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a  b  s  t  r  a  c  t

In Part  I (Rodriguez,  Vecchietti,  Harjunkoski,  &  Grossmann,  2013),  we  proposed  an  optimization  model  to
redesign  the  supply  chain  of  spare  parts  industry  under  demand  uncertainty  from  strategic  and  tactical
perspectives  in  a planning  horizon  consisting  of multiple  time  periods.  To address  large  scale  indus-
trial  problems,  a Lagrangean  scheme  is proposed  to  decompose  the  MINLP  of  Part  I according  to  the
warehouses.  The  subproblems  are  first  approximated  by an adaptive  piece-wise  linearization  scheme
that  provides  lower  bounds,  and the  MILP  is further  relaxed  to  an  LP to  improve  solution  efficiency
while  providing  a valid  lower  bound.  An  initialization  scheme  is designed  to  obtain  good  initial  Lagrange
multipliers,  which  are  scaled  to  accelerate  the convergence.  To  obtain  feasible  solutions,  an  adaptive
linearization  scheme  is  also  introduced.  The  results  from  an illustrative  problem  and  two  real  world
industrial  problems  show  that  the  method  can  obtain  optimal  or near  optimal  solutions  in  modest
computational  times.

© 2013 Elsevier Ltd. All rights reserved.

. Introduction

In the spare parts industry, or more specifically the electric motor industry as was illustrated in part 1 (Rodriguez, Vecchietti, Harjunkoski,
 Grossmann, 2013), there are some key issues that strongly influence the cost of the supply chain. One is that a low-level inventory is

mportant (bound capital). Moreover, it is critical that a spare motor can be obtained as soon as possible since the motor is a key part of
he customer plant. Tens or hundreds of different types of motors are required by the customers. Also, the criticality of a given unit can be
ery different. If the time requirement is very tight, it might be necessary to have some motors in stock at the customer sites. The main
bjective of the model is to optimally redesign supply chain to meet the demand with minimal costs involving decisions on where to place
arehouses, which installed warehouses should be expanded or shutdown, as well as deciding the stock capacities, safety stocks required,

nd how to connect the different echelons of the supply chain in order to satisfy uncertain demand of motors. Due to the above features,
he problem corresponds to a large scale MINLP problem that is very hard to solve.

Lagrangean decomposition has been successfully applied to large-scale mathematical programming problems (Wang, 2003). According
o the problem structure, temporal and spatial decomposition can be adopted (Terrazas-Moreno, Trotter, & Grossmann, 2011). The sub-
radient optimization is a popular method for updating the multipliers in Lagrangean decomposition (Baker and Sheasby, 1999), although
he convergence of the multipliers is the main challenge. Other contributions include methods for accelerating convergence through the
se of subgradients (Baker and Sheasby, 1999; Fumero, 2001) and other strategies (Mouret, Grossmann, & Pestiaux, 2011; Buil, Piera, &
uh, 2012). In Terrazas-Moreno et al. (2011), an economic interpretation of the multipliers is given, which can benefit from the problem
tructure to accelerate the convergence. Considering that the dual problem is a high-dimensional nonlinear problem, the shape of its
omain and contours is a key to accelerate the convergence, and the interpretation from an economic view may  be helpful.

This paper is organized as follows. In Section 2, the model from Part I is reformulated. In Section 3, a decomposition scheme is proposed,
nd the methods to solve the subproblems, initialize and update the multipliers, and design of the feasibility problem are discussed. The

esults from an illustrative example and two real world industrial problems are shown and discussed in Section 4. Finally, some conclusions
re drawn in Section 5.

098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
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Nomenclature

Indices
c criticality levels of motors
i factories
j warehouses
k end customers
p standard units
s special units
t time periods

Sets
CTks customers k that allow used repaired units to satisfy their demand of units
JF subset of warehouses j that are already installed (fixed) at the beginning of the horizon planning
KSCksc customers k that order special units s of criticality c
KTks customers k that order tailor made units s
PSps special units s belonging to standard unit p
SC subset of warehouses j that can be also considered as repair workshops

Binary variables
uikst if factory i produces and delivers tailor made unit s to end customer k in period t
vjkst if repair workshop j repairs special units s from customer k in period t
wit if factory i is installed in period t
we

it
if warehouse j is expanded in period t

wu
it

if factory i is uninstalled (eliminated) in period t
xijpt if factory i produces and delivers standard units p to warehouse j in period t
yjt if warehouse j is installed in period t
ye

jt
if warehouse j is expanded in period t

yu
jt

if warehouse j is uninstalled (eliminated) in period t
zjkt if warehouse j delivers units to customer k in period t
ˇI auxiliary variable for linearization of subproblems

Positive variables
lksct net lead time of customer k for special unit s of criticality c in period t
l′
jksct

net lead time of customer k if special unit s of criticality c is provided by warehouse j in period t
mksct net lead time of customer k for tailor made unit s of criticality c in period t
m′

jksct
net lead time of customer k if tailor made unit s of criticality c is provided by warehouse j in period t

