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Abstract 

 

State space models have been successfully used for the modelling, control and 

monitoring of dynamic processes with several different approaches employed to 

derive the state variables of the model. Typically, state-space canonical variate 

analysis (CVA) modelling requires the estimation of five matrices to fully 

parameterize the model. This paper proposes a simpler CVA state space model 

defined by three matrices for the specific purpose of process monitoring. A modified 

definition of the past vector of inputs and output is proposed in order to facilitate 

efficient estimation of a reduced set of state space matrices. A sequential procedure 

for accurate selection of the model state vector dimension is also proposed. The 

proposed method is applied to the benchmark Tennessee Eastman process and the 

results show that the proposed method gives comparable and in some cases even 

better performance than the established CVA state space monitoring methods.  

 

Keywords: state space modelling, CVA, dynamic models, fault detection, process 

monitoring. 

 

 

1. Introduction 

 

State space models have been reported to be superior to other multivariate 

statistical methods for the modelling, control and monitoring of dynamic processes. In 

the area of system identification and predictive modelling, Juricek et al. (2005) 

demonstrated that subspace models based on canonical variate analysis (CVA) and 

numerical algorithm for subspace identification (N4SID) outperformed regression 

models based on partial least squares (PLS) and constraint categorical regression 

(CCR). They also demonstrated that, of the two subspace modelling methods, the 

CVA model was more accurate than its N4SID counterpart. Other comparative 

analysis works carried out by Simoglou et al. (1999a) and Negiz and Cinar (1997b) 
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have also provided support for the superior performance of CVA based state space 

models. 

 

A few variants of the state space model representations have also been explored 

and presented in the literature. Typically, the form of CVA based state-space 

representation is one that can be used in applications ranging from process modelling, 

control and monitoring. Such a model generally requires the estimation of five 

matrices to fully parameterize the model. In control system applications this 

representation is necessary as control of the plant is achieved via methods involving 

the application of calculated input signal(s) based upon the past output measurements. 

Thus far very little emphasis has been placed on selecting a state-space model based 

upon its intended application and most if not all recent papers employing state space 

models for process monitoring applications have resorted to this full model 

representation (Lee et al., 2006; Yao and Gao, 2008; Odiowei and Cao, 2010).  

 

This paper proposes an adaptation of the state space model representation and 

CVA based derivation for the specific purpose of process monitoring. The proposed 

state space model employs a significantly reduced number of parameters. The reduced 

dimensionality of the model, in conjunction with a slightly amended method of 

constructing the past vector, makes the model parameter estimation much simpler and 

more efficient.   

 

The proposed model is used for process monitoring and applied to the benchmark 

Tennessee Eastman (TE) process under close-loop control. Process monitoring is 

carried out using the Hotelling’s T
2
 statistics and squared prediction error (SPE, also 

known as Q) statistics of the state and output residuals. The results are compared with 

the reported fault detection performance from previous publications (Russell et al., 

2000; 2007), where the same set of 21 faults are used. Russell et al. (2000) evaluated 

three different fault detection models: the traditional CVA state space modelling 

technique, standard and dynamic principal component analysis (PCA and DPCA), 

whereas Detroja et al. (2007) evaluated the detection performance of the Hotelling’s 

T
2
 statistics and Q statistics based upon a statistical method called correspondence 

analysis (CA). Results from these previous publications show that the traditional CVA 

state space model gives overall the best performance. The results of this paper 
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demonstrates that the proposed CVA state space model can offer at least the same and 

in some cases better fault detection performance in terms of fault detection delay time 

compared to the traditional CVA state space model.  

 

The paper is organised as follows: Section 2 presents the modified CVA based 

state space model and highlights its differences from those pioneered by Akaike 

(1975) and Larimore (1990). Section 3 delves into the application of several model 

selection criterions and how they were employed for the selection of the appropriate 

state vector dimension used to construct the state space model. Section 4 introduces 

the fault monitoring statistics employed and Section 5 provides a comparative 

analysis and summary of the results obtained alongside that of previous publications. 

Some conclusions are drawn in Section 6.  

 

 

2. State space modelling and canonical variate analysis 

 

2.1 Conventional and the proposed CVA based state space models 

 

The well known state space model representation is given in Eq. (1). It is 

premised on the stochastic process exhibiting Markov properties (Akaike, 1975). In 

the strict sense definition of a Markov process, the future state of the process, that is, 

the conditional probability of future transitions should only be dependent upon the 

current state of the process. Hence the proposed representation given by Eq. (2) is not 

in contradiction to a Markovian representation and quite accurately aligns with the 

definition.  

