies that each execution of step (b) in Figure 1 materializes 

in the identification of the SVM model with M-1 samples, and this step is executed M times to 

accomplish one execution of step c(i).  

The parameter tuning problem at Level 2 is essentially one of multi-variable, non-linear 

optimization. Preliminary studies show that there exist multiple minima of the CV tuning 

criterion. To deal with local minima, the Generic Algorithm (GA) was selected as the optimizer. 

The SVM-CV realization was undertaken in MATLAB. SVM and CV are self-implemented. 



  

 11 

For the optimizer at Level 2, a GA package that implements the Differential Evolution algorithm 

(Price, Storn, 1996) was employed. 

5. Case Study: Modelling of the Toluene Nitration Process  

Toluene nitration is a heterogeneous liquid-liquid batch reaction process with a number of 

possible operational regimes. It has been studied previously by several authors and its 

mathematical model has been presented in the literature (e.g. Zaldivar et al, 1995). In this study, 

this process is selected for demonstrating, through simulation studies, the proposed hybrid 

modeling approach which involves (i) the identification of a SVM model for the chemical 

reaction kinetics, and (ii) the determination of the mass transfer parameters. In the subsequent 

sections, the model sections relevant to the current study and how the training/test data sets are 

prepared through simulation are described. 

5.1 The hybrid model structure 

The model corresponding to the slow reaction regime of the nitration reactor is considered:  

,reaction
toluene Vr
dt

dn
−=  

(12.1) 

,

)1(
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6

ϕ

ϕ

+
= .    

(12.3) 

In Eq. (12.1), toluenen  is the mole number of toluene in the reactor, Vreaction is the volume of the 

entire reaction medium; and  r is the overall conversion rate. In Eq. (12.2), CHNO3 is the molar 

concentration of HNO3; Ctoluene,organic is the molar concentration of toluene in the organic phase; 

a  is the specific surface area for inter-phase mass transfer; ϕ  is the volume ratio of the organic 

phase; k is the apparent reaction rate constant; kL is the mass transfer coefficient of toluene; and 

m is the distribution coefficient of toluene. In Eq. (12.3), d is the diameter of the stirrer, We is 
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the Weber number of the continuous phase (as a function of the stirrer speed), and A, B, and Q 

are regression parameters for calculating the Sauter mean diameter of the dispersed liquid 

droplets (known as d32). Considering that the amount of toluene in the organic phase is dominant 

(in comparison with that in the aqueous phase) and that the change of overall reaction volume 

(Vreaction) is insignificant during an experiment, simple manipulation of Eq. (12.1) leads to: 

.
)( ,

r
dt

Cd organictoluene
−=

ϕ
 

(12.1a) 

Furthermore, the apparent reaction rate constant k (in Eq. (12.2)) is a complex function 

associated with the conditions of the reaction including its temperature and the composition of 

the mixed acid in the aqueous phase. In this study, it is assumed that this function is unknown 

and therefore requires to be approximated through a black-box model. Since the data used for 

training are all based on isothermal reactions, the effect of temperature on k is eliminated, hence: 

).,,(
4223 SOHOHHNO CCChk =  (12.4) 

Finally, with regard to the mechanistic parameters, it is assumed that kL, m, A, B and Q may be 

unknown and thus require to be estimated. All quantities other than these parameters and k will 

become available either directly by measurements or by derivation from measurements; further 

details are given in Section 5.2. As such, the structure of the hybrid model to be identified 

becomes clear: Eqs. (12.2) and (12.4) correspond to Eqs. (2) and (3), respectively. 

5.2 Preparation of data for training and testing 

To identify the model defined in Eq. (12.4), a training data set is required in which each sample 

comprises three independent variables, CH2O, CHNO3, CH2SO4 and the dependent variable, k. The 

three concentrations can be measured, while k has to be derived from the measurements by 

applying Eq. (12.2). According to Eq. (12.2), k can be computed via a realization of Eq. (4) 

provided that all other variables/parameters in this equation are known. The situation is: (a) 

Ctoluene,organic and CHNO3 are measured; (b) We and ϕ  can be derived from the measurements and 
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the mathematical model at the sample points; (c) parameters kL, m, A, B, and Q require to be 

given a value before Eq. (12.4) is identified according to the two-level approach (cf. Figure 1); 

and finally (d) r is derived from the measurements of Ctoluene,organic according to Eq. (12.1a).  