TIt the total investment cost in period t
TIwtj the total investment costin new warehouse j in period t
TOFt the total operational fixed cost in period t
TOFwtj the total operational fixed cost in warehouse j in period t
TEt the total investment expansion cost in period t
TEwtj the total investment expansion cost in warehouse j in period t
TUt the total shutdown cost in period t
TUwtj the total shutdown cost in warehouse j in period t
TOVt the total variable cost in period t
TOVwtj the total variable cost in warehouse j in period t
TPVt the total variable cost in factories for the motors transported in period t
TPVwtj the total variable cost in factories for the motors transported to warehouse j in period t
TRt the repair cost in period t
TRwtj the repair cost in warehouse j in period t
TTFt the transportation cost from factories to warehouses and customer sites in period t
TTFwtj the transportation cost from factories to warehouse j in period t
TTFctT the transportation cost from factories to customer sites in period t
TTWt the transportation cost in period t
TTWwtj the transportation cost from warehouse j in period t
TPCt the mean inventory cost at customer sites for the special motors from warehouse and tailor made motors in period t
TPCwtj the mean inventory cost at customer sites for the special motors from warehouse j in period t
TPCctT the mean inventory cost at customer sites for the special motors from tailor made motors in period t
TSSt the summation of the safety stock cost in period t
TSSwtj the summation of the safety stock cost at warehouse j and customer sites for the special motors from warehouse j in period
t
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TSSctT the safety stock cost at customer sites for tailor made motors in period t
TBTt the lost sales stock cost for special motors in period t
TBTwtj the lost sales stock cost for special motors from warehouse j in period t
�zkt; �vskt; �c the positive Lagrange multipliers
aI, a′

I�1, �2 auxiliary variables for linearization of subproblems
�new

ijkpt
amount of demand of standard units p from customer k satisfied with new units from factory i and warehouse j

�used
jkst

amount of demand of special units s from customer k satisfied with used units from repair workshop j
�new

ikst
amount of demand of tailor made units p from customer k satisfied with new units from factory i

�used
jkst

amount of demand of tailor made units s from customer k satisfied with used units from repair workshop j

Variables
g = (gzT

kt
, gvT

skt
, gmuctT

kpt
, gtolT

ks
, gcT )

T
the subgradients of the Lagrangean function

x the general independent variable
xp the solution of the previous iteration for linearization of feasibility problem
xt the temporal variables for linearization of subproblems
y the general dependent variable
L the Lagrangean function
Lj the part for warehouse j of the Lagrangean function
Lr the remaining part of the Lagrangean function excluding Lj
�muctkpt; �tolkst the Lagrange multipliers

Parameters
a the scalar for linearization of feasibility problem
b1ks unit annual lost sales cost for special unit s at customer k
c1ij unit transportation cost from factory i to warehouse j
c2jk unit transportation cost from warehouse j to customer k
c3ik unit transportation cost from factory i to customer k
t2jkp order processing time of customer k for standard unit p if it is served by warehouse j, including material handling time in

k, transportation time from warehouse j to k, and inventory review period in the customer site
˛p production factor rate for standard unit p
˛z , ˛v, ˛t the scalars for subgradient scaling
�ksct mean demand of special units s of criticality c from customer k in period t
�ksct demand standard deviation of special units s of criticality c from customer k in period t

L U

2

c
m
fi

i

w

w

w

w

x , x the lower and upper bounds of x
x days in the year

. The supply chain model reformulation

In order to design the decomposition algorithm, we reformulate the model from Part I to aggregate the terms in the objective and
onstraints according to the warehouses for which we consider potential selection, capacity expansion and shutdowns. In the reformulated
odel, we assume for simplicity that no factory expansion and shutdown are considered. That is, all the necessary factories are given with

xed capacities at the beginning of time horizon for the design of the supply chain.
Firstly, the cost terms (Eqs. (54), (56), (58), (60), (62)–(70) from Part I) are disaggregated in the objective function (Eq. (72) from Part I)

n terms of the warehouses j, as follows.

TIt =
∑

j
TIwtj ∀ t (1)

here TIwtj denotes the total investment cost in new warehouse j in period t.

TOFt =
∑

j
TOFwtj ∀ t (2)

here TOFwtj denotes the total operational fixed cost in warehouse j in period t.

TEt =
∑

j
TEwtj ∀ t (3)

here TEwtj denotes the total investment expansion cost in warehouse j in period t.

TUt =
∑

j
TUwtj ∀ t, ∀ t (4)
here TUwtj denotes the total shutdown cost in warehouse j in period t.

TOVt =
∑

j
TOVwtj ∀ t (5)
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where TOVtj denotes the total variable cost in warehouse j in period t.

TPVt =
∑

j
TPVwtj ∀ t (6)

where TPVwtj denotes the total variable cost in factories for the motors transported to warehouse j in period t.

TRt =
∑

j ∈ SC
TRwtj ∀ t (7)

where TRVwtj denotes the repair cost in warehouse j in period t.

TTFt =
∑

j ∈ SC
TTFwtj + TTFctT ∀ t (8)

here TTFwtj denotes the transportation cost from factories to warehouse j in period t, and TTFctT denotes the transportation cost from
actories to customer sites in period t.

TTWt =
∑

j ∈ SC
TTWwtj ∀ t, ∀ t (9)

here TTFwtj denotes the transportation cost from warehouse j in period t.

TPWt =
∑

j
TPWwtj ∀ t (10)

here TPWwtj denotes the mean inventory cost in warehouse j in period t.