 

               ;                      (1) 

 

                ;                (2) 

 

 

For both state space representation ex is the state residuals and ey is the 

uncorrelated output residuals. The respective residuals are of the same vector 

dimension as the state       and output        vectors.  The proposed state 

space representation retains the G matrix but it is now incorporated in the state 

transition equation as opposed to the output equation. The G matrix is somewhat 
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similar to the innovation term employed in Kalman filter designs (Brown and Hwang, 

1992) where state estimation is iteratively improved by using the innovations or 

residuals of the output equation. The proposed state space representation, therefore, 

more closely aligns its representation with that of the Kalman filter design but makes 

the assumption that the covariance of the measurement data is constant.  

 

  According to Larimore (1990), accounting for the correlation between the state 

and output residual ensures a minimum order hidden Markov state space 

representation. The proposed state space representation similarly guarantees a 

minimum order hidden Markov model. However, the size of the state vector is 

determined via a cross-validation procedure using the state transition equation as 

opposed to the output equation as is the case for Larimore’s model given in Eq. (1).   

 

From a control system point of view the essential difference between the two 

representations is that the five matrix representation, Eq. (1), explicitly accounts for 

the input vector ut and therefore finds its use in control systems applications. For the 

purpose of fault and disturbance detection, the proposed model, Eq. (2), would then 

suffice adequately and even be more desirable, given its advantages in terms of 

simplification of representation and stochastic estimation equations.  

 

The state space representation Eq. (2) is more concise than Eq. (1) with the 

removal of the current input vector ut. In order to retain the information component 

provided by the input vector ut, it is proposed here to redefine Larimore’s past vector 

representation and this will be elaborated on in the next subsection. 

 

2.2  Canonical variate analysis and state variable extraction 

The main idea behind canonical correlation analysis is to extract the relationship 

between two sets of variables X and Y by finding corresponding sets of linear 

combinations of the original variables (the canonical variates U and V): 

 

U = XJ                                                                                                  (3) 

 

V = YL                                                                                                  (4) 
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The choice of transformation matrices J and L is towards maximising the correlation 

between the canonical variates: 

      
       

                
               (5) 

where           ,           , and           .  

 

This is equivalent to solving the following optimization problem: 

 

                                             (6) 

 

where Ix and Iy are identity matrices of appropriate dimensions. 

 

The solution is given by:  

 

       
    

      
    

                    (7) 

 

     
    

  ;       
    

           (8) 

 

  

The main diagonal of the S matrix contains the correlation coefficients. The 

combined operation of Eq. (7) and Eq. (8) is referred to as the generalized singular 

value decomposition (GSVD) of Rxy. 

 

 

For our application, the states are derived as the canonical variates between two 

sets of variables, one set being the past vector P and the other being the future vector 

F, which are traditionally defined as follows: 

 

 TT
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T

t

T

t

T
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T

t

T
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T

t uy  uuuyyyP ,....,,,....; 2121
               (9) 

 

 TT

ft

T

t

T

t

T

t  yyyF ,....; 1                  (10) 

 

where ly, lu, f are, respectively, the numbers of lags in the output, input, and the 

number of lead elements of the output samples in the future vector. 
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The state vector xt is computed from the canonical variate transform J of the past 

vector: 

 

        
  ;                              (11) 

 

subject to J
T
RppJ = Im and L

T
RffL = Iq, where Rpp = P

T
P, Rpf = P

T
F, and Rff = F

T
F.  

 

To account for the removal of the ut input in the proposed state space 

representation, the following definition of the past vector P is proposed in this paper: 

 

 TT

lt

T

t

T

t

T

lt

T

t

T

t

T

t uy  uuuyyyP ,....,,,....; 121
                (12) 

 

The subtle amendment is the inclusion of the ut vector in the past matrix definition 

such that the process of deriving the states would retain what information that is 

contained by the input vector at the current time ut.  

 

2.3 Estimating parameters in the state space model   

 

Larimore’s stochastic estimation procedure is summarised by Eq. (13) to Eq. 

(16). The stochastic algorithms first derives estimates for the matrices A, B, C, and D 

and then proceeds to simultaneously derive the covariance matrices of the state and 

output residuals  (Фx, Фy) along with the parameters of the G matrix: 

  
   

    
   

    
       

   

  
     

   

  
  

     
   

  
     

   

 

  

                                           (13) 

 

                                     (14) 

 

                   
                   (15) 

 

 
     

            
   

     

   
           

                                              (16) 

 

where      
    ,      

    and the total output equation residuals         

  . 

