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In Part I (Rodriguez, Vecchietti, Harjunkoski, & Grossmann, 2013), we proposed an optimization model to
redesign the supply chain of spare parts industry under demand uncertainty from strategic and tactical
perspectives in a planning horizon consisting of multiple time periods. To address large scale indus-
trial problems, a Lagrangean scheme is proposed to decompose the MINLP of Part I according to the
warehouses. The subproblems are first approximated by an adaptive piece-wise linearization scheme
that provides lower bounds, and the MILP is further relaxed to an LP to improve solution efficiency
while providing a valid lower bound. An initialization scheme is designed to obtain good initial Lagrange
multipliers, which are scaled to accelerate the convergence. To obtain feasible solutions, an adaptive
linearization scheme is also introduced. The results from an illustrative problem and two real world
industrial problems show that the method can obtain optimal or near optimal solutions in modest

computational times.
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the spare parts industry, or more specifically the electric motor industry as was illustrated in part 1 (Rodriguez, Vecchietti, Harjunkoski,
& Grossmann, 2013), there are some key issues that strongly influence the cost of the supply chain. One is that a low-level inventory is
important (bound capital). Moreover, it is critical that a spare motor can be obtained as soon as possible since the motor is a key part of
the customer plant. Tens or hundreds of different types of motors are required by the customers. Also, the criticality of a given unit can be
very different. If the time requirement is very tight, it might be necessary to have some motors in stock at the customer sites. The main
objective of the model is to optimally redesign supply chain to meet the demand with minimal costs involving decisions on where to place
warehouses, which installed warehouses should be expanded or shutdown, as well as deciding the stock capacities, safety stocks required,
and how to connect the different echelons of the supply chain in order to satisfy uncertain demand of motors. Due to the above features,
the problem corresponds to a large scale MINLP problem that is very hard to solve.

Lagrangean decomposition has been successfully applied to large-scale mathematical programming problems (Wang, 2003). According
to the problem structure, temporal and spatial decomposition can be adopted (Terrazas-Moreno, Trotter, & Grossmann, 2011). The sub-
gradient optimization is a popular method for updating the multipliers in Lagrangean decomposition (Baker and Sheasby, 1999), although
the convergence of the multipliers is the main challenge. Other contributions include methods for accelerating convergence through the
use of subgradients (Baker and Sheasby, 1999; Fumero, 2001) and other strategies (Mouret, Grossmann, & Pestiaux, 2011; Buil, Piera, &
Luh, 2012). In Terrazas-Moreno et al. (2011), an economic interpretation of the multipliers is given, which can benefit from the problem
structure to accelerate the convergence. Considering that the dual problem is a high-dimensional nonlinear problem, the shape of its
domain and contours is a key to accelerate the convergence, and the interpretation from an economic view may be helpful.

This paper is organized as follows. In Section 2, the model from Part I is reformulated. In Section 3, a decomposition scheme is proposed,
and the methods to solve the subproblems, initialize and update the multipliers, and design of the feasibility problem are discussed. The
results from an illustrative example and two real world industrial problems are shown and discussed in Section 4. Finally, some conclusions
are drawn in Section 5.
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Nomenclature
Indices
c criticality levels of motors
i factories
j warehouses
k end customers
p standard units
S special units
t time periods
Sets
CTys customers k that allow used repaired units to satisfy their demand of units
JF subset of warehouses j that are already installed (fixed) at the beginning of the horizon planning
KSCysc  customers k that order special units s of criticality ¢
KTy customers k that order tailor made units s
PSps special units s belonging to standard unit p
SC subset of warehouses j that can be also considered as repair workshops

Ujkst
Vjkst
Wit

e
i
Wit
Xijpt
Yijt

e
g
Yj
Zjkt
Bi

l ksct
lj/' ksct
Myesce
m]/'ksct
e

T W[j
TOF¢
TE;

TE Wtj
TU;
TOV;
TOVw,j
TPV
TPVw,j
TR:
TTF;
TTFWU‘
TTFcer
TTW;
TIWWtj
TPG;
TPCc;r
1SSt
TSSwj