Point (d) requires to be addressed carefully as the noise in the measurement of Ctoluene,organic can 

be significantly amplified when computing r if no appropriate measure is taken. In this study, 

the smoothing cubic spline technique (Reinsch, 1967) is applied to smooth the noisy data. This 

results in a smooth time curve of the quantity (Ctoluene,organic ϕ ), which is then analytically 

differentiated to obtain an estimate of r (cf. Eq. (12.1a)). Similar treatments have been applied in 

a number of chemical kinetics modelling studies that follow a differential identification 

approach (e.g. Yeow et al., 2003; Bardow & Marquardt, 2004). 

The data that can be measured or derived from measurements are generated through numerical 

simulation using the simulator gPROMS (Process Systems Enterprise, 2004), based on a 

rigorous model of the nitration process reported in Zaldivar et al (1995). Random noise was 

added to the values of 
organictolueneC ,  to mimic the real process measurements. Three 

measurement error levels were applied to investigate model identification performance, they 

corresponded to a relative error of 0 (i.e. error-free), 0.5, and 5 percent (in terms of the standard 

deviation of a Gaussian distribution). Applying the aforementioned treatments, four simulation 

runs were performed with different stirrer speeds (N), each of which was of 400 minutes 

duration and these were sampled every 2 minutes. The value of N was set to 10 s
-1

, 12 s
-1

, 15 s
-1

, 

and 13.5 s
-1

, respectively, while all other operating conditions were kept the same. The first 

three simulations collectively generated data for identifying the model (random noise at three 

levels was added to the data to obtain three training data sets), whilst the last one was for the 

testing of the model (hence no noise was added).  
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Figure 2 shows, as an example, the result of processing the noisy concentration data using cubic 

smoothing splines to obtain the data of the overall conversion rate when N = 12 s
-1

. Due to the 

poor performance at the boundaries, which is a well known problem (Haerdle, 1990), 40 points 

at each end of every curve of the overall conversion rate r were discarded. Furthermore, the 

relatively high sampling rate (one sample per 2 minutes) has been adopted primarily to attain 

accuracy with respect to deriving r through the use of cubic smoothing splines. The 

computational load of the identification process increases when the size of the training data set 

becomes larger. Preliminary studies showed that a training data set with a size of 60 samples 

would be sufficient. Therefore after the above derivation was accomplished, only one sixth of 

the data (after the boundary points were truncated) for each given conversion rate, N, was used 

in a training data set. Consequently, the size of one entire training data set was (400/2 – 40 

*2)/6*3 = 60. This allowed to prepare six distinct training data sets. Each data set was 

subsequently used for performing one set of numerical experiments of model identification, 

leading to six sets of repetitive numerical experiments in total.  

6. Results and Discussion 

The identification of the hybrid model was conducted with training data at three different levels 

of measurement errors as described above. All predictions were made for the batch where N = 

13.5 (i.e. the one that generated the test data set). Six repetitive sets of numerical experiments 

were performed; the mean values and the standard deviations of the estimates of the mechanistic 

parameters were calculated. Each set of numerical experiments included two different groups of 

identification studies. In the first group each identification run assumed that only one 

mechanistic parameter is unknown. The results of the parameter identification are shown in 

Table 1. Figure 3 shows the performance of the predictions of the resulting models when applied 

to the test data set. Only the performance of the models in which m was estimated are shown 
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here; other models exhibited similar performance. It is noted that in all the figures in this 

section, a plot of “measurements” is always based on the simulation data without added noise. 

In the second group, the simultaneous estimate of the multiple mechanistic parameters was 

studied. For this group, the issue of identifiability needs to be considered. Combining Eqs. 

(12.2) and (12.3) gives: 

3
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Eq. (13) can be further rewritten as: 

3
)1(

1

6

)1('

,

HNO

Q

organictoluene

CSk

WeBdA

C
r

ϕϕ

ϕ

−
+

+
=

, (14.1) 

)/(' LmkAA = , (14.2) 

LmkS = . (14.3) 

It is evident from Eq. (14.1) that S, as an unknown constant parameter, cannot be uniquely 

identified when the black-box model of k also requires to be identified, because there is no 

means to separate the influence of S and that of k on the model. Thus, whilst five mechanistic 

parameters are present when the model is written in the form of Eq. (13), rewriting this equation 

in the form of Eq. (14) reveals that only three parameters (A’, B, and Q) are identifiable. 

