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Abstract

This work presents a methodology which exploits the underlying biochemical structure of bioprocesses
to estimate concentrations in aerobic fermenters from oxygen measurements. Although a number of
estimators have been proposed over the years in the literature, the methodology proposed in this work
is able to operate in transient conditions while does not require the knowledge of the growth kinetics.
In addition, it can be also applied to fermenters where the spatial distribution of the concentrations is
relevant. In this case, we propose a systematic approach to optimally locate the sensors based on the
use of reduced order models. This method allows the reconstruction of the oxygen concentrations from a
limited number of sensors. Finally, the methodology proposed will be illustrated on a horizontal tubular
reactor for the production of gluconic acid by free-growth of Aspergillus niger.

Key words: On-line indirect estimation, Aerobic Fermentation, Tubular (Bio)Reactors, Optimal
sensor location.

1. Introduction

Control of bioreactors has been hampered by a number of obstacles essentially associated with the
lack of reliable sensors capable of providing real time measurements of the relevant variables of the
process. Additionally, whereas in other fields it is possible to use reliable mathematical descriptions
of the processes to design software sensors (observers), this is usually not the case in biotechnology
applications where mathematical representations are not well known, specially regarding the reaction
rates involved.

To overcome these limitations, a theoretical framework which takes advantage of the biochemical
reactions of biomass growth and product formation was proposed in [28]. The same basic approach
was used in [6] for on-line estimation in stirred tank bioreactors. In that work, the authors exploit
the underlying reaction structure and transfer mechanisms to systematically design and implement
identification schemes for variables and parameters. Other examples for particular types of bioreactors
can be seen in the works [12, 11].

However, a general description of the methodology together with the precise conditions to apply it in
aerobic fermentation still deserves attention. In particular extensions of the methodology to cope with
spatial distribution of species concentrations constitute one of those open problems.

As discussed in [24] three decades ago, the use of distributed parameter reactors in biotechnology
opened new opportunities which gained an increasing interest over the years [32]. The mathematical
description of such systems relies on the microscopic conservation laws for mass and energy which re-
sult into a nonlinear set of partial differential equations (PDE). In most cases the analytical solution is
unknown and classical numerical methods for distributed parameter systems (like finite differences or
finite element methods) lead to large sets of ordinary differential equations which are computationally
involved. This makes the approach unsuitable for real time tasks like on-line estimation, optimization or
control [7]. In addition, the estimations of the non-measurable variables should be combined with mea-
surements of the remaining variables covering the whole spatial domain. This requires having access to a
large number of on-line sensors which may be too expensive or physically impossible to be implemented
in the desired process [12, 30, 1].
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In this work, an on-line identification scheme is developed for aerobic fermentation with unknown
reaction rates, provided that oxygen can be measured on-line. This scheme consists of the combination
of two different estimation methodologies which make use of mass invariance principles [11] and field
reconstruction techniques [2]. The first one will allow the estimation of some of the relevant variables of
the process without the need of expressions for the reaction rates. This approach is based on a given state
transformation that leads to a description of the system independent of the reaction rates. In the case
of lumped bioreactors (where the spatial distribution is not relevant) the methodology will only require
modeling the transfer mechanisms, and measuring or estimating the relationships among species (yield
coefficients). For distributed parameter bioreactors, on-line information of the oxygen concentration
would be needed at any location of the reactor. The second methodology is the one employed to that
purpose. In this respect, the approach proposed in [2] and [14] will be applied to recover the time
evolution and spatial distribution of the state variables from a limited number of sensors optimally
located inside the reactor.

The identification scheme presented will be illustrated and validated on a case study where the
spatial distribution cannot be ignored. The example used is related to the production of gluconic acid
(GA) from Aspergillus niger. For versatility reasons production is usually carried out in well stirred
batch reactors supplied with oxygen [21, 19, 18, 35, 23]. However, some authors [25, 3] pointed out that
continuous production with free-growth cells may be more advantageous than the batch one as it reduces
the tendency of Aspergillus niger to cause clogging under high glucose concentration conditions. The
bioreactor used in this work as a case study consist of a continuous tubular reactor for the production
of GA from free-growth cells with oxygen supplied at any point of the fermenter. In order to avoid
consumption of GA and clogging, the inlet glucose concentration has to be manipulated or controlled to
maintain low, but not zero, concentration inside the reactor what calls for on-line estimation techniques.