Binary variables

if factory i produces and delivers tailor made unit s to end customer k in period t
if repair workshop j repairs special units s from customer k in period t

if factory i is installed in period ¢t

if warehouse j is expanded in period t

if factory i is uninstalled (eliminated) in period t

if factory i produces and delivers standard units p to warehouse j in period t
if warehouse j is installed in period t

if warehouse j is expanded in period ¢

if warehouse j is uninstalled (eliminated) in period t

if warehouse j delivers units to customer k in period t

auxiliary variable for linearization of subproblems

Positive variables

net lead time of customer k for special unit s of criticality c in period t

net lead time of customer k if special unit s of criticality c is provided by warehouse j in period t

net lead time of customer k for tailor made unit s of criticality c in period t

net lead time of customer k if tailor made unit s of criticality c is provided by warehouse j in period t
the total investment cost in period t

the total investment costin new warehouse j in period t

the total operational fixed cost in period t

the total operational fixed cost in warehouse j in period t

the total investment expansion cost in period t

the total investment expansion cost in warehouse j in period t

the total shutdown cost in period t

the total shutdown cost in warehouse j in period t

the total variable cost in period t

the total variable cost in warehouse j in period t

the total variable cost in factories for the motors transported in period t

the total variable cost in factories for the motors transported to warehouse j in period t

the repair cost in period t

the repair cost in warehouse j in period t

the transportation cost from factories to warehouses and customer sites in period t

the transportation cost from factories to warehouse j in period t

the transportation cost from factories to customer sites in period t

the transportation cost in period t

the transportation cost from warehouse j in period t

the mean inventory cost at customer sites for the special motors from warehouse and tailor made motors in period t
the mean inventory cost at customer sites for the special motors from warehouse j in period t

the mean inventory cost at customer sites for the special motors from tailor made motors in period t
the summation of the safety stock cost in period t

the summation of the safety stock cost at warehouse j and customer sites for the special motors from warehouse j in period
t
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TSSc,r  the safety stock cost at customer sites for tailor made motors in period t
TBT; the lost sales stock cost for special motors in period t
TBTwy;  the lost sales stock cost for special motors from warehouse j in period t
AZye; Mgies A€ the positive Lagrange multipliers
ar, ajyy, y2 auxiliary variables for linearization of subproblems
M;i}‘;‘; amount of demand of standard units p from customer k satisfied with new units from factory i and warehouse j
M};{i‘id amount of demand of special units s from customer k satisfied with used units from repair workshop j
et amount of demand of tailor made units p from customer k satisfied with new units from factory i
'L']?,*f;d amount of demand of tailor made units s from customer k satisfied with used units from repair workshop j
Variables
g=(gzl,. gVl gmuctlfpt, gtol”  gc™)' the subgradients of the Lagrangean function
bY the general independent variable
xP the solution of the previous iteration for linearization of feasibility problem
Xt the temporal variables for linearization of subproblems
y the general dependent variable
L the Lagrangean function
L; the part for warehouse j of the Lagrangean function
Ly the remaining part of the Lagrangean function excluding L;
Amuctyp,; Atolys, the Lagrange multipliers
Parameters
a the scalar for linearization of feasibility problem
b1y unit annual lost sales cost for special unit s at customer k
cly unit transportation cost from factory i to warehouse j
C2j unit transportation cost from warehouse j to customer k
c3ix unit transportation cost from factory i to customer k
2jkp order processing time of customer k for standard unit p if it is served by warehouse j, including material handling time in

k, transportation time from warehouse j to k, and inventory review period in the customer site
ap production factor rate for standard unit p
o, oy, o the scalars for subgradient scaling
Miesct mean demand of special units s of criticality ¢ from customer k in period t

Osct demand standard deviation of special units s of criticality ¢ from customer k in period ¢t
xL,xU  the lower and upper bounds of x
X days in the year

2. The supply chain model reformulation

In order to design the decomposition algorithm, we reformulate the model from Part I to aggregate the terms in the objective and
constraints according to the warehouses for which we consider potential selection, capacity expansion and shutdowns. In the reformulated
model, we assume for simplicity that no factory expansion and shutdown are considered. That is, all the necessary factories are given with

fixed capacities at the beginning of time horizon for the design of the supply chain.

Firstly, the cost terms (Egs. (54), (56), (58), (60), (62)—(70) from Part I) are disaggregated in the objective function (Eq. (72) from Part I)

in terms of the warehouses j, as follows.
Tlr=Y Tiw,; Yt
>
where TIw;; denotes the total investment cost in new warehouse j in period t.
TOF; = TOFwy Vit
> o
where TOFw; denotes the total operational fixed cost in warehouse j in period t.
TE; = TEw,; YVt
5 o
where TEw;; denotes the total investment expansion cost in warehouse j in period t.
TU; = TUw,; Vt, Vt
> o,
where TUw,; denotes the total shutdown cost in warehouse j in period t.