TPCt =
∑

j
TPCwtj + TPCctT ∀ t (11)

here TPCwtj and TPCctT denote the mean inventory cost at customer sites for the special motors from warehouse j and tailor made motors
n period t, respectively.

TSSt =
∑

j

∑
p

h1jp · ssjpt +
∑

j

∑
k

∑
s/∈KTKS

∑
C ∈ KSCKSC

h2k · �2ks · �ksct ·
√

l′
jksct

+
∑

k

∑
s ∈ KTKS

∑
C ∈ KSCKSC

h2k · �2ks · �ksct ·
√

lksct

=
∑

j
TSSwtj + TSSctT (12)

here TSSwtj denotes the summation of the safety stock cost at warehouse j and customer sites for the special motors from warehouse j
n period t, and TSSctT denotes the safety stock cost at customer sites for tailor made motors in period t.

TBTt =
∑

j

∑
k

∑
S/∈KTks

∑
c ∈ KSCksc

b1ks · 0.45 · �ksct ·
√

l′
jksct

· e�2ks/−0.59 · �
zjkt

t2jks
=
∑

j
TBTwtj (13)

where TBTwtj denotes the lost sales stock cost for special motors from warehouse j in period t.
Eqs. (55), (57), (59) and (61) from Part I are not included since the factories are assumed to be given. We  therefore include Eqs. (1)–(13)

bove and (71) from part I in the objective function.
Also, constraint (30) from part I can be rewritten as follows.
l′jksct≥sjpt · zjkt + t2jkp · zjkt − Rksc (14)

We  consider Eq. (14) above and Eqs. (10)–(15), (18), (19), (24)–(29), (31)–(41), (52) and (53) from part I (Rodriguez et al., 2013) as the
onstraints of the reformulated MINLP model.

. Lagrangean decomposition algorithm

.1. Lagrangean decomposition steps

Based on the reformulation of the model, we decompose the problem by warehouses. This requires dualizing constraints (8) and (9)
rom Part I, as they couple the different warehouses by specifying that the summation of warehouses assigned to a certain customer not
xceed one. Considering that the demand constraints and factory capacity constraints also couple the different warehouses, constraints
20)–(23) and (53) from Part I are also dualized.
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Hence, the Lagrangean function is as follows.

L =
∑

tTIt + TOFt + TEt + TUt + TOVt + TPVt + TRt + TTFt + TTWt + TPWt + TPCt + TSSt + TBTt + TBSt

(1 + ir)t

+
∑

kt

[
�zkt

(∑
j
zjkt − 1

)]
+
∑

skt

[
��skt

(∑
j
�jkst − 1

)]
+
∑

kpt

⎡
⎢⎢⎣�muctkpt

⎛
⎜⎜⎝∑i

∑
j
�new

ijkpt

+
∑

j ∈ sc
�used

jkpt −
∑

s ∈ psps

s ∈ CTks

∑
c ∈ kscksc

�ksct

⎞
⎟⎟⎠
⎤
⎥⎥⎦+

∑
kpt

⎡
⎢⎢⎣�muctkpt

⎛
⎜⎜⎝∑i

∑
j
�new

ijkpt −
∑

s ∈ PSps

s /∈ CTks

∑
c ∈ KSCksc

�ksct

⎞
⎟⎟⎠
⎤
⎥⎥⎦

+
∑

t,(k,s) ∈ KTks

[
�tolkst

(∑
i
�new

ikst +
∑

j ∈ SC
�used

jkst −
∑

C ∈ KSCksc

�ksct

)]

+
∑

t,(k,s)/∈KTks

[
�tolkst

(∑
i
�new

ikst −
∑

C ∈ kscksc

�ksct

)]

+
∑

it

[
�c
(∑

j

∑
k

∑
p
�new

ijkpt · ˛p − qfit

)]
	f (�zkt, �vskt, �muctkpt, �tolks, �c)  (15)

here �zkt≥0, �vskt≥0, �muctkpt , �tolkst and �c≥0 are the corresponding Lagrange multipliers.
According to Eqs. (1)–(13) from Part II above and (71) from Part I, Eq. (15) can be rewritten as follows

L =
∑

j

[∑
t

TIwtj + TOFwtj + TEwtj + TUwtj + TOVwtj + TPVwtj + TRwtj + TTFwtj + TTWwtj + TPCwtj + TSSwtj + TBTwtj

(1 + ir)t

]

+
∑

t

(TTFctT + TSSctT + TPCctT + TBSct)

(1 + ir)t
+
∑

j

∑
kt

�z
kt

zjkt −
∑

kt
�zkt +

∑
j

∑
skt

�vsktvjkst −
∑

skt
�vskt

+
∑

j

∑
kpt

[
�muctkpt

(∑
i
�new

ijkpt + �used
jkpt

∣∣
j ∈ SC

)]
−
∑

kpt

⎡
⎢⎢⎣�muctkpt

⎛
⎜⎜⎝∑ s ∈ PSps

s ∈ CTks

∑
c ∈ KSCksc

�ksct

⎞
⎟⎟⎠
⎤
⎥⎥⎦

+
∑

j

∑
kpt

(
�muctkpt

∑
i

�new
ijkpt

)
−
∑

kpt

⎛
⎜⎜⎝�muctkpt

∑
s ∈ PSps

s /∈ CTks

∑
c ∈ KSCksc

�ksct

⎞
⎟⎟⎠+

∑
j ∈ SC

∑
t,(k,s) ∈ KTks

�tolkst�
used
jkst

+
∑

t,(k,s) ∈ KTks

[
�tolkst

(∑
i
�new

ikst −
∑

c ∈ KSCksc

�ksct

)]
+
∑

t,(k,s)/∈KTks

[
�tolkst

(∑
i
�new

ikst −
∑

c ∈ KSCksc

�ksct

)]