The paper is structured as follows: in Section 2 the general formulation for both lumped and dis-
tributed parameter fermenters is presented. The description of the proposed scheme is performed in
Section 3. Finally, the methodology is illustrated on a tubular reactor for GA production in Section 4.
Main conclusions are summarized in Section 5.

2. General mathematical model representation

The model equations which describe the behavior of the relevant process variables (concentration
of biomass, substrates, etc) inside (bio)reactors are usually obtained from mass balances. When such
balances are applied to distributed parameter systems, the set of equations takes the form:

∂si
∂t

= T (si) +Rsi(s1, s2, ..., sj , ...sns), si(0, ξ⃗) = s0i (ξ⃗), ∀ξ ∈ Ω (1a)

where si (i = 1, .., ns) stands for the concentration of each of the ns species. The dynamic behavior is
characterized by the corresponding reaction rate Rsi and transfer mechanism G(si) (input and output).

s0i denotes the initial bioreactor state and ξ⃗ represents the vector of spatial coordinates. The transfer
term usually collects the diffusion and convection contributions. The solution of the partial differential
equations will be also constrained by the presence of boundary conditions of the form:

n⃗∇⃗si(t,Γ) + qsi(t,Γ) = g(t), ∀t > 0 (1b)

with Γ representing the boundary of the spatial domain and q and g being, respectively, the parameter
and function describing the different types of boundary conditions. In this way, the so called Neumann
boundary conditions can be obtained by choosing q = 0. Alternatively, Dirichlet boundary conditions
can be attained by selecting q large enough so that −→n ∇⃗si can be disregarded as compared to qsi. The
resulting variable at the boundary then becomes of the form g/q (see [14] for details).

The process satisfies the following assumptions [19]:

A1 Product formation is oxidative and the fermentation is aerobic.

A2 The relationships among species are constant and known or can be estimated by experiments.

A3 The transfer terms (i.e. their mathematical expression and parameters) are known for all the species
T (si), ∀i = 1, ..., ns.

In addition for distributed parameter systems we have:
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A4 A number of on-line oxygen sensors is available and can be located at any point on the spatial
domain Ω.

Under assumptions A1-A2 the chemical mechanism for aerobic fermentation can be written as:

YO2O2 +

nr∑
i=1

Yriri
s2−→

np∑
j=1

Ypjpj + YXX,

where {ri}nr
i and {pj}

np

j are the set of reactants and products respectively, with their yield coefficients
represented by Y . As usual, oxygen is denoted by O2 and biomass by X.

The general formulation of the mass balance and known yield coefficients (assumption A2) can be
exploited to build up the following transformations which do not depend on the production terms:

zi = ri −
Yri

YO2

O2; zj = pj +
Ypj

YO2

O2; zX = X +
YX

YO2

O2, (2)

with i = 1, ..., nr and j = 1, ..., np. It should be noted that the only requirement to obtain the transfor-
mation is that YO2 ̸= 0, i.e., the formation of the product has to be oxidative and the fermentation has
to be aerobic (assumption A1).

The transient behavior of the new entities zi, zj and zX (not produced neither destroyed by the
fermentation) takes the form:

∂zi
∂t

= T (ri)−
Yri

YO2

T (O2);
∂zj
∂t

= T (pj) +
Ypj

YO2

T (O2);
∂zX
∂t

= T (X)− YX

YO2

T (O2) (3)

The solution of the nr + np + 1 PDEs requires the transport information (Assumption A3) and
measurements of oxygen at any point inside the reactor. Such measurements are usually limited due to
the reduced number of sensors available. In order to circumvent such drawback, the approach presented in
[2] and [14] will be used to obtain the oxygen spatial distribution inside the reactor from a limited number
of, optimally located, oxygen sensors. The complete proposed estimation scheme will be presented in
the next section.