TOVe =)~ TOVw, Vt
]

(1)

3)

(4)

(5)
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where TOV;; denotes the total variable cost in warehouse j in period t.
TPV, =y TPVw, vt (6)
> rvs
where TPVw,; denotes the total variable cost in factories for the motors transported to warehouse j in period t.
TR = TRw V't 7
t ZjESC y ( )
where TRVw,; denotes the repair cost in warehouse j in period t.
TTF; = TTFwy + TTFcer V't 8
t=) TPy + TTFc (8)

where TTFw;; denotes the transportation cost from factories to warehouse j in period t, and TTFc;r denotes the transportation cost from
factories to customer sites in period t.

TTW; = TTWw, Vt, Vt 9
‘ ZjeSC u ( )
where TTFw;; denotes the transportation cost from warehouse j in period t.
TPW; = TPWw,; VYt (10)
5w,
where TPWw;; denotes the mean inventory cost in warehouse j in period t.
TPC; = TPCw¢; + TPCcir V't (11)
7 o + 7

where TPCw;; and TPCc,r denote the mean inventory cost at customer sites for the special motors from warehouse j and tailor made motors
in period t, respectively.

TSS; :ZZMW SSprt > > > > h2e A2k kst e+ D > D 2k A2k kst Vst

j k s¢KTysCeKSCksc k seKTysC e KSCysc

= > TSSwy + TSScrr (12)
)

where TSSw;; denotes the summation of the safety stock cost at warehouse j and customer sites for the special motors from warehouse j
in period t, and TSSc; denotes the safety stock cost at customer sites for tailor made motors in period t.

, A245/—0.59 ZJkt
TBT; = ZZZ D7 Dl 045 O [l €2 = TTwg (13)

ij
k  S¢KTysC € KSCysc

where TBTw;; denotes the lost sales stock cost for special motors from warehouse j in period t.

Egs. (55),(57),(59) and (61) from Part I are not included since the factories are assumed to be given. We therefore include Eqgs. (1)-(13)
above and (71) from part I in the objective function.

Also, constraint (30) from part I can be rewritten as follows.

l]ksct ZSipt * Zjkt + 2 jkp * Zjkt — Rksc (14)
We consider Eq. (14) above and Eqgs. (10)-(15), (18), (19), (24)-(29), (31)-(41), (52) and (53) from part I (Rodriguez et al., 2013) as the
constraints of the reformulated MINLP model.
3. Lagrangean decomposition algorithm
3.1. Lagrangean decomposition steps
Based on the reformulation of the model, we decompose the problem by warehouses. This requires dualizing constraints (8) and (9)
from Part I, as they couple the different warehouses by specifying that the summation of warehouses assigned to a certain customer not

exceed one. Considering that the demand constraints and factory capacity constraints also couple the different warehouses, constraints
(20)-(23) and (53) from Part I are also dualized.
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Hence, the Lagrangean function is as follows.

>~ Tt + TOF; + TE¢ + TU¢ + TOV; + TPV + TRy + TTF; + TTW; + TPW + TPC; + TSS; + TBT; + TBS;
(1+4ir)

+ Zk[ |:)“zkt (Zjljkt — 1):| + Zsk[ |:)LUS,<t (Zjvjkst — 1)} + kat kmuctkpt Z,‘Zj“gﬁl‘x

d new
D e~ 2 sepsye 2 D g | Pl | DD =D seps,e 2
je scMka S €PSps cekscyse Hsct kpt kpt i j'ul]km S€ PSPS ¢ e KSCpsc Hsct

Se CTkS N §é CTks

+ E Atol E Thew E zused _
t,(k,s) € KTy [ kst i ikst jesc Jkst E :ce Ksckscﬂksct
+ E Atol Thew _
£,(k,S)¢KTs [ kst E :i ikst E e ’<SC:<schSCt

3 e (D00 -0 = afe ) | ATz A, Amuctiye htols 1) (15)

where Az >0, Avg, >0, Amuctyy,, Atoly; and Ac>0 are the corresponding Lagrange multipliers.
According to Egs. (1)-(13) from Part Il above and (71) from Part I, Eq. (15) can be rewritten as follows

L Z Z TIwy + TOFwy; + TEwyj + TUWy; + TOVWy; + TPVWy; + TRwy; + TTFwy; + TTWwy; + TPCwy; + TSSwyj + TBTwy;
j t (1+ir)t

(TTFcr + TSScer + TPCeyr + TBSCt)
+ + E E AZ Zigr — E Az + E E Mgt Vikst — E Av
t (1+ir) Lt K ke okt j L kKt sk Kt

d
+ E E [Amuct ( E e+ Mo |- )} - E Amuct E E
ikt kpt i“ukm Hikpt jesc kot kpt s € PSps e KSC,(SCMkSCt