+
∑

j

∑
it

[
�c
(∑

k

∑
p
�new

ijkpt · ˛p

)]
−
∑

it
�c QPUP

i (16)
Defining for each warehouse j

Lj =
[∑

t

TIwtj + TOFwtj + TEwtj + TUwtj + TOVwtj + TPVwtj + TRwtj + TTFwtj + TTWwtj + TPCwtj + TSSwtj + TBTwtj

(1 + ir)t

]

+
∑

kt
�zktzjkt +

∑
skt

�vsktvjkst +
∑

kpt

[
�muctkpt

(∑
i
�new

ijkpt + �used
jkpt

∣∣
j ∈ SC

)]
+
∑

kpt

(
�muctkpt

∑
i

�new
ijkpt

)

+
∑

t,(k,s) ∈ KTks

�tolkst �used
jkst

∣∣
j ∈ SC

+
∑

it

[
�c
(∑

k

∑
p
�new

ijkpt · ˛p

)]
∀ j ∈ J (17)
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Fig. 1. Steps of Lagrangean decomposition algorithm.

nd defining for the remaining cost terms (transportation cost for tailor made motors from factories to customers, safety stock cost at
ustomer sites for tailor made motors, the mean inventory cost at customer sites for tailor made motors and lost sales cost for tailor made
otors)and the penalty terms of the Lagrange multipliers except the ones involving variables zjkt , vjkst , �new

ijkpt
, �used

jkpt
and �used

jkst
.

Lr =
∑

t

(TTFctT + TSSctT + TPCct + TBSct)

(1 + ir)t
−
∑

kt
�zkt −

∑
skt

�vskt −
∑

kpt

⎡
⎢⎢⎣�muctkpt

⎛
⎜⎜⎝∑ s ∈ PSps

s ∈ CTks

∑
c ∈ KSCksc

�ksct

⎞
⎟⎟⎠
⎤
⎥⎥⎦

−
∑

kpt

⎛
⎜⎜⎝�muctkpt

∑
s ∈ PSps

s /∈ CTks

∑
c ∈ KSCksc

�ksct

⎞
⎟⎟⎠+

∑
t,(k,s) ∈ KTks

[
�tolkst

(∑
i
�new

ikst −
∑

c ∈ KSCksc

�ksct

)]

+
∑

t,(k,s)/∈KTks

[
�tolkst

(∑
i
�new

ikst −
∑

c ∈ KSCksc

�ksct

)]
−
∑

it
�cQPUP

i (18)

Then,

L =
∑

j

Lj + Lr (19)

Thus, the Lagrangean function is decomposed into
∣∣J∣∣+ 1 terms as Lj, ∀ j ∈ J and Lr. We  can obtain the subproblems denoted by

j, ∀ j ∈ J and Pr, as follows.

Pj : min  Lj

subject to (11), (12), (14), (15), (18), (19), (24), (26)–(28), (31)–(41), (52) from Part I and (14) from this Part for given j.

Pj : min  Lr

subject to (10), (13), (25), (29) and (53) from Part I.
Using Lagrangean decomposition, the subproblems can be solved individually for a given set of Lagrange multipliers. The summation

f the objective values then provides a lower bound of the primal problem, and the multipliers can be updated according to the solutions
f the subproblems. The steps of the algorithm are shown in Fig. 1.

.2. Solving the subproblems

Each subproblem
∣∣J∣∣+ 1 or Lj, ∀ j ∈ J is also a large scale MINLP with nonlinear terms in the objective given by the square roots with

ositive coefficients. Considering a piecewise linear approximation of the square roots as shown in Fig. 2, each of subproblems reduces to
n MILP that provides a lower bound to the MINLP.
For a square root term, y = √
x, with xL and xU as the lower and upper bounds of continuous variable x respectively, we consider a

emporal point xt, with which the piecewise linear approximation is given by Eqs. (20)–(22)

x = �1xt + ˇI�2xL + (1 − ˇI)�2xU (20)



J. Yongheng et al. / Computers and Chemical Engineering 62 (2014) 211– 224 217

w

c

x
a
T

L

3

L
e
s
S
N
N
w
i
i
i
t
N

E

w
o

a

d

Fig. 2. Piecewise linear approximation of the nonlinear term of the subproblems.