 

 

The stochastic estimation algorithm developed for the alternative three matrix 

representation presented in this paper produces a much simpler set of equations based 

upon minimizing the squared residuals of the state and output equations.  
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We shall now expand Eq. (13) to illuminate the hidden computation complexity 

of Larimore’s stochastic algorithm when applied to the CVA modelling approach 

using a five matrices state space model representation. We begin by first deriving the 

inverse matrix term appearing in Eq. (13): 

 

 
  

     
   

  
     

   

  
      

      
   

  
  

                (17) 

 

 

From manipulation of Eq. (17) the following results can be derived: 

 

        
    

    
                      (18) 

 

        
    

    
                        (19) 

 

       
      

      
    

    
    

                  (20) 

 

       
      

      
    

    
    

                (21) 

 

 

Finally, returning to Eq. (13) the estimates of the state matrices can now be obtained: 

 

  
   

    
   

    
       

   

  
     

   

  
      

      
               (22) 

 

        
        

      
    

    
                      (23) 

 

        
        

      
    

    
                                (24) 

 

      
      

      
    

    
                                          (25) 

 

      
      

      
    

    
                    (26) 

 

The computation load in terms of the number of floating point operations 

required to derive the A, B, C, and D matrices based upon Eq. (23) to Eq. (26) is 

actually less than that required to extract the matrices based upon Eq. (13) because it 

is computationally cheaper to find the inverse of a nu × nu and a k × k dimensional 

matrix separately than to find the inverse of (nu + k) × (nu + k) dimensional matrix. 

Also, one could employ computation and storage of reusable sub-blocks common to 

the different equations in the set spanning Eq. (18) to Eq. (26) to further reduce the 

computation requirements. Nevertheless, either approach would prove 

computationally more intensive than the reduced set of equations to be derived for the 
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modified state space modelling approach. The derivation is outlined by Eq. (27) to Eq. 

(35) and shows how redefining of the past vector P and the change in the model 

representation can lead to a significantly reduced and simplified set of equations.  

 

With reference to Eq. (1), the B matrix is derived so as to minimize the squared 

output residuals: 

 

    
      

       
         

                    (27) 

 

 

Note that the state variables of Eq. (1) and Eq. (2) share common properties, in 

particularly, the covariance of the state vector is still given by an identity matrix as a 

result of the common CVA procedure employed in extracting the state variables. 

Applying this special condition to Eq. (27) and setting the derivative function to zero, 

yields the following results: 

 

      
  

  
       

                     (28) 

 

      
                     (29) 

 

Likewise, the parameters of the A and G matrices are found from minimizing the 

squared residuals of the next state equation with respect to A and G:  

 

    
          

         
           

         
         

          
    

   

                         (30) 

 

Eq. (30) can be simplified by setting      
    ,         

     and noting that 

    
 = 0, these assumptions result in: 

 

    
            

           
             

                (31) 

 

The solutions are obtained by setting the partial derivatives with respect to A and G to 

zero: 

 
      

  

  
         

                                  (32) 

 
      

  

  
         

       
                    (33) 

 



9 

 

        
                    (34) 

 

        
    

    
  

                  (35) 

 

Derivation of the state matrices of the proposed simpler model shows that no 

matrix inversion operation is required to generate the solution for the A and C 

matrices of the model. 

 

Table 1 compares the proposed and traditional stochastic estimation algorithms in 

terms of the numbers of floating point operations (FLOPs) needed to compute the two 

models. The matrix inversion operation involved in the computation of the A-B and 

A-B-C-D matrices of the state space models is separately shown so as to highlight its 

computational load. Online available educational material on matrix inverse 

computation provided by researchers from the University of South Florida 

(http://numericalmethods.eng.usf.edu/simulations) demonstrates that matrix inversion 

operation using LU Decomposition method requires significantly less number of 

FLOPs over a Gaussian Elimination based technique. The matrix inversion FLOPS 

given in Table 1 is based on LU decomposition. Note that this serves as a reference                                                                                  

for comparison and does not necessarily represent the most efficient inversion 

considering that the LU decomposition could be substituted for by the Cholesky 

decomposition. The Cholesky decomposition is a special case of the general LU 

decomposition that is numerically more stable and efficient than LU decomposition 

but is applicable only to positive definite symmetric matrices.    

 

Table 1. Computational complexity (FLOPs) of proposed and traditional CVA methods 

 

Computer 

Operations 

Model Type 

ABG ABCDG 

A to D Matrix: 

Multiplications 

and Additions 

                                       

        
  

A to D Matrix: 

Matrix Inversion 

Operation 

 

0 
       

 

 
 

       
 

 
 

       

 
 

G-Matrix: 

Computation            
   

 

 
 

   
 

 
 

   

 
 

nu – number of inputs; ny – number of outputs; n – length of training data; k – number of state vectors 

 



10 

 

 

3. State matrix sizing and other model considerations 

 

Development of a CVA state space model requires the selection of several sizing 

parameters: the window lengths of the past and future vectors and the number of state 

vectors comprising the state matrix. Additionally, consideration must also be given as 

to whether to apply separate lag/lead order per process variable when constructing the 

past or future vector.  

