
Optimal Multi-scale Capacity Planning for

Power-Intensive Continuous Processes under

Time-sensitive Electricity Prices and Demand

Uncertainty, Part I: Modeling

Sumit Mitra∗, Jose M. Pinto†, Ignacio E. Grossmann∗‡

May 22, 2013

Abstract

With the advent of deregulation in electricity markets and an in-
creasing share of intermittent power generation sources, time-sensitive
electricity prices (as part of so-called demand-side management in the
smart grid) offer potential economical incentives for large industrial
customers. These incentives have to be analyzed from two perspec-
tives. First, on an operational level, aligning the production planning
with the electricity price signal might be advantageous, if the plant has
enough flexibility to do so. Second, on a strategic level, investments
in retrofits of existing plants, such as installing additional equipment,
upgrading existing equipment, or increasing product storage capacity,
facilitate cost savings on the operational level by increasing operational
flexibility.

In part I of this paper, we propose an MILP formulation that in-
tegrates the operational and strategic decision-making for continuous
power-intensive processes under time-sensitive electricity prices. We
demonstrate the trade-off between capital and operating expenditures
with an industrial case study for an air separation plant. Further-
more, we compare the insights obtained from a model that assumes
deterministic demand with those obtained from a stochastic demand
model. The value of the stochastic solution (VSS) is discussed, which
can be significant in cases with an unclear setup, such as medium
baseline product demand and growth rate, large variance or skewed
demand distributions. While the resulting optimization models are
very large-scale, they can mostly be solved within up to three days of
computational time. A decomposition algorithm that allows solving
the problems faster is described in part II of the paper.
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1 Background

1.1 Motivation

The manufacturing base in the U.S. has been eroding over the last two
decades in the face of fierce international competition. However, recent de-
velopments such as the gas production from very large deposits of shale gas
(Chang, 2010), as well as trends in onshoring due to rising labor cost in
emerging countries (Sirkin et al., 2011), provide hope in the revitalization of
U.S. manufacturing. While the economic recovery deserves further observa-
tion in the aftermath of the recession of 2008 and the current unemployment
and financial market volatility, future competitiveness of industrial compa-
nies requires them to optimally design and retrofit their production facilities
in anticipation of price and demand growth forecasts.

A group of chemical processes for which the design and capacity plan-
ning is very challenging is the group of power-intensive processes, such as air
separation plants (compression), cement production (grinding), chlor-alkali
synthesis, steel and aluminum production (electrolysis) and paper pulp pro-
duction (drying). These industries in fact consume 15% of the total indus-
trial electric power in the United States.

At the same time, the power grid is in transition to the so-called smart
grid with the ambition to improve reliability, energy security, economics and
greenhouse gas emissions (Samad and Kiliccote, 2012). A growing share
of intermittent renewable energies, such as wind and solar, increases the
challenge that grid operators face every day and every minute: balancing
supply and demand of electricity on a real-time basis. A set of measures,
such as co-generation, micro-grids, future storage technologies and demand-
side management (DSM), is expected to play an important role in helping
today’s power grid, mastering the transition to the smart grid.

The societal benefit of DSM in the US is estimated to be $59 Billion
by 2019, of which 40% is attributed to large commercial and industrial con-
sumers (McKinsey study by Davito, Tai and Uhlaner, 2010). Hence, from an
industrial consumer’s perspective, demand-side management (DSM), con-
sisting of Energy Efficiency (EE) and Demand Response (DR), deserves
special attention. The idea of DSM is to influence the “amount and/or
timing of the customers use of electricity for the collective benefit of the so-
ciety, the utility and its customers” (Charles River Associates, 2005). While
EE aims for permanently reducing demand for energy, DR focuses on the
operational level (Voytas et al., 2007).

As a consequence, variability in time-sensitive electricity prices can be
observed on various time scales, including hourly variations for so-called
day-ahead (DA) prices that industrial consumers are exposed to in many
electricity markets around the globe. However, economic benefits can be
realized if the industrial consumer has the flexibility to adjust consumption
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Figure 1: DSM potential for residential, commercial and industrial
sectors in the US.

(Mitra et al., 2012a).
Interestingly, industrial DR still seems to be a large untapped grid re-

source according to data released by the Energy Information Administration
(EIA, 2010). The EIA investigates the actual and potential peak load reduc-
tion (in MW) attributed to DR. While nearly 80 % of the DR potential in
the residential and in the commercial sectors was realized throughout 2006-
2010, only 50-60% of the DR potential was accessed in the industrial sector,
as one can see in Fig. 1. We conjecture that this data can be explained by
the fact that DSM is part of a complex multi-scale design, capacity planning
and operations problem, which requires a sufficient set of decision-making
support tools in order to facilitate optimal decisions.