3. State estimation of process variables

In order to produce reliable estimates of the process variables (oxygen, biomass, reactants and prod-
ucts) use will be made of the model described in section 2, Eqn (3). This model is constituted by a set
of partial differential equations which in order to be solved calls for discretization methods. Possibly the
most popular numerical methods for this class of systems are those based on spatial discretizations, such
as finite differences (FD) [26] or finite elements (FEM) [22] methods. Both methods approximate the
spatial dependency by making use of locally defined basis functions. As a result, the original system is
transformed into a -usually large scale- set of ordinary differential equations (ODEs). As pointed out in
[8] and [10], these approaches present a number of disadvantages which can prevent their use in on-line
estimation schemes namely, they are usually computationally involved, and some essential theoretical
properties may be lost by the discretization method or the degree of refinement.

In our case, an additional disadvantage arises, which relates to the need of using as many sensors
as discretization points [34, 2], a number usually too large in realistic implementations. In particular
efficient oxygen estimation schemes need be developed to enable the reduction of the number of sensors
[30]. These issues may be properly addressed in the framework of reduced order models (ROM), i.e.
those based on global defined basis functions [4]. The interested reader is referred to Appendix A and
references therein for an outline of the fundamentals.

The first step in the estimation scheme is to recover the whole spatial information of the oxygen
field from a few sensor measurements (field reconstruction). To that purpose, a static observer will be
developed as follows: let us define the operator Pw ∈ Rw×n as that which projects any vector u ∈ Rn×1

in w of its n coordinates, which correspond with the number of sensor measurements, so that uw = Pwu.
Now, let us use Eqn (24) -Appendix A- to expand the estimation of the field Û so that:

Û = ΦĈ =⇒ Ûw = PwÛ = PwΦĈ. (4)
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The estimation of the field is computed by finding the set Ĉ which minimizes the distance between
measurements Uw and estimates Ûw. Formally this can be stated as a least-squares optimization
problem [2, 14] of the form:

min
Ĉ

(
Uw − Ûw

)T (
Uw − Ûw

)
⇐⇒ min

Ĉ

(
Uw − PwΦĈ

)T (
Uw − PwΦĈ

)
(5)

Note that for the problem to have a solution the number of sensors must be not smaller than the number
of states to be estimated. In this work, we make use of the so-called Proper Orthogonal Decomposition
(POD) method -see Appendix A for details- to compute the basis set Φ because of its optimality proper-
ties in the sense that it requires the lowest number of state equations for describing the behavior of the
system with a given degree of accuracy [17]. However, it should be remarked that the main drawback
of the POD technique is that the basis functions are obtained from experimental or direct numerical
simulation (DNS) data. Thus, its predictive capabilities are highly dependent on the range of conditions
in which the measurements were obtained. In this work, a large set of measurements covering different
operating conditions will be employed to avoid such drawback.

On a second step, the oxygen estimates computed above is employed, together with Eqns (2) and (3),
to obtain the estimation of the rest of the variables (ri, pj and X). In order to reduce the computational
load, a dynamic version of the ROM, as described in Appendix A, will be employed here where the
dynamic evolution of the modes will be obtained by projecting relations (3) on a given basis set Φ
so as to obtain an expression for the dynamic evolution of the modes (see Eqn (21) in Appendix A).
Once the dynamic evolution of entities zi, zj and zX is computed, the real process variables ri, pj and
X are recovered by relations (2). Since in this case the number of equations is not a critical issue, the
Laplacian Spectral Decomposition (LSD) technique will be employed to compute the basis functions. The
main advantage of this method regarding the POD is that it is valid for the whole range of operating
conditions. Furthermore, as it is pointed out in [13], it is one of the most efficient spectral methods. We
will refer to this step as dynamic estimation.

A schematic view of the estimation scheme is presented in Figure 1. Oxygen measurements taken
at different positions (represented by continuous arrows) in the reactor are employed to reconstruct the
oxygen spatial distribution (field reconstruction block). This information (dashed arrows) is then fed
into the dynamic observer so as to obtain the missing information concerning the remaining variables
(reactants, products and biomass).