SECTkS

d
+E E Amuct E new | — E Amuct E E + E E Mol T3S
i kpt( kot L ijept kpt kpt /4 s e PSps ceKsc,kas“ JeSCLmtt(kis)eKTg oL kst

1

S§éCTks

E Atol E new _ ol e
+ t,(k,s) e KTy |: kst < ; kst E CEKSCIGCMkSCt>:| + Zt’(k's)ém'ks |: kst ( E ; Vikst § CeKSCksc'ukSCt)]

new Z up
+ ijit |:)\‘C (Zkzpﬂiﬂcpt : ap)} - i[)\-C QPI (16)

Defining for each warehouse j

Tiwj + TOFwy; + TEy + TUW,g + TOVwwg; + TPVwyj -+ TRwyg + TTFwyg -+ TTWiwgg + TPCwy + TSSwig + TBTw
L= Zr (1+ir)

i : new used new
+ Zkt)\,zktzjkt + Zskt)\.vsktyjkst + kat {Amuctkw (quijkpt + Mot ies c)} + kat (AmuCtkptZMijkp[>
i
used new .
* Zr,(k,s)emks“oh‘“ Tkt [jesc ™ Z,»t {)‘C (Zkzp“ijkm “P)} Vje] (17)
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| original MINLP |

|

Relax the coupled logic, demand
and factory capacity constraints

| Subproblem P, SubproblemP_W| | | Subproblem P,

| Dual solution/lower bound |

| Feasible solution/upper bound |

X . Meet
Final solution G
criteria?

Fig. 1. Steps of Lagrangean decomposition algorithm.

Update multipliers I—

and defining for the remaining cost terms (transportation cost for tailor made motors from factories to customers, safety stock cost at
customer sites for tailor made motors, the mean inventory cost at customer sites for tailor made motors and lost sales cost for tailor made

motors)and the penalty terms of the Lagrange multipliers except the ones involving variables zj;, Vjks, MZ%")"[ ;L;’,f;f and 'L'Jll‘f:td

(TTFc¢r + TSScet + TPCct + TBSct)
Ly = - AZjy — AVge — Amuct,
T Zt A +ir)t Zk[ kt Zskt skt kat kpt Z S e PSps Zcel(SCkSE Hsct

SEGICS

Sy e | e (S
kat k2 s €PSps 2 uccisc, Mt t.(k.s) KTy kst i st el

S ¢ CTks

Atol new _ — AcQPUP 18
X g, [0 (- F e )| - X e (19)

L= Li+L (19)

Thus, the Lagrangean function is decomposed into |j| +1 terms as L;, Vje] and L,. We can obtain the subproblems denoted by
P;, Vje]and Py, as follows.
Pj: min L;
subject to (11),(12),(14), (15),(18), (19), (24), (26)-(28), (31)-(41), (52) from Part I and (14) from this Part for given j.
p: min L,

subject to (10), (13),(25), (29) and (53) from Part L.

Using Lagrangean decomposition, the subproblems can be solved individually for a given set of Lagrange multipliers. The summation
of the objective values then provides a lower bound of the primal problem, and the multipliers can be updated according to the solutions
of the subproblems. The steps of the algorithm are shown in Fig. 1.

3.2. Solving the subproblems

Each subproblem ‘]‘ +1orL;, Vje]isalsoalarge scale MINLP with nonlinear terms in the objective given by the square roots with
positive coefficients. Considering a piecewise linear approximation of the square roots as shown in Fig. 2, each of subproblems reduces to
an MILP that provides a lower bound to the MINLP.

For a square root term, y = +/x, with xt and xU as the lower and upper bounds of continuous variable x respectively, we consider a
temporal point x{, with which the piecewise linear approximation is given by Eqgs. (20)-(22)

x = y1xt+ Bryaxt + (1 - B)yaxY (20)
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NES

L ¢ A

x x u

X

Fig. 2. Piecewise linear approximation of the nonlinear term of the subproblems.
Vitya=1 (21)

}/=V1\/;+51V2\/;+(1—ﬂ1)1/2\/x7” (22)

where vy; and vy, are positive continuous variables, §; is a binary variable that indicates whether x lies between x' and x!.
There are bilinear terms f;y, in Eqs. (20) and (22). We introduce positive continuous variables a; and a; as auxiliary variables, and
constraints (23)-(25) as follows.

a+a;, =y (23)
a < p (24)
a=<1-p4 (25)

Then, a; = B1y»- Hence, Eqgs. (20) and (22) can be rewritten as Eqs. (26) and (27).

x = yixt + aixt + yoxV — aixV (26)

y=V1\/;+01\/>Z+V2\/X7—al xU (27)

Thus, the square root term y = +/x can be approximated with the linear Egs. (21), (23)-(27).