With pressure on both sides, the revenue side (uncertainty in product
demand) and the cost side (variability in electricity prices), new designs
and plant retrofits can be viable options for power-intensive processes in
the context of DSM. Retrofitting includes replacing existing equipment with
more energy-efficient alternatives, improving design flexibility (with respect
to DR incentives), adding further production equipment and installing ad-
ditional storage tanks. All these design decisions, which could potentially
lead to lower operating costs, are part of strategic capacity planning of the
chemical companies. Typically, the financial analysis in terms of net present
value (NPV) or return on investment (ROI) for the investment decisions
is performed for a time horizon of multiple years, e.g. 10-15 years. Thus,
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investigating the trade-off between the capital investment costs for new de-
signs or retrofits, and the operating costs related to electricity prices, which
can vary on an hourly basis, leads to a complex multi-scale optimization
problem.

1.2 Literature review

Multi-period design and capacity planning for continuous multi-product
plants has been widely studied in the literature. Sahinidis et al. (1989)
propose a comprehensive deterministic MILP model for process networks.
Liu and Sahinidis (1996) extend the model to account for demand uncer-
tainty. Van den Heever and Grossmann (1999) use disjunctive programming
techniques to extend the methodology to the case of multi-period design and
planning of nonlinear chemical process systems. All these papers share the
idea to cover a total time horizon of multiple years, which is divided into a
number of time periods, typically several months or several years. There-
fore, model parameters such as prices, demands are assumed to be constant
over each time period.

More recent research aims at integrating multiple layers of decision-
making, i.e. capacity planning with operations. For pharmaceutical product
development and capacity planning, Maravelias and Grossmann (2001) pro-
pose an MILP formulation that integrate a scheduling formulation with a
capacity planning model. Colvin and Maravelias (2008) model the endoge-
nous stochastic behavior of the outcome of clinic trials with a stochastic
programming framework. Sundaramoorthy et al. (2012) propose a two-
stage stochastic programming formulation for the integrated capacity and
operations planning that assumes exogenous stochastic clinic trials. For a
chemical supply chain, Sousa, Shah and Papageorgiou (2008) propose a for-
mulation that addresses the integrated supply chain design and operations
planning. You et al. (2010) model supply chain responsiveness by integrat-
ing a simple cyclic scheduling model with the capacity planning of a supply
chain. For a good overview on different modeling approaches for problems
in the context of enterprise-wide optimization, such as supply chain design
problems in the chemical and the pharmaceutical industry, we refer to the
review papers by Grossmann (2005), Shah (2005), Varma et al. (2007) and
Grossmann (2012).

Processes at the interface of power systems and the chemical industry
that face similar challenges like power-intensive processes with respect to
electricity prices are co-generation and poly-generation plants. Different
researchers (Iyer and Grossmann (1998), Bruno et al. (1998), Aguilar et
al. (2007a, 2007b)) address the integration of operations and design for
co-generation plants. However, the detailed operational schedules are not
modeled, since they assume that the plants are exposed to a pre-determined
number of hours with on-peak and off-peak prices per year. Liu, Pistikopou-
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los and Li (2010) as well as Chen et al. (2011) investigate the design of flexi-
ble poly-generation systems under uncertainty. They use a similar scenario-
based approach to consider different price levels. However, for each scenario
only one steady state is determined. A detailed operational modeling, which
allows to account for fluctuations in electricity prices on an hourly basis in
a dynamic market environment, is not performed.

Note that if prices and demands fluctuate on an hourly and seasonal
basis, there is a need for a much finer discretization of time, i.e. a more
detailed representation for the scheduling of the process.

Therefore, the subject of this paper is the design and capacity planning
for power-intensive processes with the target of introducing flexibility in
the operations to exploit changes in hourly electricity prices. The major
challenge lies in the multi-scale integration of the operational level with the
design and capacity planning decisions, while accounting for variability in
electricity prices on an hourly basis and uncertainty in product demand.
In section 2, we give a formal problem statement. The integrated model
is described in section 3. An industrial case study for the retrofit of an
air separation plant is presented in section 4. In section 5, we provide
conclusions on our work.

2 Generic Problem Statement

Given is a set of products g ∈ G that can be produced in a continuously
operated plant. While some products can be stored on-site, others must
be delivered directly to customers. It is possible to make the following
long-term investments at the plant over a time horizon of several years: a)
Add new equipment n ∈ N ; b) Perform upgrades (replacements) u ∈ U
of existing equipment; c) Install additional storage facilities st ∈ ST . The
time horizon is divided into time periods t ∈ T and investments are allowed
during the periods Tinvest ⊂ T . All investments have fixed standard sizes
and the associated costs are known and discounted appropriately. The plant
has to satisfy product demands, specified on a weekly, daily or hourly basis.
We assume that the operating costs due to electricity prices within period t,
vary for every hour h ∈ H and undergo seasonal changes. With this setup,
we can consider day-ahead (DA) prices, which vary on an hourly basis, as
well as time-of-use (TOU) pricing, for which blocks of hours either follow
off-peak, mid-peak or on-peak prices. We assume that a seasonal electricity
price forecast for a typical week is specified on an hourly basis. Hence, the
design or retrofit of a plant involves strategic, long-term design decisions,
and operational, short-term decisions for determining what equipment to
turn on or shut down and when. At the strategic level, the problem is
to determine what design investments to make and when they should take
place. Operationally, production levels, modes of operation, inventory levels
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and sales must be determined on an hourly basis, so that the given demand
is met. The objective is to minimize the total cost, consisting of investment
and operating costs.