�1 + �2 = 1 (21)

y = �1

√
xt + ˇI�2

√
xL + (1 − ˇI)�2

√
xU (22)

here �1 and �2 are positive continuous variables, ˇI is a binary variable that indicates whether x lies between xL and xt.
There are bilinear terms ˇI�2 in Eqs. (20) and (22). We  introduce positive continuous variables aI and a′

I as auxiliary variables, and
onstraints (23)–(25) as follows.

aI + a′
I = �2 (23)

aI ≤ ˇI (24)

a′
I ≤ 1 − ˇI (25)

Then, aI = ˇI�2. Hence, Eqs. (20) and (22) can be rewritten as Eqs. (26) and (27).

x = �1xt + aIx
L + �2xU − aIx

U (26)

y = �1

√
xt + aI

√
xL + �2

√
xU − aI

√
xU (27)

Thus, the square root term y = √
x can be approximated with the linear Eqs. (21), (23)–(27).

We adopt an adaptive scheme to update the temporal point. In the first iteration, we take xt = (xL + xU/2), and in the following iterations,
t is assigned with the solutions of the previous iteration. This is because the solutions of the previous iteration are close to the real solutions,
nd the linear approximation with the temporal point the original upper and lower bounds is relatively accurate near the temporal point.
hen, we can expect that xt’s will converge to the optimal solution of the primal problem.

Furthermore, considering that the approximate problems are MILP problems with 0–1 binary and continuous variables, we  consider an
P relaxation that can provide a lower bound to the MILP, which in turn is a lower bound to the original MINLP.

.3. Feasibility scheme

A feasible solution is necessary to update the upper bound of the primal problem and provide a candidate solution. With the current
agrange multipliers, we can obtain the solutions of the subproblems. But in general, the solutions are not feasible for the primal problem,
specially constraints (8) and (9) from Part I are violated, and the value of zjkt and vjkst may  not be integer. Therefore, to construct a feasible
olution, we specify zj′kt and vj′′kst with Algorithm Specify.Algorithm Specify
tart;
oOneU(k, t) = 1;
oOneV(k, sp, t) = 1;
hile(j ∈ J,

f (z(j, k, t) = maxj′ z(j′, k, t)and NoOneU(k, t) = 1) = 1, then specify z(j, k, t) with 1;
f  z.l(j, k, t), then NoOneU(k, t) = 0
f  (vd.l(j, k, sp, t) = maxj′ vd.l(j′, k, sp, t)and NoOneU(k, , sp, t) = 1),
hen  specify v(j, k, sp, t)with 1;
oOneV(k, t)$v.l(j, k, sp, t) = 0

);
nd;

In the algorithm, the initial values of z and v come from the corresponding solutions of the subproblems. The algorithm means that
e specify zj1kt and vj2kst with 1 for j1 = arg maxj(zjkt) and j2 = arg maxj(vjkst) (if j1 or j2 is not unique, we take the first one by increasing
rder), and specify zjkt (j /= j1) and vjkst (j /= j2) with 0.
When zjkt and vjkst are specified with algorithm Specify, the feasibility problem reduces to an MINLP with binary variables, including xijpt

nd yjt, ye
jt

, yu
jt

, and continuous variables. The nonlinear terms involve square root functions. To design an efficient feasibility scheme, we

esign another adaptive linear approximation scheme, which is shown in Fig. 3 with xt
1 and xt

2 updated iteratively.
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Fig. 3. Linear approximation of the nonlinear term of the feasible problem.

For a square root term, y = √
x, with xL and xU as the lower and upper bounds of continuous variable x, respectively, we  consider a pair

f temporal points xt
1 and xt

2. Then, the linear approximation is given by Eq. (28).

y =
√

xt
2 −
√

xt
1

xt
2 − xt

1

(x − xt
1) +

√
xt

1 (28)

The pair of xt
1 and xt

2 are updated adaptively as in Eqs. (29) and (30).

x̄t
1 = xt

1 + a(xp − xt
1) (29)

x̄t
2 = xt

2 + a(xp − xt
2) (30)

here x̄t
1 and x̄t

2 are the updated points, xp is the solution of the previous iteration, a is a scalar in (0,1), and we specify a with 0.05 in
ur algorithm. Thus, we can also expect that xt

1 and xt
2 will converge to the optimal solution from opposite directions. Hence, we obtain

n MILP problem, denoted MILPFeas as an approximate feasibility problem. By solving MILPFeas, we can obtain a near optimal solution,
ccording to which we calculate the exact objective with the original nonlinear function, which corresponds to an upper bound to the
rimal problem.

Here, for the feasibility problem, we use two temporal points to approximate the nonlinear terms, while we use only one temporal point
o approximate the linear terms for the subproblems. The reason is that we  have found from numerical experience that the solutions of
he previous iteration are close to the real solutions. However, for the subproblems, two linear sections are needed to better approximate
he nonlinear term.

.4. Multipliers initialization and update

The appropriate multipliers of the demand constraints can help the solution of the subproblems to meet the demand. Furthermore, the
agrange multipliers can be interpreted as the price of the products. Considering the Lagrangean function (15), if the demand is not met,

 penalty will be incurred with the corresponding multipliers. At the same time, when the customer order is satisfied, the company has
o incur in production cost, transportation cost, stock and repairing cost. Therefore, when the penalty and the cost reach a balance, the
emand will be satisfied. In this way, we can estimate the multipliers of the demand constraints by calculating the unit cost of a feasible
olution of the primal problem. Practically, we specify zjkt and vjkst arbitrarily to satisfy constraints (8) and (9) from Part I, and solve the
easibility problem. According to the solution, for each tuple (k, p, t) and (k, s, t), we calculate a total cost involving the corresponding terms
n Eqs. (62)–(69) from Part I as Eqs. (31) and (32), then divide the cost by the corresponding demand. This is the average variable cost of
he corresponding motor to meet the demand, the opposite of which we  take as the initial value of the corresponding multiplier. The other

ultipliers are specified with 0 as the initial value.