We adopt an adaptive scheme to update the temporal point. In the first iteration, we take x* = (x 4+ xU/2), and in the following iterations,
xtis assigned with the solutions of the previous iteration. This is because the solutions of the previous iteration are close to the real solutions,
and the linear approximation with the temporal point the original upper and lower bounds is relatively accurate near the temporal point.
Then, we can expect that x’s will converge to the optimal solution of the primal problem.

Furthermore, considering that the approximate problems are MILP problems with 0-1 binary and continuous variables, we consider an
LP relaxation that can provide a lower bound to the MILP, which in turn is a lower bound to the original MINLP.

3.3. Feasibility scheme

A feasible solution is necessary to update the upper bound of the primal problem and provide a candidate solution. With the current
Lagrange multipliers, we can obtain the solutions of the subproblems. But in general, the solutions are not feasible for the primal problem,
especially constraints (8) and (9) from Part I are violated, and the value of z,, and v, may not be integer. Therefore, to construct a feasible
solution, we specify zj; and vj; with Algorithm Specify.Algorithm Specify
Start;

NoOneU(k, t) = 1;

NoOneV(k,sp,t)=1;

while(j €],

if(z(j, k, t) = max; z(j', k, t)and NoOneU(k, t) = 1) = 1, then specify z(j, k, t)with 1;
if z.I(j, k, t), then NoOneU(k, t) = 0

if(vd.I(, k, sp, t) = max;vd.I(j', k, sp, t)and NoOneU(k, , sp, t) = 1),

then specify v(j, k, sp, t)with 1;

NoOneV(k, t)$v.1(j, k, sp, t) =0

End;)

In the algorithm, the initial values of z and v come from the corresponding solutions of the subproblems. The algorithm means that
we specify Zige and Vit with 1 for j! = arg max;(Zj) and j2 = arg max;(Vjkst) (if j1 or j2 is not unique, we take the first one by increasing
order), and specify zj (j # j') and vy (j # j2) with 0.

When zj, and vj, are specified with algorithm Specify, the feasibility problem reduces to an MINLP with binary variables, including x;;,e
and yjt, y}?t, yj”t, and continuous variables. The nonlinear terms involve square root functions. To design an efficient feasibility scheme, we

design another adaptive linear approximation scheme, which is shown in Fig. 3 with x§ and xg updated iteratively.
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Vx

|
|
|
|
|
|
|
|
|
|

ol 1 xP x5 x

Fig. 3. Linear approximation of the nonlinear term of the feasible problem.

For a square root term, y = /x, with xt and xV as the lower and upper bounds of continuous variable x, respectively, we consider a pair
of temporal points xg and xg. Then, the linear approximation is given by Eq. (28).

V% - \fx X))+ /xL (28)

Y= t
XL —xt

The pair of X! and x4 are updated adaptively as in Egs. (29) and (30).
X =x] +axP -x}) (29)

x5 =x5 +a(xP —x5) (30)

where )'cﬁ and )'cg are the updated points, xP is the solution of the previous iteration, a is a scalar in (0,1), and we specify a with 0.05 in
our algorithm. Thus, we can also expect that xﬁ and xg will converge to the optimal solution from opposite directions. Hence, we obtain
an MILP problem, denoted MILPFeas as an approximate feasibility problem. By solving MILPFeas, we can obtain a near optimal solution,
according to which we calculate the exact objective with the original nonlinear function, which corresponds to an upper bound to the
primal problem.

Here, for the feasibility problem, we use two temporal points to approximate the nonlinear terms, while we use only one temporal point
to approximate the linear terms for the subproblems. The reason is that we have found from numerical experience that the solutions of
the previous iteration are close to the real solutions. However, for the subproblems, two linear sections are needed to better approximate
the nonlinear term.