3 Model Formulation

3.1 Modeling strategy and multi-scale representation

A major modeling challenge is the integration of the different time scales that
are involved in the problem. On the one hand, electricity prices fluctuate
on an hourly basis in most electricity markets, e.g. if day-ahead (DA) prices
are considered. On the other hand, strategic capacity planning decisions
have to be justified for a time horizon of multiple years. However, based
on an analysis of multiple years (2004-2010) of PJM data (PJM, 2011), we
identified typical profiles that reflect seasonal behavior in electricity prices.
It is known that these typical patterns are also present in other electricity
markets (Conejo, 2010).

Therefore, we propose four major periods of operation for each year,
corresponding to the seasonal behavior of electricity prices: spring, summer,
fall and winter. Furthermore, in each season we consider a representative
week that is repeated cyclically and in which electricity prices are specified
on an hourly basis (see Fig. 2). In this way, the model for one year consists
of 672 hrs (4 seasons each with a week of 168 hrs) in which electricity prices
change. In contrast to the 8,760 hours in a year, this represents one order
of magnitude reduction.

Another complication is the timing of investment decisions, which are
typically reviewed on a yearly basis. Investment decisions are driven by
the amount of demand that needs to be met. The demand forecast, which
consists of an estimate of the average weekly demand for each product, and
a weekly demand profile, contains a large amount of economic uncertainty.

As one can see in Fig. 2, the investment planning problem is a multi-
stage problem, where investments are annually reviewed (each year cor-
responds to one stage), and operational decisions are made as the actual
demand is realized. However, the resulting multi-stage stochastic program-
ming problem is extremely large and hard to solve computationally. There-
fore, we approximate the multi-stage programming problem with a two-
stage stochastic program (Birge and Louveaux, 2011) as shown in Fig. 3,
where all investment decisions are first-stage variables (here-and-now) and
all operational decisions such as production and inventory levels, modes of
operation and sales are second-stage decisions (wait-and-see) according to
the demand realization of scenario s in time period t. Note that the second-
stage variables contain integer decisions related to the modes of operation
and associated transitions, which make the resulting two-stage stochastic
programming problem hard to solve.

6



Figure 2: Multi-scale representation of the multi-period capacity
planning problem with hourly varying electricity prices.

Figure 3: Two-stage representation of investment and operational
decisions.
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Figure 4: Example of a feasible region (feasible production rates
according to time discretization) with distinct operating modes
(from Mitra et al., 2012a).

3.2 Operational representation

Since a full-scale model that includes detailed non-linear process models
can become prohibitively hard to solve for longer time horizons, we use a
surrogate model to represent the operational behavior of the plant for each
time period t and scenario s. The surrogate operational model (Mitra et al.,
2012a, 2012b) is based on two concepts, which will be explained later in this
paper. First, the feasible region of operation is represented in the product
space according to the chosen time discretization (here ∆h = 1 hour, index
h) as shown in Fig. 4. Second, there is a discrete set of operating modes the
plant can operate in, as shown in Fig. 5. Hence, a set of logic constraints
that capture the transitional behavior between different modes of operation
is required. Additionally, constraints related to mass balances and demand
satisfaction need to be enforced. In the following, the associated constraints
are described. Note that for all operations in the domain h ∈ H, the wrap-
around operator (Shah, Pantelides and Sargent, 1993) is used to enforce
cyclic schedules for each time period t and scenario s.

3.2.1 Feasible region

We assume that the feasible region of operation is known in the product
space by using projection techniques in offline computations, e.g. steady-
state simulations, empirical models based on plant data or analytical meth-
ods (Swaney and Grossmann, 1985; Grossmann and Floudas, 1987; Goyal
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Figure 5: Example of a state graph with operating modes (nodes)
and transitions (arcs). Additionally, minimum up- and downtime
constraints are indicated (from Mitra et al., 2012a).

and Ierapetritou, 2002; Sung and Maravelias, 2007, 2009). Note that a plant
has different modes m ∈ M in which it can be operated, e.g. a mode is a
state when only a subset of the plant equipment is running or when the
plant is in transition, denoted by yt,s,hm (see nomenclature section). The
data for all modes and options is represented as a collection of operating
points (slates), x, and defines the feasible region for the production levels
Prt,s,hg .

The representation of the feasible region by a set of disjoint convex poly-
hedra like in Fig. 4 also implies that available plant modifications have to
be specified in the reduced space of products. Therefore, it is possible to
specify alternative feasible regions for a given mode m, which we refer to as
“options” o ∈ O(m), with corresponding mode variables ỹt,s,hm,o . Later, these
options will be linked to different investments. To represent the multiple
feasible regions for a mode m, the disjunctions in (1) can be formulated as
shown in chapter Mitra et al. (2012a).