�muctkp0 = −

(∑
i

∑
j

∑
pgj · �new

ijkpt
· � +

∑
i

∑
j

∑
pgpi · �new

ijkpt
· � +

∑
j ∈ SC

∑
pgrjp · �used

jkpt
· � +

∑
p

∑
i

∑
j ∈ SC

∑
pc1ij · �new

ijkpt
· �

+∑i

∑
j

∑
pc2jk · �new

ijkpt
· � +

∑
j ∈ SC2 · c2jk · � ·

∑
p�used

jkpt
+
∑

i

∑
j

∑
p
1jp · �new

ijkpt
· t1ijp

+
∑

i

∑
j

∑
p
2kp · �new

ijkpt
· t2jkp +

∑
j

∑
ph1jp · ssjpt +

∑
s/∈KTks

∑
cnKSCksc

h2k · �2ks · �ksct ·
√

lksct

)
(∑

i

∑
j

∑
p�new

ijkpt
+
∑

jnSC

∑
p�used

jkpt

) (31)

(∑
j ∈ SC

∑
s ∈ KTks

gr ′
js

· �used
jkst

· � +
∑

i

∑
k

∑
s ∈ KTks

c3ik · �new
ikst

· � +
∑

j ∈ SC

∑
k
2 · c2jk · � ·

∑
s ∈ KTks

�used
jkst

+
∑

k

∑
s ∈ KTks

∑
c ∈ KSCksc

h2k · �2ks · �ksct · √
mksct

)

�tolkst0 = − (∑

i
�new

ikst
+
∑

j ∈ SC
�used

jkst

)
(32)
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Fig. 4. Contours of the dual problem.

The subgradient optimization is a common method for updating the set of multipliers for the Lagrangean relaxation (Baker and Sheasby,
999). In our problem, a scaling scheme is applied based on the fact that the multipliers of the demand constraints are equivalent to a
nit cost. Furthermore, there are a large number of multipliers and their values range from the hundreds to the thousands. However, the
ubgradients of constraint (8) and (9) from Part I cannot exceed the number of warehouses (only 5 warehouses considered in our real
orld cases), and the corresponding multipliers are of the same order. This fact tends to make the contours of the dual problem long and
arrow, as illustrated in Fig. 4, making the dual problem hard to converge. To overcome the problem, we scale all the multipliers to be the
ame order of magnitude by scaling so that the contours become near circles. The scaling scheme is as follows.

Recall that L = f (�zkt, �vskt, �muctkpt, �tolkst, �c),  and the subgradients of f is g = (gzT
kt

, gvT
skt

, gmuctT
kpt

, gtolT
ks

, gcT )
T
.

Let �zkt = ˛z�z′
kt

, �vskt = ˛v�v′
skt

, �muctkpt = ˛mu�muct′
kpt

, �tolks = ˛t�tol′
ks

�c = ˛c�c′, where ˛n’s are positive scalars, we can rewrite

he function as L = f ′(�z′
kt

, �v′
skt

, �muct′
kpt

, �tol′
ks

, �c′). Then the subgradients of f′ is g′ =
(

1
˛z

gzT
kt

, 1
˛v

gvT
skt

, 1
˛mu

gmuctT
kpt

, 1
˛t

gtolT
ks

, 1
˛c

gcT
)T

.

o make all the multipliers of the same order, we specify ˛v with 1, and ˛z , ˛mu, ˛t , ˛c with 10x which are closest to the corresponding
nitial multipliers, where x is an integer, then the multipliers are scaled with Eqs. (33)–(37).

�z′
kt = 1

˛z
�zkt (33)

�v′
skt = 1

˛v
�vskt (34)

�muct′
kpt = 1

˛mu
�muctkpt (35)

�tol′ks = 1
˛t

�tolks (36)

�c′ = 1
˛c

�c (37)

.5. Lagrangean decomposition algorithm

In summary, the Lagrangean decomposition algorithm is as follows.

.6. Algorithm LD

Step 1: Transform the original MINLP into an MILP, denoted MILPWh, by approximating the square root terms with piecewise linear
nes according to Eqs. (21), (23)–(27), and relax all the binary variables to obtain an LP, denoted LPWh; Obtain subproblems Pj, ∀j ∈ J and
r of LPWh by relaxing constraints (8) and (9) from Part I;

Step 2: Transform the original MINLP into an MILP, denoted MILPFeas, by approximating the square root terms with a linear approxi-
ation according to Eq. (28);

Step 3: Specify zjkt and vjkst arbitrarily subject to constraints (8) and (9) from Part I, then solve MILPWh, and initialize the Lagrange

ultipliers �muctkp and �tolkst according to Eqs. (31) and (32) respectively, initialize the other Lagrange multipliers �z′
kt

, �v′
skt

, �muct′
kpt

, �′

o 0;
Step 4: Scale the Lagrange multipliers according to Eqs. (33)–(37);
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Table  1
Size of the cases.