3.4. Multipliers initialization and update

The appropriate multipliers of the demand constraints can help the solution of the subproblems to meet the demand. Furthermore, the
Lagrange multipliers can be interpreted as the price of the products. Considering the Lagrangean function (15), if the demand is not met,
a penalty will be incurred with the corresponding multipliers. At the same time, when the customer order is satisfied, the company has
to incur in production cost, transportation cost, stock and repairing cost. Therefore, when the penalty and the cost reach a balance, the
demand will be satisfied. In this way, we can estimate the multipliers of the demand constraints by calculating the unit cost of a feasible
solution of the primal problem. Practically, we specify zj; and vj, arbitrarily to satisfy constraints (8) and (9) from Part I, and solve the
feasibility problem. According to the solution, for each tuple (k, p, t) and (k, s, t), we calculate a total cost involving the corresponding terms
in Egs. (62)-(69) from Part I as Egs. (31) and (32), then divide the cost by the corresponding demand. This is the average variable cost of
the corresponding motor to meet the demand, the opposite of which we take as the initial value of the corresponding multiplier. The other
multipliers are specified with 0 as the initial value.

(ZiZJZpgf Mgt X+ D002 p8P Mgt X+ Djesc2op8lip Kiipt X+ 2p2idesc2opCli - Mgt X
+Zi2}2p‘:2ﬂ< “Hijipe - X+ EjeSCz e xY Mﬁsﬁd + ZiZijmjp “Hijipe - Elijp
+2222p02k0 - Mijipe - ik + 2250 p M SSipt + D gier, D eniesce 12k - A2%s - Ohset lksct)

(o g+ s L)

AMmuctp = — (31)

/. gused hew 262 - % - used h2y - A2u. - O .Jm
(stSCZSEI(TkSgJS st X+ZE ZSEKTk ik " Tist X+Zjesczk il X EssKTks Jhst +E ZSEKT,(SZCEKSCGC k= ks * Ohesct ™/ Tlksct
E new rused
( lrlkst + jjeSC ijI )

Ato lksto ==

(32)
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—

1 Scaling

Fig. 4. Contours of the dual problem.

The subgradient optimization is a common method for updating the set of multipliers for the Lagrangean relaxation (Baker and Sheasby,
1999). In our problem, a scaling scheme is applied based on the fact that the multipliers of the demand constraints are equivalent to a
unit cost. Furthermore, there are a large number of multipliers and their values range from the hundreds to the thousands. However, the
subgradients of constraint (8) and (9) from Part I cannot exceed the number of warehouses (only 5 warehouses considered in our real
world cases), and the corresponding multipliers are of the same order. This fact tends to make the contours of the dual problem long and
narrow, as illustrated in Fig. 4, making the dual problem hard to converge. To overcome the problem, we scale all the multipliers to be the
same order of magnitude by scaling so that the contours become near circles. The scaling scheme is as follows.

Recall that L = f(Azy;, AVsie, AMUcgepe, Atolis;, Ac), and the subgradients of fis g = (gz],., gvl,,, gmuct] . gtol] , gc.

p
Let Az = zAzZy, Mgy = AV, AMUCE e = omudmuct; , Atolys = arAtol,  Ac = acAc’, where ap’s are positive scalars, we can rewrite

kpt’
1

Amu

T
: £ 7 7 ’ T 1 T 1 g-T
the function as L = f'(Az,, Avy,,, kmuctkpt, Atol, gmucty ., a:8tol, 5-8¢ ) .

To make all the multipliers of the same order, we specify o, with 1, and «, &mu, ¢, oc with 10* which are closest to the corresponding
initial multipliers, where x is an integer, then the multipliers are scaled with Eqgs. (33)-(37).

: ol — [ LopT 1 gofT
Ac"). Then the subgradients of f is g’ = (Egzkt, o8V

, 1
AZy, = a—zkzk[ (33)
, 1
AV, = OTU}\Uskt (34)
, 1
)\muctkpt = a—mu)\muctkpt (35)
, 1
Atol = O[—MolkS (36)
¢
A = l)\c (37)
Oc

3.5. Lagrangean decomposition algorithm

In summary, the Lagrangean decomposition algorithm is as follows.

3.6. Algorithm LD

Step 1: Transform the original MINLP into an MILP, denoted MILPWh, by approximating the square root terms with piecewise linear
ones according to Eqs. (21), (23)-(27), and relax all the binary variables to obtain an LP, denoted LPWh; Obtain subproblems P;, Vje<]Jand
P of LPWh by relaxing constraints (8) and (9) from Part [;

Step 2: Transform the original MINLP into an MILP, denoted MILPFeas, by approximating the square root terms with a linear approxi-
mation according to Eq. (28);

Step 3: Specify zj; and vjs arbitrarily subject to constraints (8) and (9) from Part I, then solve MILPWh, and initialize the Lagrange
multipliers Amucty, and Atolys according to Eqs. (31) and (32) respectively, initialize the other Lagrange multipliers Az, AV, Amuct,’{p[, A
to O;