∨
m∈M


∨

o∈O(m)


∑

i∈I λ
t,s,h
m,o,ixm,o,i,g = Prt,s,hg ∀g∑

i∈I λ
t,s,h
m,o,i = 1

0 ≤ λt,s,hm,o,i ≤ 1

ỹt,s,hm,o = 1


yt,s,hm = 1

 ∀t ∈ T, s ∈ S, h ∈ H

(1)
The corresponding convex hull can be represented algebraically by a set

of equations (2) - (7) in terms of disaggregated variables (Balas, 1985).

9



∑
i∈I

λt,s,hm,o,ixm,o,i,g = P̄r
t,s,h
m,o,g ∀m ∈M,o ∈ O(m), g ∈ G, t ∈ T, s ∈ S, h ∈ H (2)∑

i∈I
λt,s,hm,o,i = ỹt,s,hm,o ∀m ∈M, o ∈ O(m), t ∈ T, s ∈ S, h ∈ H (3)

0 ≤ λt,s,hm,o,i ≤ 1 ∀m ∈M,o ∈ O(m), i ∈ I, t ∈ T, s ∈ S, h ∈ H (4)

Prt,s,hg =
∑

m∈M,o∈O(m)

P̄r
t,s,h
m,o,g ∀g ∈ G, t ∈ T, s ∈ S, h ∈ H (5)

∑
m∈M

yt,s,hm = 1 ∀t ∈ T, s ∈ S, h ∈ H (6)∑
o∈O(m)

ỹt,s,hm,o = yt,s,hm ∀m ∈M, t ∈ T, s ∈ S, h ∈ H (7)

3.2.1.1 Rate of change constraints For transitions between operating
points that belong to the same operating mode, the rate of change from hour
h to h+ 1 might be restricted. The maximum rate of change in production
of product g (in [mass/∆h]) when operating in mode m (and option o) is
denoted by rm,o,g and calculated according to the same time discretization
∆h that is used to calculate the extreme points of the feasible region. The
rate of change constraint is written as follows.

|P̄r
t,s,h+1
m,o,g − P̄r

t,s,h
m,o,g| ≤ rm,o,g ∀m ∈M, o ∈ O(m), g ∈ G, t ∈ T, s ∈ S, h ∈ H

(8)

3.2.2 Logic constraints

If the plant switches the mode of operation, logic constraints are required to
enforce the feasible transitions that are implied by the state graph, which is
shown in Fig. 5. For a detailed derivation of the logic constraints based on
propositional logic (Raman and Grossmann, 1993), we refer to Mitra et al.
(2012a, 2012b).

3.2.2.1 Switch variables constraints We introduce binary switching
variables zt,s,hm,m′ that represent a transition from mode m to m′ in hour h of
time period t and scenario s and link the switching variables with the state
variables yt,s,hm in the following constraint:

∑
m′∈M

zt,s,hm′,m−
∑
m′∈M

zt,s,hm,m′ = yt,s,hm −yt,s,h−1m ∀t ∈ T, s ∈ S, h ∈ H,m ∈M (9)
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3.2.2.2 Minimum Stay Constraint If the plant needs to stay a min-
imum number of hours Km,m′ within a certain mode m′ after a transition
from mode m occurred, we can formulate constraint (10). It can be applied
to minimum uptime (after a plant starts up), minimum downtime (after a
plant shuts down) and minimum transition time (e.g. during startup proce-
dures) constraints.

yt,s,hm′ ≥
Kmin

m,m′−1∑
θ=0

zt,s,h−θm,m′ ∀(m,m′) ∈MS, ∀t ∈ T, s ∈ S, h ∈ H, (10)

3.2.2.3 Transitional Mode Constraints For the case of a transitional
mode m′, e.g. a startup mode, the plant has to stay Kmin

m,m′ hours within
mode m′ after the transition from mode m (minimum stay, as described
before). Afterwards the plant has another transition to mode m′′. Therefore,
the two transitions (m to m′ and m′ to m′′) are coupled, which can be
expressed with constraint (11).

z
t,s,h−Kmin

m,m′

m,m′ −zt,s,hm′,m′′ = 0 ∀(m,m′,m′′) ∈ Trans,∀t ∈ T, s ∈ S, h ∈ H (11)

The set Trans summarizes all transitions, where a transitional mode
constraint applies.

3.2.2.4 Forbidden Transitions For transitions from mode m to mode
m′ that are not allowed (summarized in set DAL), the corresponding tran-

sitional variables zt,s,hm,m′ are set to zero, i.e. they do not exist in the model:

zt,s,hm,m′ = 0 ∀(m,m′) ∈ DAL,∀t ∈ T, s ∈ S, h ∈ H (12)

3.2.3 Mass balances and demand satisfaction constraints

Mass balance (13) describes the relationship between current production

levels Prt,s,hg , inventory levels INV t,s,h
g and sales St,s,hg for each product g.