Component Case 1 Case 2 Case 3

Factories 3 7 7
Warehouse candidates 7 5 5
Customers 27 27 27
Standard motors 32 32 99
Special motors 49 49 396
Criticality levels 4 4 4
Periods of time horizon 5 5 5

Table 2
Model statistics.

Item Case 1 Case 2 Case 3

l

o
t

c

(

t

4

u
I
n
o
r
p
p
M
F

C

a
b
i
r

w

v

C
F

T
O

Number of constraints 326,151 430,707 1,471,287
Number of variables 190,414 236,853 807,713
Number of binary variables 14,444 16,339 47,654

Step 5: Solve subproblems Pj, ∀j ∈ J and Pr, obtain the dual objective lit by summarizing the objectives of the subproblems, update the
ower bound of the original MINLP with the summation of, denoted lupit, where it denotes the iteration;

Step 6: Call Algorithm Specify to specify zjkt and vjkst according to the solutions of the subproblems, then solve MILPFea; Calculate the
bjective of the original MINLP according to Eqs. (1)–(13) from this second Part and (71) from part I using the solutions of MILPFea, update
he upper bound of the original MINLP, denoted fupit with it as the iteration;

Step 7: If the convergence criterion is satisfied, stop the algorithm; otherwise, update xt in equations (26), (27) with the
orresponding solutions of MILPFea, xp in Eq. (28) using Eqs. (29) and (30), and update the scaled Lagrange multipliers using

�z′
kt

, �v′
skt

, �muct′
kpt

, �tol′
ks

, �c′)
it+1

= P+zvc

(
(�z′

kt
, �v′

skt
, �muct′

kpt
, �tol′

ks
, �c′)

it+1
+ (fupit − lit)

g′

|g′|2
)

, where P+zvc(.) means projection to

he space with nonnegative �z′
kt

, �v′
skt

, �c′, and go to step 5.

. Results

The application of the proposed Lagrangean decomposition algorithm is shown in this section. All the cases are executed in GAMS 24.01
sing a CPU Intel(R) Core(TM) i7 CPU 870@2.93GHz with RAM 12.0 Gb. We  have run three cases for the supply chain described in Part

, with the number of the components in each echelon and the numbers of motors shown in Table 1. Furthermore, we assume that the
umber of factories is fixed, while for the warehouses we consider all the locations as potential ones whose capacities can be expanded
r shutdown except that warehouse J1 is installed at the beginning of time horizon because it operates as a main warehouse. Case 1 is a
elatively small illustrative problem, while cases 2 and 3 are based on real world industrial data. The model statistics of 3 single MINLP
roblems are shown in Table 2.Each of the models is solved with 5 algorithms. First, the model is solved with DICOPT as a single MINLP
roblem (MINLP). Then, the nonlinear terms are approximated by piecewise linearizations with 2 and 5 intervals respectively (MILP-2,
ILP-5), and the MILP problem is solved by CPLEX. Next, the MINLP problem is solved by the approach proposed in Part I (AltNLPMILP).

inally, the problem is solved by the Lagrangean decomposition algorithm proposed in this Part II paper (LD).

ase 1. The objective values and CPU times required are shown in Table 3.

The iteration details of the LD results are shown in Figs. 5 and 6.
In Fig. 5, it can be seen that the gap between the lower and upper bound is reduced to 0.003% at iteration 7, and the CPU time required is

bout 130 s. In Table 3 it can be seen that the MINLP model cannot obtain any feasible solution after more than 3 h. The CPU times required
y the MILP models increase quickly as the number of intervals grows, but the accuracy cannot be improved. The CPU time of AltNLPMILP

s about 2 thirds as large as the one for MILP-2 with a slightly higher error (0.31% vs. 0.24%). The Lagrangean decomposition algorithm
eaches the optimal solution faster in about 130 s. The convergence of several multipliers is illustrated in Fig. 6.

The capacity profiles of the 3 selected warehouses (J1, J3 and J7) are shown in Table 4. The cost details of the optimal solution obtained
ith the Lagrangean decomposition algorithm are shown in Figs. 7–10.

The variable costs of warehouses for new motors are illustrated in Fig. 7, where the x-axis indicates time period, while y-axis indicates

ariable costs in dollars. The stock cost, safety stock cost and repair cost of warehouses are illustrated in Figs. 8–10, respectively.

ase 2. The objective values and CPU times required for case 2 are shown in Table 5. The convergence of several multipliers is shown in
ig. 13

able 3
bjective values and CPU time required by different algorithms for Case 1.

Name Optimal objective ($) Error (%) CPU time (s)

MINLP No feasible solution - 12,159.84
MILP-2 5,747,911.87 0.24 683.67
MILP-5  5,748,118.91 0.24 10,086.24
AltNLPMILP 5,752,005.04 0.31 460.02
LD  (30 iterations) 5,733,962.14 0 551.92
LD  (7 iterations) 5,733,962.14 0.003% 130 (estimated)
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Fig. 5. Convergence of the lower and upper bound for Case 1.

Fig. 6. Convergence of multipliers of demand constraints of motor p1 with criticality k1 at period t for Case 1.