Finally, it must be remarked that although the POD and LSD approaches seem to be the most
suitable for each case other reduction techniques (spectral or pseudo- spectral) could be employed in the
field reconstruction and dynamic observer blocks. In this regard several alternatives such as Chevichev
or Legendre polynomials, available in the literature [15, 29, 13, 27, 16], could be attempted.

4. Case Study: Gluconic Acid Production

The proposed methodology will be illustrated with an experiment related to the production of glu-
conic acid in a spatially distributed bioreactor. On the first stage of the bioreactions taking place, the
glucose (G) is consumed by the microorganisms (X) to produce Gluconic Acid (GA) by means of an
oxidation of the sugar aldehyde group to a carboxyl group, being the glucoholactone (GOT ) the in-
termediate compound obtained as a result of the action of Glucose Oxidase (GOD). Microorganisms
also produce catalasa (CAT ) that breaks the hydrogen peroxide (H2O2). This suggests the following
reaction mechanism [21, 19, 20]:

YG/XG+ YO2/XO2
X−→ X (6a)

G+O2
GOD−→ GOT +H2O2 (6b)

GOT +H2O −→ GA (6c)

H2O2
CAT−→ H2O +

1

2
O2 (6d)

where YG/X (grams of G/grams of X) and YO2/X (grams of O2/grams of X) are the yield coefficients of
glucose and oxygen, respectively.

Once the glucose has been exhausted, the second stage starts and the microorganisms begin to
consume GA with linear kinetics as an alternative carbon source. Note that this stage is not considered
in this work because the operation conditions are such that Glucose is never totally consumed.
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Preliminary experiments [19, 20] show that the peroxide is quickly consumed to produce water and
oxygen so reaction (6d) is not limiting. This leads to the following simplified mechanism representative
of the behavior of the system:

YG/XG+ YO2/XO2
X−→ X (7a)

YG/GAG+ YO2/GAO2
GOD,CAT−→ GA (7b)

where YG/GA and YO2/GA are, respectively, the grams of glucose and oxygen consumed by gram of GA.
Following [35, 23], the Monod law is employed to describe the reaction rates with glucose and oxygen

as limiting substrates. In this way, the biomass growth can be mathematically represented as:

RX = µX with µ = µmax
G

KG +G

O2

KO2 +O2
(8)

Experimental data show that the production of GA is growth-associated and depends on the biomass
formation rate in a linear way [19, 18, 35]:

RGA = αRX

where α is the Luedeking-Piret equation parameter for growth-associated product formation. Therefore,
the chemical reaction now reads:

YGG+ YO2O2
RX−→ X + YGAGA (9)

with
YGA = α = YGA/X ; YG = YG/X + YG/GAYGA/X ; YO2 = YO2/X + YO2/GAYGA/X

The mathematical structure of the reaction rate can be finally written as:

RX = µmax
G

KG +G

O2

KO2 +O2
X (10a)

RGA = YGARX (10b)

RG = YGRX (10c)

RO2 = YO2RX (10d)

On the other hand, the oxygen transfer rate (OTR) is assumed to follow the Henry’s law as:

OTR = kLa(O
∗
2 −O2) (11)

where kLa is the oxygen transfer rate per volume unit and O∗
2 = 0.0084gl−1 is the saturation of dissolved

oxygen.
It should be noted that biomass reaction rate parameters and yield coefficients appearing in Eqns

(10) and the oxygen transfer rate kLa in Eqn (11) are unknown and should be, therefore, estimated
by fitting the model to experimental data. In this work the available data from [19] were used to that
purpose. The estimated values are presented in Table 1 and the best fit is shown in Figure 2, illustrating
the good reproducibility of the model.