Denoting 

Skk =' , (14.4) 

the above discussion implies that it is more appropriate, from the identifiability perspective, to 

formulate the problem of identifying the hybrid model under consideration as one that estimates 

simultaneously parameters (A’, B, and Q) and at the same time identifies a black-box model of 

'k .  
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Furthermore, in previous modelling studies, (Zaldivar et al, 1995)‡, it has been recognized that 

the estimate of B in Eq. (13) has an insignificant impact on the prediction error when A and B 

are estimated simultaneously. This is hypothesised to be due to the insignificant change in ϕ  

(usually within 10%) throughout a reaction batch. The same situation exists in Eq. (14). To 

investigate the implication of the case of identifiability, two studies were performed in this 

second group, one where the three parameters (A’, B, and Q) were co-estimated, whilst the other 

assigned the true value to B and co-estimated the other two parameters. The results of parameter 

identification for these two studies (both belonging to the second group) are shown in Tables 2 

and 3. Figure 4 shows the performance of the prediction of the resulting models when applied to 

the test data set. 

The following observations can be made on the basis of the above model identification results: 

(1) In the ideal cases where no measurement errors are present and when the identifiability is 

fair, , the identification of the semi-parametric hybrid model using the two-level approach yields 

perfect estimates of the unknown mechanistic parameters (cf. the rows corresponding to “Using 

error-free training data” in Tables 1 and 3), which can be considered as comparable to the cases 

of parametric model identification. 

(2) The estimates of unknown mechanistic parameters are still fairly accurate when small 

measurement errors are present, although the accuracy decreases when the measurement errors 

become larger. However, even in such cases, the quality of model prediction is still not 

significantly impaired.   

It is worth noting that, when the measurement errors are larger in magnitude, the estimates of 

the mechanistic parameters become less reliable, but the hybrid modelling paradigm can still be 

advantageous over that of a purely black-box modelling approach, particularly in terms of 

                                                           

‡ Due to this reason, a value of “2.0” was assigned to B in Zaldivar et al (1995), while the value of A was estimated from the 

experimental data. The parameter set generated this way was actually taken for running stimulations in this study. 
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extrapolation. To illustrate this point in the context of this case study, a purely black-box SVM 

model for predicting the overall conversion rate r was built. This model maps six input 

variables, namely Ctoluene ,organic, CH2O,CHNO3, CH2SO4, ϕ, and We to the output variable r. Only the 

training data set with a measurement error of 5% was used to train the SVM model, but the data 

set originally used in the hybrid modelling was augmented by doubling the sampling rate, 

consequently twice the number of data points were used. The regulation parameter λ and the 

kernel function parameter σ were determined using the Leave-one-out cross validation method 

and the, same GA optimization tool as applied for tuning the Level-2 parameters in the hybrid 

modelling.  

Figure 5 shows how this pure black-box SVM model performs when applied to the test data set 

(i.e. the one generated with N = 13.5). It can be observed that it is comparable to that of the 

hybrid model (cf. Figure 4, dotted curves). However, such a prediction is basically an 

interpolation of the training data sets which, as mentioned earlier, comprise data generated from 

N = 10,  N = 12, and N = 15 whilst all other conditions are the same.  

The resulting SVM model was then further tested with another set of data, which was again 

generated with N = 13.5 but with a 5% increase in the initial amount of toluene in the reactor 

compared with the conditions applied in all previous trainings/tests. The major influence of this 

increase is on the range of the concentration of toluene in the organic phase (Ctoluene ,organic) and 

that of the volume ratio of the organic phase (ϕ ), both being an input to the SVM model. This is 

essentially an extrapolative prediction of the models, because the ranges of independent 

variables for the prediction are beyond those of the data applied for training the models. Figure 6 

shows a comparison of the prediction performance of the SVM model and that of the hybrid 

model identified earlier which has three estimated parameters, A’, B, and Q.  

The poor performance of the SVM model can be explained as a consequence of a black-box 

model generally not being applicable for extrapolation. In contrast, the comparative results 
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shown in Figure 6 demonstrates the advantages of a hybrid model in this situation. In general, 

such a desirable capability, i.e. reliable extrapolation using a hybrid model, is most likely to 

occur when the extrapolated conditions are not part of and/or have a minor influence on the 

inputs of the black-box component of the hybrid model. This is the case for this current 

extrapolation test, where the two quantities, Ctoluene ,organic and ϕ , whose ranges were notably 

changed, are inputs to the SVM model but not the SVM part of the hybrid model. This indicates 

that constructing a semi-parametric hybrid model is still preferable to that of a pure black-box 

model, even when the estimates of the mechanistic parameters cannot be sufficiently accurate 

due to the measurement errors in the training data set. Such a semi-parametric hybrid model can 

be built using the approach developed in this work.  