 

Simoglou et al. (1999a) presented an overview of several criteria that have been 

reported in the literature for state vector dimension selection, namely Akaike 

information criterion (AIC), cross-validation procedures, and selection based on the 

eigenvalues of the Hankel matrix. In addition to these, there exist several other model 

order selection criteria such as Final Prediction Error (FPE), Bayesian Information 

Criterion (BIC), and Law of Iterated Logarithm Criterion (LILC). 

 

AIC is the first of these and the most extensively used in such endeavours. 

Larimore (1983) proposed using AIC for determination of the lag-order and several 

other researchers have done likewise (Simoglou et al., 1999a; Juricek et al., 1999). 

Simoglou et al. (2002) speculated that the use of this common lag order for all the 

inputs and outputs in the past vector construction may impose some limitations with 

the use of the method as different variables may exhibit different dynamics and 

should therefore be included with different numbers of lagged values in the past 

vector. Negiz and Cinar (1997b) proposed using the autocorrelation trend of the 

process variables to select the past window lag on a per-variable basis.  

 

The model development carried out in this paper employed a common lag-

window size for the past and future vectors. The choice was driven by the need to 

simplify the model development procedure. To the authors’ best knowledge, in the 

majority of the publications the window lengths for all the process variables were set 

to the same number of time lags (e.g. Simoglou et al., 1999b; Simoglou et al., 2002;  

Negiz and Cinar, 1997a). Also, simulation results shown in Fig. 1 indicate that the 

choice of lag-window size is not very critical to the accuracy of the developed model 

and that the state vector size selection is a more influential factor. This result was 

based upon simulation data using a multi-input multi-output (MIMO) autoregressive 
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model with exogenous input (ARX), defined by Eq. (36) to Eq. (38). The ARX time 

series model employed for the simulation is an expanded and more involved version 

of the single-input two-output ARMAX time series model used by Negiz and Cinar 

(1997a). Additive measurement noise with a signal to noise ratio of 10% is added to 

input and output measurements. The model simulates three output signals from three 

independent inputs:  

 

                                                 (36) 

 

                                                     (37) 

 

                                                            (38) 

 

 

Both the 3-D contour plot shown in Fig. 1(a) and the family of mean squared 

error (MSE) plots in Fig. 1(b) demonstrate that the choice of lag window size is of 

less impact on the performance of the model. Fig. 1(b) also shows that the cross 

validation MSE plateaus beyond the use of more than three/four states which is 

consistent with the fact that there are three independent variables in the data set along 

with one time delayed output term included in the second order time series equation 

defining output y1. The MSE plots will later be shown to characterize the shape of the 

model fitness (maximum likelihood) terms employed by a number of model order 

selection criteria. 

 

Simoglou et al. (1999b) investigated the noise-sensitivity of several model order 

selection criteria by observing the impact of measurement noise in the data on the 

selected model order. They concluded that the most suitable model order was 

dependent upon the purpose of the model, whether it was employed for prediction or 

monitoring, and was also dependent upon other specifics about the particular data 

based model. A list of the criteria investigated in this paper for finding the minimum 

state vector size is given in Table 2. The list shows that AIC, BIC, and LILC all use 

the maximum likelihood term to estimate the model fitness and only differ in the term 

used to quantify model complexity. The maximum likelihood term is itself a function 

of the covariance of the model residual:   

 

                                      (39) 
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where N is the number of observations, ny is the number of output variables and E is 

the vector of model residuals for the regression model        .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (a) 

 

 
    (b) 

 

Fig. 1.  a) 3-D plot of model error vs. state vector and lag window sizes; b) Equivalent 

2-D family of plots for different lag size L - MSE versus state vector dimension.  

 

 

Therefore, for a given training data set, the maximum likelihood function is only 

a logarithmic function of the error covariance of the form: 
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                                   (40) 

where a and b are constants related to the model training data dimension. 

    

Table 2. A list of model size selection criteria  

Criterion Equation 

Akaike Information Criterion - AIC, 

(Akaike, 1973) 

                     

where mk is the number of model 

parameters 

Bayesian Information Criterion - BIC, 

(Hannan and Quinn, 1979)  

                          

where N is the number of observations in the 

training data set 

Law of Iterated Logarithm Criterion - LILC, 

(Hannan and Quinn, 1979) 

 

                             

Final Prediction Error - FPE, (Akaike, 

1970). The criterion converges towards the 

AIC for large values of N. 

                 
    

    
   

 

 

The desirable parabolic shape obtained when these criteria are employed is 

therefore a function of the rate or magnitude of decline of the likelihood function 

curve as the model residual diminishes versus the rate or magnitude of growth of the 

model complexity term employed as is illustrated in Fig. 2. As such, the point at 

which the particular criterion employed achieves a minimum (if one is achieved) is 

subject to the trend of the model residual decline with increasing model parameters 

and the complexity term employed.  