The combination of transfer Eqn (11) and reaction rates (10), leads to the following mathematical
description of the tubular reactor:

∂X

∂t
= DX

∂2X

∂ξ2
− v

∂X

∂ξ
+RX (12a)

∂GA

∂t
= DGA

∂2GA

∂ξ2
− v

∂GA

∂ξ
+RGA (12b)

∂G

∂t
= DG

∂2G

∂ξ2
− v

∂G

∂ξ
+RG (12c)

∂O2

∂t
= DO2

∂2O2

∂ξ2
− v

∂O2

∂ξ
+ kLa(O

∗
2 −O2) +RO2 (12d)
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where DX , DGA, DG and DO2 represent the diffusion coefficients and v is the fluid velocity. Finally, the
description is completed with boundary and initial conditions of the form:

Dsi

∂si
∂ξ

= −v(sini − si) ξ = 0, (12e)

∂si
∂ξ

= 0 ξ = L, (12f)

and si = s0i t = 0 (12g)

with si (i = 1, ..., 4) representing the process variables involved (X,GA,G,O2), s
in
i the inlet concentra-

tion, s0i the initial condition and L the longitudinal length of the reactor.Boundary conditions (12e)-(12f)
hold in most reactors.

In order to illustrate the dynamics of the process, simulation experiments were performed by disturb-
ing the system from a given steady state with inlet glucose concentration profiles as depicted in Figure
3.

The time evolution and spatial distribution along the reactor of the process variables are depicted
in Figure 4. Results were obtained by means of the FEM with design and model parameters as well as
operation conditions summarized in Tables 1 and 2. Several numerical tests led to the conclusion that
a discretization of n = 61 nodes is enough to accurately solve the system.

4.1. On-line indirect estimation of biomass, glucose and GA from oxygen measurements

The observation scheme for continuous GA production is designed as discussed in Section 2 to produce
estimates of biomass, glucose and GA from a limited number of oxygen measurements.

Let us first illustrate the theoretical performance of the estimator developed in Section 2 without any
approximation and with measurements of oxygen along the whole reactor. The glucose inlet is perturbed
as illustrated in Figure 3 and the oxygen is measured along the whole reactor. The dynamic estimation
is designed as in equations (3), so that:

∂ZG

∂t
= DG

∂2ZG

∂ξ2
+ (DG −DO2)

YG

YO2

∂2O2

∂ξ2
− v

∂ZG

∂ξ
− YG

YO2

kLa(O
∗
2 −O2) (13a)

∂ZX

∂t
= DX

∂2ZX

∂ξ2
+ (DX −DO2)

YX

YO2

∂2O2

∂ξ2
− v

∂ZX

∂ξ
− YX

YO2

kLa(O
∗
2 −O2) (13b)

∂ZGA

∂t
= DGA

∂2ZGA

∂ξ2
+ (DGA −DO2)

YGA

YO2

∂2O2

∂ξ2
− v

∂ZGA

∂ξ
− YGA

YO2

kLa(O
∗
2 −O2) (13c)

Note that these PDE equations do not depend on the reaction rates. In order to solve the previous
equations, initial conditions are required. Since no measurements are available for G,X,GA an initial
guess will be employed. In this example, we will consider zero initial concentration for G,X and GA,
which implies a relative error of 100%. The observer will drive the error to zero. The concentration of
the chemical compounds is recovered by using relations (2):

G = ZG +
YG

YO2

O2, X = ZX +
YX

YO2

O2, GA = ZGA +
YGA

YO2

O2, (14)

For illustrative purposes the dynamic observer is implemented by using the FEM description of the
process. It must be highlighted that this requires as many oxygen sensors as discretization points (in
this example n = 61). Figure 5 presents the glucose, gluconic acid and biomass concentration errors as
a function of space and time. As it can be seen there the error between measurements and estimates
decays exponentially fast.

In order to reduce the number of sensors and the computational cost, the reduced observers described
in section 3 are now implemented. To begin with, the POD model is obtained from snapshots of
the system behavior under a sufficiently large number of operating conditions. In this case four basis
functions are enough to accurately reconstruct the oxygen distribution. Figure 7 presents the accuracy
of the reconstruction using four optimally located sensors, as shown in Figure 6, and measuring every
half an hour (linear behavior between successive sampling times is considered).

Next step is devoted to the dynamic observation of the remaining process variables (G, GA, X). For
this purpose a LSD based model is employed. The ROM consists of 3, 4, and 8 ODEs for the glucose,
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GA and biomass, respectively. Note that the reduced order model consists of 15 ODEs instead of the
183 (61*3) resulting from the FEM. Therefore, the computational time required drastically decreases
when using the reduced version as compared with he FEM observer.