If product g cannot be stored (e.g. gas) the upper and lower bounds of the
inventory level are zero.

INV t,s,h
g + Prt,s,hg = INV t,s,h+1

g + St,s,hg ∀g ∈ G, t ∈ T, s ∈ S, h ∈ H (13)

In constraint (14), the product demand dt,s,hg is met on an hourly level

by either own production or external product purchases, Bt,s,h
g , for each

time period t and scenario s. In the particular case of an air separation
plant, liquid oxygen and nitrogen are commodity products that can also
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be shipped from a different plant or be procured from a competitor if the
plant is not able to meet demand. The latter case is covered by so-called
product-swap agreements that allow to pick up product at a competitor’s
plant for a pre-set price. On a long-term horizon, shipping product from a
different plant or product-swap agreements might be attractive in certain
high-demand scenarios for which it might not be reasonable to expand the
plant’s capacity.

St,s,hg +Bt,s,h
g ≥ dt,s,hg ∀g ∈ G, t ∈ T, s ∈ S, h ∈ H (14)

3.3 Strategic capacity planning constraints

In the following, we describe the constraints related to strategic capacity
planning decisions: process equipment upgrades, addition of new process
equipment and addition of storage tanks.

3.3.1 Process equipment upgrades

We assume that replacing existing equipment does not impact the existence
of the modes the plant initially has. It only changes the polyhedral repre-
sentation of the modes that are affected by the equipment upgrade. Hence,
the corresponding state variables ỹt,s,hm,o are linked with binary decisions on
upgrades V U tu according to the set Upgrade:

ỹt,s,hm,o ≤
∑

t′∈Tinvest,t′≤t
V U t

′
u ∀(m, o, u) ∈ Upgrade, t ∈ T, s ∈ S, h ∈ H (15)

In case of an equipment upgrade u that activates option o for mode m,
the state variables ỹt,s,hm,o′ for the other options o′ of mode m, are forced to
zero in the current and subsequent time periods.

ỹt,s,hm,o′ ≤ 1− V U t′u ∀(m, o, u) ∈ Upgrade, o′ ∈ O(m), o′ 6= o,

t ∈ T, t′ ∈ Tinvest, t′ ≤ t, s ∈ S, h ∈ H
(16)

Furthermore, we assume that only one equipment upgrade u can be made
over the given time horizon:∑

t∈Tinvest

V U tu ≤ 1 ∀u ∈ U (17)

3.3.2 Addition of new process equipment

If a new equipment n ∈ N is added without removing previously installed
equipment, several modes (production and transitional modes) might be
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introduced. These relations are given by the set NewEq. The state variables
ỹt,s,hm,o and yt,s,hm are linked with binary decisions on new equipment V N t

n in
(18) and (19).

ỹt,s,hm,o ≤
∑

t′∈Tinvest,t′≤t
V N t

n ∀(m,n) ∈ NewEq, o ∈ O(m), t ∈ T, s ∈ S, h ∈ H (18)

yt,s,hm ≤
∑

t′∈Tinvest,t′≤t
V N t

n ∀(m,n) ∈ NewEq, t ∈ T, s ∈ S, h ∈ H (19)

Each investment can be made only once over the given time horizon as
per constraint (20). ∑

t∈Tinvest

V N t
n ≤ 1 ∀n ∈ N (20)

3.3.3 Addition of product storage tanks

Adding storage capacity of pre-defined size Tankst,g for the final products g,
which is indicated by the binary decision variables V Stst,g, does not change
the polyhedral representation of a mode, it only affects the upper bound of
inventory:

INV t,s,h
g ≤ INV U

g +
∑

st∈ST,t′∈Tinvest,t′≤t
Tankst,gV S

t′
st,g ∀t ∈ T, s ∈ S, h ∈ H, g ∈ G

(21)

3.4 Objective function

The objective function minimizes the total cost TC, which is the sum of
capital expenses (CAPEXt) and operating expenses (OPEXt,s) across all
time periods t and scenarios s:

TC =
∑

t∈Tinvest

CAPEXt +
∑

t∈T,s∈S
τ t,sOPEXt,s (22)

3.4.1 Capital expenses (CAPEX)

The capital expenses for time period t ∈ Tinvest are defined by the sum
of all investments: new storage tanks (cost coefficient Cstst,g), new process
equipment (cost coefficient Cntn) and process equipment upgrades (cost co-
efficient Cutu). We assume that all associated cost coefficients are discounted
appropriately.
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CAPEXt =
∑

st∈ST,g∈G
Cstst,gV S

t
st,g+

∑
n∈N

CntnV N
t
n+

∑
u∈U

CutuV U
t
u ∀t ∈ Tinvest

(23)

3.4.2 Operating expenses (OPEX)

The operating expenses for time period t and scenario s consist of four
terms, as shown in equation (24): electricity cost related to production,
product procured from competitors, inventory cost and transition cost. It is
assumed that the power consumption is known as a linear correlation with
the production levels, where Φm,o,g are the correlation parameters. The cost
of electricity is given by et,s,h for each season t, scenario s and hour h. The
cost for product procured from a competitor is given by ρt,sg , the cost for
inventory holding and the cost for transitions are δg and ζm,m′ respectively.
All original cost parameters are multiplied by 13 to match OPEX with
CAPEX since we represent one season by a week.