 

In the case of the proposed CVA state space model, the commonly used equation 

for computing the number of free parameters, as applied in several papers (Simoglou 

et al., 1999a; Schaper et al., 1994), is given by: 

 

2/)1()2(  yyuyuyk nnnnnnkm                        (41) 
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where k is the number of states, nu is the number of inputs, and ny is the number of 

outputs.  

 

 

 

 

Fig. 2. Plots of the AIC, BIC, LILC criteria dissected in terms of model complexity term and 

model fitness term 

 

The origin of Eq. (41) is tied to the number of parameters required to 

parameterize the general state space canonical form which is far less than the number 

of elements in the various state space matrices (Candy, 1979). However, the numbers 

of parameters making up the matrices of the proposed state space model versus 

Larimore’s model are given by Eq. (42) and Eq. (43) respectively: 

 
22 kknm yk                (42) 

 
2)2( knnnnkm uyuyk              (43)  

 

 

Due to the large values returned by the likelihood function computation as shown 

in Fig. 2(a), it is desirable to chose a model complexity term Eq. (41) to Eq. (43) that 

yields the largest mk value and the choice as demonstrated previously is therefore 
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driven by the state space model being employed.  The subjective nature of the process 

therefore requires that the model complexity term be specific to the model so as to 

guarantee arriving at the true model order. In Fig. 2 the BIC best approximates a 

parabolic shape with its minimum located at the state order consistent with the 

observation from the MSE plots in Fig. 1.  

 

An alternative method for identifying the state order of the model is to rely on the 

MSE cross-validation plots. The stopping criterion employed is based upon a 

minimum gradient specification: 

 

     
               

                
                 (44) 

 

where k is the current state vector size and kint is the initial chosen dimension. The 

initial state order dimension is typically chosen to be min{nu, ny} for the model under 

evaluation. The final state vector size is then selected when      falls below a pre-

determined value, which is typically a small positive value for example 0.01.     

 

The simplification of the state space model parameterization equations facilitates 

a sequential procedure such that for each past vector window size selected, the state 

vector size is increased by one in each step until a plateau (minimum gradient change) 

or minimum point of the MSE plot is detected. The state output error can be updated 

sequentially for each additional state vector employed by expanding the C matrix by a 

single row when a new state vector is included in the model and then updating the 

residual vector computation: 

 

i) Compute the kth row-vector of the C matrix:  

   
     

    
  where    

  is an N  m matrix of training output measurements and 

   
  is the kth state vector derived as the canonical variate using the training data. 

ii) Update the output prediction:                 
   

iii) Update residual matrix:          . 

 

Steps (i) to (iii) are repeated until the MSE converges to a minimum value. The state 

vector dimension and lag-order is then selected based upon the convergence value 

obtained over the range of past vector window sizes employed. 
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  (a)                             (b) 

 
Fig. 3. Autocorrelation plots of the output residuals (a) ACG state space model (b) ABCDG 

state space model. 

 

 

The autocorrelation plots of the residuals shown in Fig. 3 reveal that both state 

space models produced residuals whose autocorrelation falls off steeply and is 

statistically zero after a lag shift of two samples. The results validate the use of the 

proposed state space model and estimation algorithm as a suitable alternative to the 5 

matrices state space representation and Larimore’s stochastic algorithm. 

 

 

4. Fault monitoring statistics 

 

Similar statistics common to those used in PCA based process monitoring can be 

adopted and applied for CVA state space analysis. The computation of the covariance 

matrices in Section 2.3 is necessary to facilitate computation of the Hotelling’s T
2
 

statistics on the state and output residuals. Hotelling’s T
2
 statistics based on the first k 

CVA states, Eq. (51), was used by Negiz and Cinar (1997a) and Simoglou et al.  

(1999b). In this paper the covariance matrix of the k-dimensional state vector kΣ , 

appearing in Eq. (45), is of unity covariance for the models developed due to method 

of CVA employed in deriving the states. Hotelling’s T
2
 and Q statistics based on the 

residuals of the state and output matrix, as proposed by Simoglou et al. (2002), were 

also employed  and they are given by Eq. (45) to  Eq. (49). 
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The control limits were established on the same statistical assumption referenced 

by both Negiz and Cinar (1997a) and Simoglou (1999a), that the T
2
 statistics follow 

an F-distribution: 

 

 
 knkF

knn

nk
Tk 




 ,

)1( 2
2

        (50) 

 

where n is the number of observations and Fα(k, n-k) is the value of the F-distribution 

with k and (n – k) degrees of freedom for a significance level of α.  