Step 4: Scale the Lagrange multipliers according to Egs. (33)-(37);
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Table 1
Size of the cases.
Component Case 1 Case 2 Case 3
Factories 3 7 7
Warehouse candidates 7 5 5
Customers 27 27 27
Standard motors 32 32 99
Special motors 49 49 396
Criticality levels 4 4 4
Periods of time horizon 5 5 5
Table 2
Model statistics.
Item Case 1 Case 2 Case 3
Number of constraints 326,151 430,707 1,471,287
Number of variables 190,414 236,853 807,713
Number of binary variables 14,444 16,339 47,654

Step 5: Solve subproblems P;, Vj <] and Py, obtain the dual objective l;; by summarizing the objectives of the subproblems, update the
lower bound of the original MINLP with the summation of, denoted lup;;, where it denotes the iteration;

Step 6: Call Algorithm Specify to specify zji; and vji according to the solutions of the subproblems, then solve MILPFea; Calculate the
objective of the original MINLP according to Eqgs. (1)-(13) from this second Part and (71) from part I using the solutions of MILPFea, update
the upper bound of the original MINLP, denoted fup;, with it as the iteration;

Step 7: If the convergence criterion is satisfied, stop the algorithm; otherwise, update x! in equations (26), (27) with the
corresponding solutions of MILPFea, xP in Eq. (28) using Egs. (29) and (30), and update the scaled Lagrange multipliers using

(A2}, Ay, Amucty, Atol; )Lc’)iprl =Py ((Az;{t, AV, Amuct;, Atol) )»c’)m] + (fupir — l"‘)|gg?)’ where P, zy(.) means projection to
the space with nonnegative AZy, Mg, AC, and go to step 5.
4. Results

The application of the proposed Lagrangean decomposition algorithm is shown in this section. All the cases are executed in GAMS 24.01
using a CPU Intel(R) Core(TM) i7 CPU 870@2.93GHz with RAM 12.0 Gb. We have run three cases for the supply chain described in Part
I, with the number of the components in each echelon and the numbers of motors shown in Table 1. Furthermore, we assume that the
number of factories is fixed, while for the warehouses we consider all the locations as potential ones whose capacities can be expanded
or shutdown except that warehouse J1 is installed at the beginning of time horizon because it operates as a main warehouse. Case 1 is a
relatively small illustrative problem, while cases 2 and 3 are based on real world industrial data. The model statistics of 3 single MINLP
problems are shown in Table 2.Each of the models is solved with 5 algorithms. First, the model is solved with DICOPT as a single MINLP
problem (MINLP). Then, the nonlinear terms are approximated by piecewise linearizations with 2 and 5 intervals respectively (MILP-2,
MILP-5), and the MILP problem is solved by CPLEX. Next, the MINLP problem is solved by the approach proposed in Part [ (AltNLPMILP).
Finally, the problem is solved by the Lagrangean decomposition algorithm proposed in this Part Il paper (LD).

Case 1. The objective values and CPU times required are shown in Table 3.

The iteration details of the LD results are shown in Figs. 5 and 6.

In Fig. 5, it can be seen that the gap between the lower and upper bound is reduced to 0.003% at iteration 7, and the CPU time required is
about 130s. In Table 3 it can be seen that the MINLP model cannot obtain any feasible solution after more than 3 h. The CPU times required
by the MILP models increase quickly as the number of intervals grows, but the accuracy cannot be improved. The CPU time of AItNLPMILP
is about 2 thirds as large as the one for MILP-2 with a slightly higher error (0.31% vs. 0.24%). The Lagrangean decomposition algorithm
reaches the optimal solution faster in about 130s. The convergence of several multipliers is illustrated in Fig. 6.

The capacity profiles of the 3 selected warehouses (J1, J3 and J7) are shown in Table 4. The cost details of the optimal solution obtained
with the Lagrangean decomposition algorithm are shown in Figs. 7-10.

The variable costs of warehouses for new motors are illustrated in Fig. 7, where the x-axis indicates time period, while y-axis indicates
variable costs in dollars. The stock cost, safety stock cost and repair cost of warehouses are illustrated in Figs. 8-10, respectively.

Case 2. The objective values and CPU times required for case 2 are shown in Table 5. The convergence of several multipliers is shown in
Fig. 13

Table 3

Objective values and CPU time required by different algorithms for Case 1.
Name Optimal objective ($) Error (%) CPU time (s)
MINLP No feasible solution - 12,159.84
MILP-2 5,747,911.87 0.24 683.67
MILP-5 5,748,118.91 0.24 10,086.24
AItNLPMILP 5,752,005.04 0.31 460.02
LD (30 iterations) 5,733,962.14 0 551.92

LD (7 iterations) 5,733,962.14 0.003% 130 (estimated)
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Table 4
Capacity profiles of warehouses for Case 1.