OPEXt,s =
∑
h∈H

et,s,h(
∑

m∈M,o∈O(m),g∈G

Φm,o,gP̄r
t,s,h
m,o,g)

+
∑
g∈G

ρt,sg
∑
h∈H

Bt,s,h
g

+
∑
g∈G

δg
∑
h∈H

INVt,s,h
g

+
∑

m,m′∈M
ζm,m′

∑
h∈H

zt,s,hm,m′ ∀t ∈ T, s ∈ S

(24)

4 Case Study

One process for which production planning based on time-sensitive pricing
can have significant potential for economic savings is cryogenic air separa-
tion, where electricity costs represent 40-50% of overall production costs,
which adds $3-5 to the cost of 1 m3 of liquid product. The electricity
consumption is largely due to the high-pressure compression of air that is
required for the cryogenic separation of its components. Electricity is also
required for further compression in order to obtain liquid argon, oxygen and
nitrogen.

4.1 Model formulation

In the following, we apply the previously developed modeling framework to
an air separation plant, which is illustrated in Fig. 6. The three differ-
ent investment options are shown that potentially increase the operational
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Figure 6: Superstructure of air separation plant with potential
plant modifications: 1. Upgrade existing liquefier (option A) with
option B. 2. Add new liquefier, 3. Add storage tanks for liquid
products. 1 Simplified scheme.

Figure 7: Operational superstructure in terms of modes: An up-
grade of the existing liquefier with “option B”, the polyhedral
structure of mode “existing liquefier” would be replaced. If the
second liquefier is added, a set of modes is added.
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Figure 8: The time horizon of ten years is represented by 5 years
with 4 seasons each. Years 5-10 are aggregated in one year in
order to maintain a manageable problem size.

flexibility for the air separation plant, which has one liquefier pre-installed
(option A). First, it is possible to upgrade the existing liquefier with a dif-
ferent liquefier (option B). Second, one additional liquefier can be purchased
and installed in parallel. Third, additional storage tanks can be bought to
increase the storage capacity for all three liquid products: oxygen, nitrogen
and argon.

The superstructure of plant equipment in Fig. 6 can be translated into
a superstructure of modes, as shown in Fig. 7. The replacement of the
existing liquefier with option B does not affect the existence of the mode
“existing liquefier”, as it just changes the polyhedral structure of the mode.
If the second liquefier is added, the second production mode “new liquefier”
as well as corresponding transitional modes are introduced. Adding storage
capacity for the liquid products does not change the superstructure of modes,
it only affects the upper bound of inventory variables.

Typically, a time horizon of multiple years is considered to justify invest-
ment decisions. In our case, we would like to study the trade-off between
capital expenditures (CAPEX) and operating expenditures (OPEX) over a
horizon of 10 years. The first four years are all modeled with four seasons,
the operation of each represented by a cyclic schedule as described in section
3. For computational reasons that we will explain later in detail, years 5
to 10 are represented by one year with four seasons with operating costs
that are weighted appropriately. Investments are allowed at the beginning
of each of the first four years. We illustrate the temporal representation in
Fig. 8.

In summary, the model minimizes the total cost (TC), consisting of
CAPEX and OPEX according to equations (22)-(24). The strategic con-
straints (15)-(17) represent decisions regarding the upgrade of the existing
liquefier, and constraints (18)-(20) model the potential addition of the sec-
ond liquefier. The addition of storage tanks is considered with constraint
(21). The operation of the air separation plant in each season is modeled
with constraints (2)-(14).
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4.2 Input data

4.2.1 Demand modeling

One of the main drivers, which determines whether an investment should
be made or not, is the forecast of the product demand in time period t, Dt,
which is a random variable with expected value E(Dt) = µt and associated
standard deviation σt. As shown in Fig. 9, the annual demand growth rate
a, which defines the trajectory of the future demand µt (medium profile), is
usually calculated with a regression model that correlates expectations for
external market factors (e.g. GDP growth) with product demand based on
historical data. In the following, we refer to the demand of the first year
(µ1) as “baseline demand”.

Once the overall demand level is set for a given season, the hourly de-
mand dt,s,hg has to be determined. There is a mapping f(µt, σt) → dt,s,hg ,
which translates the plant demand into a weekly pattern on an hourly basis.
The mapping f is based on historical data. It explains how much product is
withdrawn by the trucks that arrive at the plant during the week, and also
specifies the ratio of product demands.