 

 The Q statistics follow the weighted χ
2
 distribution and the their control limits 

can be calculated as  

 
2

,/2 2)2/(lim
 

vm
mv        (51) 

where m and v are the mean and variance of the statistics respectively.   

 

 

5. Results of fault detection case study 

 

5.1 The Tennessee Eastman process simulator and modelling  

The proposed simplified CVA modelling approach is applied to the monitoring of 

the Tennessee Eastman benchmark process simulator that has been used extensively 

for studying process control technology and strategies and more recently process 

monitoring schemes. The process, as shown in Fig. 4, consists of five major unit 

operations: a reactor, product condenser, a vapour-liquid separator, a recycle 

compressor, and a product stripper. The simulated faults and a description of the open 

loop TE simulation is provided in Downs and Vogel (1993). The close-loop TE 

simulator adopted for this study is under the control strategy proposed by Lyman and 

Georgakis (1995). The control strategy is a plant-wide control scheme with the 
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control structure arranged in a multi-tiered framework in which SISO control loops 

are classified according to their level of importance to performance of the plant as a 

whole. The four tiers in order of relative importance are production and inventory 

control, product specification control, equipment and operating constraints, and 

economic performance enhancement.  

 

Twenty one pre-programmed faults, summarized in Table 3, were tested and the 

fault detection delays were used to measure the monitoring performance. The data 

sets used were downloaded from http://brahms.scs.uiuc.edu. The statistical model was 

built from the normal operation data consisting of 500 samples and cross-validation 

was carried out using a second data set of 900 samples. All manipulated and 

measurement variables were used except the agitation speed of the reactor stirrer, 

making a total of 52 variables. The model is defined by 35 states and uses a lag order 

of 2 for the past and future vector. Even with the same state vector dimension, the 

proposed state space model provided a reduction in the number of parameters by k(ny 

+ nu), where k is the number of states, nu is the number of inputs, and ny is the number 

of outputs.  

 

The eleven manipulated variables, process feeds and measured disturbance 

variables were all assigned as inputs variables, the remaining process variables were 

assigned as output variables. A comprehensive listing of the process variables and 

their grouping can be found in Downs and Vogel (1993).  
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Fig. 4. Diagram of the Tennessee Eastman process simulator under Lyman and 

Georgakis control scheme 
 

 

 

Table 3. List of simulated disturbances and faults 
 

Fault  Fault Description Fault Type 

F(1) A/C feed ratio, B composition constant (Stream 4) Step 

F(2) B composition, A/C ratio constant (Stream 4) Step 

F(3) D feed temperature (Stream 2) Step 

F(4) Reactor cooling water inlet temperature Step 

F(5) Condenser cooling water inlet temperature Step 

F(6) A feed loss (Stream 1) Step 

F(7) C header pressure loss- reduced availability Step 

F(8) A, B, C feed composition (Stream 4) Random variation 

F(9) D feed temperature (Stream 2) Random variation 

F(10) C feed temperature (Stream 4) Random variation 

F(11) Reactor cooling water inlet temperature Random variation 

F(12) Condenser cooling water inlet temperature Random variation 

F(13) Reaction Kinetics  Slow drift 

F(14) Reactor cooling water valve Sticking 

F(15) Condenser cooling water valve  Sticking 

F(16) Unknown  

F(17) Unknown  

F(18) Unknown  

F(19) Unknown  

F(20) Unknown  

F(21) Stream 4 valve fixed at the steady state position Constant position 
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The AIC criterion proved to be most suitable for prediction of the model state order 

and lag-order for both the proposed and traditional state space models. The plots in 

the top row of Fig. 4 all show a family of AIC plots each corresponding to one of the 

three different complexity terms discussed earlier (Eq. 41 – 43). The AIC plots are 

shown to be less sensitive to the choice of complexity term and all the plots fairly 

followed each other in terms of parabolic fitness. However, the fix size lag/lead order 

employed for the dynamic expansion to construct the past and future matrices is 

shown to be of more influence on the model selection criterion. In the end, a lag order 

L of 2 gave AIC curves with minimum points most consistent with the state order 

return by the MSE plots shown in the bottom row of Fig. 4 and the state order as 

determine by the algorithm proposed in Section 3. The lag order of two also 

corresponds to the minimum MSE attainable as can be observed from the various 

plots.  

 

 

 

   AIC1 – Eq. 41 AIC2 – Eq. 42 AIC2 – Eq. 43 

Fig. 5 AIC and MSE computation for the monitoring-specific SS models (ABC) 

spanning lag size from 1 to 5 and state order from 10 to 50. 
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Both the BIC and LLIC failed to converge and indicate the true state order for the 

model as can be observed in Fig. 6. The LLIC plots generate parabolic shape curves 

but the minimum points of the curve can be observed to be achieved at a much lower-

sate order in comparison to the state order observed by both the AIC and MSE plots 

of Fig. 5. 