Using the ROM with 15 ODEs the time interval between two consecutive estimations of glucose,
biomass and gluconic acid is around 5 minutes. The computations reported here were performed using
a PC/Pentium 4 (3 GHz, 2 Gb RAM) platform running Windows Xp with Matlab 6.5 (The Mathworks
Inc.). It should be noted (see Figure 4) that the dynamics of the process are quite slow as compared with
the time between estimations. Therefore, the estimation scheme is fast enough to capture the behavior
of the system.

Finally, the spatial distribution and the time evolution of the estimation error for G, GA and X
obtained by the proposed scheme is depicted in Figure 8. The differences between the estimations and
the process variables converge at a reasonable speed to an error below 2 % (see Figure 9).

5. Conclusions

In this work an on-line estimation methodology for a distributed parameter bioreactor has been
developed. Such methodology incorporates two different approaches: a field reconstruction, employed
to recover the oxygen spatial distribution from a reduced number of optimally located sensors and a
dynamic observer to estimate the remaining process variables. The main advantage of this methodology
is that information regarding the reaction rates is not required. It must be noted that in many biological
processes such information is not available.

The approach has been successfully applied to an example related to the production of GA from
free-growth cells of Aspergillus niger in a tubular fermenter. This methodology can be extended to
other aerobic fermentation processes where on-line sensors for measuring the oxygen are available.
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A. Reduced Order Models for PDE systems

Reduced order models (ROMs) present several advantages which encouraged many authors to apply
them in different fields such as food and chemical engineering [5, 8], biology [31] or fluid dynamic problems
[27, 16, 33] among others. For the sake of completeness this appendix contains the fundamental elements
for the ROM synthesis.

Let us consider the following general PDE system:

∂u(t, ξ)

∂t
= T (u) + f(u) (15)

u(t, ξ) in Eqn (15) represents the state variable, T (u) is a linear operator which, as explained in section 2,
collects the diffusion and convection contributions1 and f(u) is a given nonlinear function representing for
instance the reaction rates. As it is the case in the family of weighted residuals methods, the distributed
variable u can be expanded as:

ũ(t, ξ) =

∞∑
i=1

cui (t)φ
u
i (ξ) (16)

The set {cui (t)}∞i=1 collects time dependent functions known as modes and {φu
i (ξ)}∞i=1 is an infinite

orthonormal set containing the spatial dependency of the solution. Contrary to the classical numerical
methods for PDE systems mentioned in section 3, the basis functions φu

i in reduced order techniques
are globally defined on the spatial domain. This fact together with the dissipative nature of this class

1For example, a standard constant diffusion-convection transport operator would read as T (u) = D∆u− v⃗∇⃗u
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of systems [2] make possible to approximate the solution at arbitrary accuracy by a truncated series of
the form:

ũ(t, ξ) ∼=
mu∑
i=1

cui (t)φ
u
i (ξ) (17)

where mu is usually low. Global basis functions φu
i (ξ) are computed by solving the following eigenvalue

problem: ∫
Ω

R(ξ, ξ′)φu
i (ξ

′)dξ′ = λu
i φ

u
i (ξ) (18)

λu
i in Eqn (18) is the eigenvalue associated to the i-eigenfunction φu

i . Depending on the nature of the
kernel R, different sets of basis functions arise [2]:

• Laplacian Spectral Decomposition (LSD). In this case the kernel is constructed as the Green’s
function associated to the Laplacian operator. In practice this leads to the following eigenvalue
problem [9]:

∆φu
i = λiφ

u
i (19)

• Proper Orthogonal Decomposition (POD). Here R(ξ, ξ′) corresponds with the two-point correlation
kernel [16], of the form:

R(ξ, ξ′) =
1

ℓ

ℓ∑
i=1

u(ti, ξ)u(ti, ξ
′) (20)

where each u(ti, ξ) describes the value of the field at time instant ti (snapshot) and ℓ is the total
number of snapshots.