In this paper, we investigate the differences in the solutions of the associ-
ated optimization problem for two demand models: a deterministic version
and a stochastic model version that addresses the uncertainty in the forecast.

4.2.1.1 Deterministic demand In the deterministic demand model,
for each time period t there is just one demand scenario (|S| = 1) with
probability τ t,1 = 1. The demand pattern is based on the expected value
µt. Hence, the demand profile corresponds to the medium demand profile
in Fig. 9, and the number of operational subproblems is 4× 5 = 20 due to
the aggregation of years 5-10.

Table 1: Data that characterizes the distributions DI-DIII (see
also Fig. 10), from which demand scenarios are generated for
the stochastic demand model.

Distribution µt σt b τ t,1 τ t,2 τ t,3

(low) (medium) (high)

DI 1 0.065 1.15 25% 50% 25%

DII 1 0.185 1.15 25% 50% 25%

DIII 1 0.23 blow = 1.087 30% 50% 20%
bhigh = 1.652

4.2.1.2 Stochastic demand In the stochastic demand model, we ad-
ditionally include information that is available regarding the uncertainty in
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Figure 9: Qualitative illustration of the degrees of freedom in prod-
uct demand trajectories and associated scenarios. µt is the ex-
pected demand in time period (season) t. σt is the standard devi-
ation in time period t. a is the growth rate in demand and blow,
bhigh are factors chosen according to the percentile where the low
and high scenarios are centered at.

Figure 10: Distributions DI-DIII and their approximations with 3
scenarios that were used in the case study. For DI and DII, the
low and high demand scenarios were centered at the 12.5 and 87.5
percentile respectively, and weighted with 25%. The medium sce-
nario is weighted with 50%. DI and DII are normal distributions,
whereas DIII is skewed.
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the forecast. First, the distribution of historic demand data is analyzed
to determine the underlying distribution. Second, based on the analysis,
demand scenarios are generated.

In this paper, we investigate the impact of different demand distribu-
tions, such as normal distributions and skewed distributions. Fig. 10 shows
the three distributions DI-DIII, which are used in the case study. All dis-
tributions are scaled and centered at 1, as reported in Table 1. DI and DII
are normal distributions, i.e. Dt ∼ N (µt, (σt)2), where 3σtDI ≈ σtDII . DIII
is a skewed distribution with σtDIII > σtDII .

The number of scenarios is limited to three (low, medium, high) per
time period t due to the resulting large size of the optimization problem.
Therefore, the number of operational subproblems is 3 × 4 × 5 = 60. As
shown in Fig. 10 and as summarized in Table 1, for DI and DII, the low
and high demand scenarios are centered at the 12.5 and 87.5 percentile
respectively (b = 1.15), and each one is weighted with 25%. The medium
scenario is weighted with 50%, such that

∑
s∈S τ

t,s = 1, ∀t. For DIII, the
low demand scenario is closer to the medium demand scenario than the high
demand scenario, since the distribution is skewed. The two different values
for b are also reported in Table 1.

4.2.2 Electricity price modeling

The other main influence factor for an investment decision, is electricity
cost and in particular the variability in electricity pricing. As mentioned
in section 3, the introduction of time periods t, which represent different
seasons of a year, is driven by different typical profiles in electricity prices.
We use a weighted average over multiple years of data from PJM (2011) to
determine the baseline price profiles for year one. Based on data published
by the Energy Information Administration (EIA, 2011), a long-term price
projection is used to forecast future electricity price levels, while assuming
that the same average pattern will be present in future years as well.

4.2.3 NPV cost modeling

All cost factors in OPEX and CAPEX need to be discounted to consider the
time value of money. We adjust for inflation and use the weighted average
cost of capital (WACC) to discount the cost accordingly.

4.2.4 Summary of the investigated cases

We investigate four cases, in which we vary the baseline demand, the annual
growth rate, the demand distribution (see section 4.2.1.2) and the price for
external product purchases. The cases are reported in Table 2. As described
earlier, we solve the cases for deterministic and stochastic demand. In the
deterministic case, the information about the demand distribution is not
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used. In the stochastic case, the distributions are centered (≡ 1) at the
baseline demand µ1 for year one and at increasing demand values, which
grow according to the annual growth rate a, for subsequent years.

Table 2: List of investigated cases, for which baseline demand, an-
nual growth, the demand distribution and the price for external
purchases are varied.

case baseline Annual Demand Scaled prices for
demand (µ1) growth (a) distribution external purchases (ρ)

1 65% 3% DI 1.0

2 91% 6.5% DI 1.0

3 81% 4.5% DII 1.0

4 81% 5% DIII 1.33

4.3 Results

4.3.1 Value of current and additional flexibility

For each case, we would like to understand the value of the current flexibility
(without new investments) and the value of additional flexibility that can be
achieved by retrofitting the air separation plant. Therefore, we investigate
three setups for both, deterministic demand and stochastic demand: (1)
constant operation with the currently installed equipment, (2) flexible oper-
ation with the currently installed equipment, and (3) the joint optimization
of investment and operational decisions. The difference in total cost between
(1) and (2) is the value of the current flexibility. The difference in total cost
between (2) and (3) is the value of additional flexibility. These values may
differ for the deterministic demand model and the stochastic demand model,
which we discuss in the following.