 

 

 
 BIC1/LILC1 – Eq. 41 BIC2/LILC2 – Eq. 42 BIC2/LILC2 – Eq. 43 

Fig. 6 BIC and LILC computation for the monitoring-specific SS models (ABC) 

spanning lag size from 1 to 5 and state order from 10 to 50. 

 

 

 

5.2 Fault monitoring results 

 

The two CVA state space models were developed using MATLAB. Based upon the 

computation complexity equations provided in Table 1, the dimension of the training 

data set along with the number of state variables used to define models, the required 

number of FLOPS was 6.58x10
6
 for computation of 5 matrices state space 

representation and 2.53x10
6
 for the proposed state space model.  The numbers were 

consistent with the algorithms computation time recorded in MATLAB. Though the 

computation time was found to vary from run to run, the computation time for the 

proposed model was consistently less, ranging from 29% to 54% of the computational 
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recorded computational times was attributed to fluctuation in the available processing 

power due to demand from other background processes relating to other applications 

that were running on the machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 summarizes and compares the results obtained from the simulation runs 

and compares the fault detection delay time of the best performing monitoring 

statistics of the proposed model with previously published results of other statistical 

methods: correspondence analysis (CA) and (dynamic) principal component analysis 

(PCA and DPCA) carried out on the same data sets, see Russell et al. (2000) and 

Detroja et al. (2007). The detection delay is expressed as the time delay in number of 

samples between fault introduction and its detection. In Table 4, the best performance 

is marked as bold font. The label “F” in Table 4 indicates that the fault was not 

detected. The statistics and model giving the quickest detection for a given fault is 

Table 4.  Detection delay times of the proposed CVA model with previously reported results. 
 

  Delay Statistics 

PCA 

T
2
 

PCA 

Q 

DPCA 

T
2
 

DPCA 

Q 

CA 

Q 

CA 

T
2
 

F1 3 T
2

ey,T
2

ex 21 9 18 15 6 33 

F2 12 T
2

ey 51 36 48 39 33 36 

F4 3 T
2

ey,T
2

ex,Qey F 9 453 3 3 F 

F5 3 All 48 3 6 6 3 27 

F6 3 All 30 3 33 3 3 24 

F7 3 All 3 3 3 3 3 3 

F8 24 T
2

ey 60 60 69 63 60 87 

F10 72 Qey 288 147 303 150 81 186 

F11 18 T
2

ey,Qex 912 33 585 21 33 567 

F12 3 T
2

ey,T
2

ex 66 24 9 24 9 63 

F13 90 T
2

ey 147 111 135 120 123 147 

F14 3 T
2

ey,T
2

ex,T
2

x,Qey 12 3 18 3 3 F 

F15 30 T
2

ey F F F F F F 

F16 18 T
2

ey 936 591 597 588 30 108 

F17 48 T
2

ey 87 75 84 72 66 468 

F18 228 T
2

ey 279 252 279 252 225 288 

F19 6 Qex F F F 246 441 F 

F20 189 T
2

ey, Qex 261 261 267 252 222 252 

F21 765 T
2

x 1689 855 1566 858 780 1527 
 

Hotelling’s T
2
 and Q statistics on output residuals: T

2
ey/Qey; Hotelling’s T

2
 and Q statistics on state residuals: 

T
2
ex/Qex; Hotelling’s T

2
 statistics on the state variables: T

2
X. 
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highlighted in bold in the table. Fault detection using the proposed CVA model not 

only detected faults quicker in most cases but was also able to detect faults (e.g. F15) 

for which the other models were not able to flag. The five monitoring statistics given 

in Eq. (45) to Eq. (49) were applied independently and the best performing detection 

statistics for each fault case was noted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.   Fault detection delay time comparison of the 5 monitoring statistics across 

the 2 CVA state space models. Missing bars indicate zero detection delay time, 

negative bars indicate false alarm condition and full length bars indicate failed/missed 

detections. 
 

 

The bar charts in Fig. 7 compare the fault detection performance of the proposed 

CVA based state space model (ACG) with Larimore’s CVA based state space model 

(ABCDG). Some faults were readily detectable while others proved more difficult to 

detect or undetectable and this general categorization is differentiated in Fig. 7. The 

undetectable or more difficult to detect faults are grouped and shown to the left-hand-

side of the figure (Faults 3, 9, 15, and 21). 