Fig. 7. Variable costs of warehouses for new motor for Case 1.

Fig. 8. Mean stock costs of warehouses for modifying for Case 1.
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Fig. 9. Safety stock costs of warehouses for Case 1.

Fig. 10. Replace cost of warehouses for special motors for Case 1.

Table 4
Capacity profiles of warehouses for Case 1.

SKUs Year 1 Year 2 Year 3 Year 4 Year 5

J1 2000 2000 2000 2000 2000
J3  40 40 40 40 40

I

t
s

C
F

t
p

T
O

T

J7  50 50 50 50 50

n this case, only J1, J3 and J7 are installed, where the initial capacity of J1 is much larger than the capacities of J3 and J7.

In Fig. 11, it can be seen that the gap between the lower and upper bound is reduced to 0.004% at iteration 8, and the estimated CPU
ime required is 162 s. There are similar trends as in case 1. The capacity profiles for case 2 of the 3 selected warehouses (J1, J2 and J3) are
hown in Table 6 (Fig. 12).

ase 3. The objective values and CPU time required for case 3 are shown in Table 7. The convergence of several multipliers is shown in
ig. 14
In Fig. 12, it can be seen that the gap between the lower and upper bound is reduced to 0.003% at iteration 7, and the estimated CPU
ime required is 4696 s. There are similar trends as in case 1. Both MINLP and MILP-5 cannot find any feasible solution, and AltNLPMILP
erforms similar to MILP-2 with about twice the CPU time.

able 5
bjective values and CPU time required by different algorithms for Case 2.

Name Optimal objective ($) Error (%) CPU time (s)

MINLP 6,537,842.48 5.40 32,288.42
MILP-2 6,354,304.15 2.44 798.99
MILP-5  6,354,304.15 2.44 86,020.932
AltNLPMILP 6,358,672.25 2.51 530.11
LD  (30 iterations) 6,202,732.33 0 607.58
LD  (8 iterations) 6,202,732.33 0.004% 162 (estimated)

he iteration details of the LD results are shown in Figs. 11 and 12.
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Table  6
Capacity profiles of warehouses for Case 2.

SKUs Year 1 Year 2 Year 3 Year 4 Year 5

J1 50,000 50,000 50,000 50,000 50,000
J2  50 50 50 50 50
J3  50 50 50 50 50

Fig. 11. Convergence of lower and upper bound for Case 2.

Fig. 12. Convergence of lower and upper bound for Case 3.

Fig. 13. Convergence of multipliers of demand constraints of motor p1 with criticality k1 at period t for Case 2.

Table 7
Objective values and CPU time required by different algorithms for Case 3.

Name Optimal objective ($) Error (%) CPU time (s)

MINLP No feasible solution - 360,123.00
MILP-2 120,349,878.7579 11.25 10,871.29
MILP-5 No feasible solution - Out of memory
AltNLPMILP 120,657,481.7045 11.53 19,942.81
LD  (30 iterations) 108,178,792.52 0 20,125.03
LD  (7 iterations) 108,178,792.52 0.003% 4696 (estimated)
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Fig. 14. Convergence of multipliers of demand constraints of motor p1 with criticality k1 at period t for Case 3.

From Figs. 5, 11 and 12, we can see that the optimal solutions are all obtained in the early iterations, namely iteration 1, 1, and 3
espectively. The reason is that due to the initialization step, the initial Lagrangean multipliers are close to the optimal one, therefore, the
ualized binary variables obtained by the subproblems and algorithm Specify can reach their optimal values in the early iterations.

To summarize the three cases, we can conclude that the Lagrangean decomposition algorithm can obtain the optimal solution efficiently.
he algorithm performs similarly on different scale cases, and as the problem scale increases, the advantage becomes more apparent,
specially for highly constrained problems.

. Conclusions

The supply chain of electric motor is complex due to many decisions, especially the reverse flows, which results in a large scale MINLP
roblem, whose number of variables and equations can range from thousands to millions. Therefore, the solution of this type of problem is

 challenging task. Lagrangean decomposition is a popular method for large scale problems, but the decomposition scheme depends on the
roblem structure. In this paper, we decompose the problem by warehouses. Given that warehouses share the demands of customers and
apacities of factories, the corresponding constraints have to be dualized simultaneously. As a consequence, there are a large number of
agrange multipliers, which are quite different in scale. To accelerate the convergence, a scaling scheme has been proposed. Furthermore,
onsidering that the multipliers can be interpreted in an economic sense, we design a method to estimate initial values for them. Another
hallenge for the decomposition method is that the sizes of the subproblems are still quite large involving nonlinear terms and binary
ariables. An adaptive piecewise linearization method is proposed to approximate the nonlinear terms. To obtain feasible solutions, another
daptive piece-wise linearization is also presented. The test results on illustrative and real world industrial problems show that the
agrangean decomposition algorithm is effective and efficient, while the single MINLP is hard to solve and the MILP approximation is only
omputationally feasible with a few intervals. The AltNLPMILP of Part I performs similarly to the MILP approximation. The advantage of
he proposed method is especially apparent for large scale and highly constrained problems. That is, if there are many motors to be dealt
ith in the supply chain and few potential warehouses to be selected.
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