In the dynamic version, the time evolution of the mode set is computed by projecting Eqn. (15) over
each basis function so that: ∫

Ω

ϕi(ξ)

(
∂u(t, ξ)

∂t
− T (u)− f(u)

)
dξ = 0 (21)

Extending the projection over the most relevant basis functions, we end up with the following set of
ODEs:

dcu

dt
= Acu + F ; cu = [cu1 , c

u
2 , ...c

u
mu

]T (22)

where matrix A and vector field F result from the projections of the transfer and the reaction terms2,
respectively. The field is then reconstructed by combining the solution of Eqn (22) with Eqn (17).

For practical reasons it is more convenient to work with a discrete version of the field. To that purpose
we denote by ϕu

i ∈ Rn×1 the vector whose elements are the values of φu
i (ξ) at n spatial discretization

points and rewrite Eqn (17) as follows:
u(t) ∼= Φcu(t) (23)

where Φ ∈ Rn×mu is a matrix of the form Φ = [ϕ1, ..., ϕmu ] and u(t) ∈ Rn×1 contains the values of the
field at the n discretization points.

Finally for r snapshots Eqn (23) can be presented in a more compact way as:

U ∼= ΦC. (24)

where matrix Cu ∈ Rmu×r is the matrix that contains the mode set cu at different r time points and U
collects the snapshots. Expression (24) is the one employed to construct the static observer described in
section 3.

2Mathematically, this corresponds with A =
∫
Ω ϕu

i T (u)dξ and F =
∫
Ω ϕu

i fdξ
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B. Tables

Design parameter Symbol Value & Units

Oxygen transfer rate per volume unit kLa = 300h−1

Biomass reaction rate parameters Yield coefficients

µmax = 0.2242 h−1 YGA = 44.8887 (GA g)/(X g)

kG = 9.9222 gl−1 YO2 = −2.5598 (O2 g)/(X g)

kO2 = 0.00137 gl−1 YG = −51.0365 (G g)/(X g)

Table 1: Process parameters estimated using the real data presented in [19].

Design parameters Symbol Value & Units

Oxygen transfer rate per volume unit kLa = 300h−1

Glucose and Gluconic Acid mass dispersion coefficient DGA = DG = 0.01m2h−1

Biomass Mass dispersion coefficient DX = 0.10m2h−1

Oxygen Mass dispersion coefficient DO2 = 0.04m2h−1

Flow velocity v = 0.01mh−1

Input stream Symbol Value & Units

Glucose stream Gin = 5− 30gl−1

Dissolved oxygen stream O2in = 0.0084gl−1

Biomass stream Xin = 0.01gl−1

Gluconic Acid stream GAin = 0gl−1

Table 2: Design parameters of the horizontal tubular fermenter employed in the simulation experiments.
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C. Figures

Figure 1: Schematic representation of the proposed estimation scheme. Continuous arrows represent oxygen measurements
while dashed arrows indicate the field reconstructed in the whole spatial domain. The field reconstruction block recovers
the spatio-temporal distribution of oxygen in the reactor from partial measurements. These estimate is injected in the
dynamic observer block to dynamically reconstruct the remaining process variables.
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Figure 2: Calibration results for the relevant process variables.
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Figure 3: Perturbations introduced in the Glucose inlet for testing the estimation scheme.
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Figure 4: Spatial distribution and time evolution of the relevant process variables under the Glucose inlet perturbations
of Figure 3.
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Figure 5: Spatial distribution and time evolution of the estimation errors for G, GA and X using the dynamic observer
based on the FEM. The oxygen was continuously measured in all the FEM discretization points (n = 61). The estimation
performance for G is expressed in terms of absolute errors whereas relative errors are considered in the case of GA and X.
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Figure 6: Optimal location in the reactor of the four oxygen sensors.
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Figure 7: Spatial distribution and time evolution of the estimation error for the oxygen using the field reconstruction
scheme with the POD technique. Four optimally located sensors (Figure 6) were employed.
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Figure 8: Spatial distribution and time evolution of the estimation errors for G, GA and X using the dynamic observer
based on the LSD. The oxygen was measured every half an hour using four optimally located (see Figure 6) sensors. The
field reconstruction scheme was employed to recover the oxygen spatial distribution (Figure 7).
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Figure 9: Final time spatial distribution of the estimation errors for G, GA and X using the dynamic observer based on
the LSD and the field reconstruction based on the POD.

16