 

The performance of the proposed model is for the most part on par or in some 

cases slightly better than Larimore’s state space model. Again, the Hotelling’s 

statistics on the output error    
  was able to give early detection on Fault No. 15 (cool 
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water valve sticking), see Fig. 8. The detection of this particular fault was not 

achievable by other statistical methods including Larimore’s CVA state space 

modelling technique. The Q statistics based on the proposed CVA model also 

provided modest improvement in the detection of Faults 20 and 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 
Fig. 8. Detection of fault No. 15 using ACG and ABCDG state space models  

 

 

A more recent publication (Odiowei and Cao, 2010) also conducted a 

comparative analysis of their proposed state space independent component analysis 

SSICA approach against the performance of the CVA and dynamic independent 

component analysis DICA approach.  The SSICA is essentially a combination of a 

first stage CVA state space model and a second stage independent component analysis 

ICA approach. The authors attributed the improved performance of SSICA over the 

usual DICA approach due to the fact that CVA SS model is better suited for capturing 

the dynamics of a process than a dynamic principal component analysis DPCA 

method upon which DICA is based. ICA method is said to be better suited for process 

characterised by non-Gaussian distribution.  

 

Both detection delay times and percentage reliability metrics were analysed, 

Table 5 compares extracts of their results with the fault monitoring performance of 

the proposed CVA state space performance. The percentage reliability is defined as 

the percentage of the samples outside the control limits. The proposed model 
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outperformed or detected on par with the SSICA/DICA method in terms of detection 

delay time for faults 1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 16, 17 and 19 but performed 

inferior for the remaining faults not including fault 21 which was not included in 

Odiowei and Cao (2010) fault simulation and analysis study.  

 

Table 5.  Fault detection performance comparison of CVA versus DICA and SSICA 

 Detection Delay time (min) Detection Reliability (%) 

Fault  CVA* DICA SSICA CVA* DICA SSICA 

1 3 9 9 98.58 99.75 99.75 

2 12 15 12 99.44 99.50 99.63 

3 - 21 15 - 19.48 73.03 

4 3 6 6 99.80 99.88 99.88 

5 3 6 6 99.88 99.88 99.88 

6 3 6 6 99.90 99.88 99.88 

7 3 6 6 98.61 99.88 99.88 

8 24 33 18 98.52 98.75 99.88 

9 - 48 18 - 46.82 91.64 

10 
72 

96 18 97.54 96.13 96.75 

11 
18 

18 18 99.44 99.38 99.38 

12 
3 

15 15 99.58 99.50 99.50 

13 
90 

96 18 97.60 96.13 96.25 

14 
3 

6 6 98.57 99.88 99.88 

15 
30 

15 12 99.68 99.50 99.63 

16 
18 

21 18 98.75 99.25 99.38 

17 
48 

48 18 98.75 98.13 98.38 

18 
228 

21 21 99.80 99.25 99.25 

19 6 6 6 98.57 99.88 99.88 

20 189 72 18 98.61 97.13 97.63 

 

 

In particular, Odiowei and Cao (2010) have reported successful detection of 

faults # 3 and # 9 with relatively high reliability. Based on the authors’ literature 

review, no other publications have reported achieving such. Beside these two faults, 
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the fault detection reliability was above 97% for all detectable faults for the proposed 

CVA state space model and therefore gave an overall better fault performance than 

both the DICA and SSICA schemes in that regards. 

 

The detection performance of a given fault detection scheme (model and 

statistics) is dependent upon both components of the system. A particular 

parameterization of a model may favour detection of certain types of fault over others. 

Hence, for some faults analysed, the detection delay time was sensitive to 

specification of the model in terms of state vector dimension and lead/lag window 

size. 

 

 

6. Conclusions 
 

 

A simplified CVA based state-space model design for the specific purpose of 

process monitoring was achieved using a simpler and more efficiently estimation of a 

reduced set of state space parameter matrices. The performance integrity of the state 

space model was maintained in conjunction with a dramatic reduction in the number 

of model parameters and simplification of the set of stochastic estimation equations 

used to derive the model parameters. Application results on the Tennessee Eastman 

benchmark process indicate that the proposed state space representation and model 

development technique provides comparable, and in many cases better, fault detection 

performance than the traditional CVA state space modelling technique. Most notable 

is the detection of fault No. 15 in the Tennessee Eastman benchmark process and the 

significant reduction in detection delay time achieved for the more difficult to detect 

faults. The overall best performing monitoring statistics in terms of fault detection and 

detection delay time is the Hotelling’s T
2
 statistics of the output residuals T

2
ey.   

 

The fault detection performance also faired comparably to that reported for the 

DICA and SSICA schemes (Odiowei and Cao, 2010)  save for the unprecedented 

detection of faults 3 and 9.  However, for those faults detectable by the proposed 

CVA method, the percentage performance reliability was better on average than that 

of DICA and SSICA. Future research could explore what further fault performance 

improvements could be yield from combining the ICA approach with a CVA state 

space model as proposed in this paper. Diagnosis or isolation of faults including 
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multiple simultaneous faults based on CVA state space model will be investigated in 

the future.  
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