SKUs Year 1 Year 2 Year 3 Year 4 Year 5
n 2000 2000 2000 2000 2000
3 40 40 40 40 40
J7 50 50 50 50 50

In this case, only J1, 3 and J7 are installed, where the initial capacity of J1 is much larger than the capacities of ]3 and J7.

In Fig. 11, it can be seen that the gap between the lower and upper bound is reduced to 0.004% at iteration 8, and the estimated CPU
time required is 162 s. There are similar trends as in case 1. The capacity profiles for case 2 of the 3 selected warehouses (J1, ]2 and J3) are
shown in Table 6 (Fig. 12).

Case 3. The objective values and CPU time required for case 3 are shown in Table 7. The convergence of several multipliers is shown in
Fig. 14

In Fig. 12, it can be seen that the gap between the lower and upper bound is reduced to 0.003% at iteration 7, and the estimated CPU
time required is 4696 s. There are similar trends as in case 1. Both MINLP and MILP-5 cannot find any feasible solution, and AItNLPMILP
performs similar to MILP-2 with about twice the CPU time.

Table 5
Objective values and CPU time required by different algorithms for Case 2.
Name Optimal objective ($) Error (%) CPU time (s)
MINLP 6,537,842.48 5.40 32,288.42
MILP-2 6,354,304.15 2.44 798.99
MILP-5 6,354,304.15 2.44 86,020.932
AItNLPMILP 6,358,672.25 2.51 530.11
LD (30 iterations) 6,202,732.33 0 607.58
LD (8 iterations) 6,202,732.33 0.004% 162 (estimated)

The iteration details of the LD results are shown in Figs. 11 and 12.
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Capacity profiles of warehouses for Case 2.
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Table 7

Objective values and CPU time required by different algorithms for Case 3.

Name

Optimal objective ($)

Error (%) CPU time (s)

MINLP

MILP-2

MILP-5
AItNLPMILP

LD (30 iterations)
LD (7 iterations)

No feasible solution
120,349,878.7579
No feasible solution
120,657,481.7045
108,178,792.52
108,178,792.52

- 360,123.00
11.25 10,871.29

- Out of memory
11.53 19,942.81
0 20,125.03
0.003% 4696 (estimated)
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From Figs. 5, 11 and 12, we can see that the optimal solutions are all obtained in the early iterations, namely iteration 1, 1, and 3
respectively. The reason is that due to the initialization step, the initial Lagrangean multipliers are close to the optimal one, therefore, the
dualized binary variables obtained by the subproblems and algorithm Specify can reach their optimal values in the early iterations.

To summarize the three cases, we can conclude that the Lagrangean decomposition algorithm can obtain the optimal solution efficiently.
The algorithm performs similarly on different scale cases, and as the problem scale increases, the advantage becomes more apparent,
especially for highly constrained problems.

5. Conclusions

The supply chain of electric motor is complex due to many decisions, especially the reverse flows, which results in a large scale MINLP
problem, whose number of variables and equations can range from thousands to millions. Therefore, the solution of this type of problem is
a challenging task. Lagrangean decomposition is a popular method for large scale problems, but the decomposition scheme depends on the
problem structure. In this paper, we decompose the problem by warehouses. Given that warehouses share the demands of customers and
capacities of factories, the corresponding constraints have to be dualized simultaneously. As a consequence, there are a large number of
Lagrange multipliers, which are quite different in scale. To accelerate the convergence, a scaling scheme has been proposed. Furthermore,
considering that the multipliers can be interpreted in an economic sense, we design a method to estimate initial values for them. Another
challenge for the decomposition method is that the sizes of the subproblems are still quite large involving nonlinear terms and binary
variables. An adaptive piecewise linearization method is proposed to approximate the nonlinear terms. To obtain feasible solutions, another
adaptive piece-wise linearization is also presented. The test results on illustrative and real world industrial problems show that the
Lagrangean decomposition algorithm is effective and efficient, while the single MINLP is hard to solve and the MILP approximation is only
computationally feasible with a few intervals. The AItNLPMILP of Part I performs similarly to the MILP approximation. The advantage of
the proposed method is especially apparent for large scale and highly constrained problems. That is, if there are many motors to be dealt
with in the supply chain and few potential warehouses to be selected.
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