 

7. Conclusions  

Hybrid models are being more widely considered and applied for the modelling of chemical 

processes. In this paper, semi-parametric hybrid models which combine a mechanistic 

component with unknown parameters and a non-parametric black-box component have been 

investigated. The construction of such a hybrid model involves simultaneously the estimation of 

the unknown mechanistic parameters and the identification of the non-parametric function (i.e. 

the black-box part). A two-level approach is proposed. It decomposes the modelling task into (i) 

the regularized identification of the black-box component of the entire model at the first level 

and (ii) the optimal tuning of the regularization parameters and the mechanistic parameters 

simultaneously at the second level. The overall goal of identification is to attain the best 

generalization performance of the hybrid model as a totality.  

The evaluation of this approach, which utilised the Support Vector Machine (SVM) for the 

black-box modelling component and cross validation as a measure of generalization 

performance, was demonstrated on a previously studied toluene nitration modelling problem. 
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The results showed that the proposed model identification framework has the potential to 

accurately estimate the mechanistic parameters in a hybrid model when the measurement error 

in the training data is small. When the measurement error increases in magnitude, the estimates 

of the mechanistic parameters reduce in accuracy. However, acceptable prediction performance 

of the resulting model can still be obtained, and the hybrid model continues to outperform the 

pure black-box model under extrapolation circumstances, particularly when the extrapolated 

conditions are not part of or have a minor influence on the inputs of the black-box component of 

the hybrid model. 
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Figure 1.  A two-level approach for the identification of hybrid models. 

Figure 2. Derivation of overall conversion rates using smoothing cubic splines (N=12s
-1

). 

Figure 3. Prediction performance of models identified in the first group (with m as the estimated 

mechanistic parameter). 

Figure 4. Prediction performance of models identified in the second group.  

   Upper plot: co-estimation of three mechanistic parameters. 

   Lower plot: co-estimation of two mechanistic parameters. 

Figure 5. Interpolation performance of the black-box SVM model. 

Figure 6. Extrapolation performance of the hybrid model and the black-box model. 
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Identification case Mechanistic parameter 

m*1e4 kL*1e5 A B Q 

True value  4.000 1.660 0.3512 2.000 -0.6000 

Using error-free 

Training data 

4.000 

±1.971e-5 

 

1.660 

±7.313e-6 

 

0.3512 

±1.949e-6 

 

2.000 

±6.363e-5 

 

-0.6000 

±7.488e-7 

 

Using training 

data with 0.5% 

measurement error 

3.909 

±5.260e-4 

 

1.622 

±2.188e-4 

 

0.3614 

±1.923e-4 

 

2.240 

±1.600e-3 

 

-0.5960 

±1.938e-5 

 

Using training 

data with 5% 

measurement error 

3.595 

±1.887e-2 

 

1.492 

±7.009e-3 

 

0.4004 

±2.600e-3 

 

3.149 

±5.080e-3 

 

-0.5815 

±9.097e-3 

 

Table 1. Parameter identification results of the studies in the first group. 
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Identification case Mechanistic parameters 

A’*1e7 B Q 

True value  5.289 2.000 -0.6000 

Using error-free training 

data 

5.289 

±0.3309 

 

2.630 

±1.481 

 

-0.6088 

±0.0184 

 

Using training data with 

0.5% measurement error 

9.364 

±1.995 

0.4643 

±0.4612 

-0.6628 

±0.0360 

Using training data with 

5% measurement error 

5.808 

±1.817 

0.3002 

±0.0845 

-0.5599 

±0.0460 

Table 2. Parameter identification results of the studies in the second group: co-estimation of 

three mechanistic parameters. 
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Identification case Mechanistic parameters 

A’*1e7 Q 

True value 5.289 -0.6000 

Using error-free training data 5.287 

±4.255e-3 

-0.5999 

±1.147e-4 

Using training data with 0.5% 

measurement error 

6.549 

±5.791e-1 

-0.6258 

±1.280e-2 

Using training data with 5% 

measurement error 

5.224 

±2.093 

-0.5728 

±4.960e-2 

 

Table 3. Parameter identification results of the studies in the second group: co-estimation of two 

mechanistic parameters. 

 

 

 
 
 

 