4.3.1.1 Deterministic demand model As one can see in Fig. 11 in
which total costs are reported for all four cases, the value of current flexibil-
ity depends on plant utilization. If utilization is relatively low, as in case 1
(65% utilization for the existing liquefier in terms of baseline demand and an
annual growth rate of 3%), the plant already has a significant amount of flex-
ibility to react to variability in electricity prices with temporary shutdowns
and flowrate adjustments during hours of high electricity prices. Therefore,
the value of current flexibility is equivalent to a reduction in total costs of
13.3% in case 1. In contrast, if the utilization is very high, e.g. in case 2
(93% utilization for baseline demand with an annual growth rate of 6%), the
value of current flexibility to shift production to periods with low electricity
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Figure 11: Deterministic demand model: Value of current and ad-
ditional flexibility. For each case, the value of current flexibility
is the difference between the first two columns; the value of addi-
tional flexibility is the difference between the second and the third
column.

Figure 12: Stochastic demand model: Value of current and addi-
tional flexibility. For each case, the value of current flexibility is
the difference between the first two columns; the value of addi-
tional flexibility is the difference between the second and the third
column.
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prices is low. Hence, the cost savings are relatively small (0.3%). Conse-
quently, the value of current flexibility is intermediate if the utilization is
also within a medium range as one can see in cases 3 and 4. Case 3 has
a medium baseline demand of 81% utilization and a growth rate of 4.5%,
case 4 has the same baseline demand and a growth rate of 5%. The realized
values of current flexibility are equivalent to cost reductions of 2.3% and
1.9% respectively.

Only in case 2 investments are made to increase operational flexibility,
driven by the higher demand. In the first time period, the second liquefier
and an additional storage tank for LN2 are installed. The existing liquefier is
not replaced; neither, additional storage tanks for LO2 or LAr are purchased.
The realized cost savings, i.e. the value of additional flexibility, are 7.6%.
In all other cases, the joint optimization of investments and operational
decisions lead to no investments.

4.3.1.2 Stochastic demand model In Fig. 12, the total costs for all
cases using the stochastic demand model are reported. As in the determin-
istic case, the value of existing flexibility is also a function of utilization.
While the absolute total cost values as well as the relative cost savings are
slightly different compared to the deterministic solution due to the set of
demand scenarios, the overall trend is still the same.

In cases 1 and 2, the value of additional flexibility is also similar to the
deterministic solution. While there are no investments made in case 1, the
second liquefier and one LN2 tank are installed in the first year in case 2,
which leads to 7.3% cost savings.

However, in cases 3 and 4, the stochastic solutions suggest a very different
investment strategy compared to the deterministic solution. In both cases,
the second liquefier and one LN2 tank are installed in the first year. The
associated values of additional flexibility are 0.5% and 5.9% respectively. In
the next section, we discuss the origin of the differences and the value of the
stochastic solution.

An additional interesting observation is that the investments are always
made during the first time period. Hence, the yearly cost savings due to
improved operational schedules are larger than the potentially lower invest-
ment costs due to deferred investments (after inflation and discounting).

4.3.2 Value of the stochastic solution (VSS)

In Fig. 13, one can observe how the additional production capacity of the
second liquefier increases operational flexibility and allows the plant to ad-
just for swings in electricity prices. Furthermore, costs for external product
purchases can be avoided.

In cases 3 and 4, one can observe that the deterministic and the stochas-
tic solutions propose different investment strategies. While the deterministic
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Figure 13: Characteristic operating profiles with and without in-
vestments for scenarios at high utilization. Additional production
capacity of the second liquefier increases operational flexibility and
allows the plant to adjust for swings in electricity prices.
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solutions do not suggest to invest, the stochastic solutions recommend buy-
ing the second liquefier and one LN2 tank in the first year. Hence, in Fig.
14, we analyze the cost breakdown for the two different investment strategies
under stochastic demand for cases 3 and 4.

In both cases, the underlying distributions (DII and DIII) have a high
standard deviation from the expected value. Therefore, there are more sce-
narios with higher demand that potentially have higher cost due to external
product purchases, if no investments are made. Note that the additional liq-
uefier provides sufficient production capacity to meet the demand in these
scenarios, such that costs due to external product purchases are practically
eliminated. Furthermore, the combination of the liquefier with the addi-
tional LN2 tanks allows to reduce electricity cost by means of more flexible
production schedules. In case 3, the cost difference is 0.5%. In case 4, the
cost difference is higher (5.9%) mostly due to the skewed distribution DIII,
which generates scenarios with higher deviations from the expected demand,
and due to the 33% higher price for external product purchases.

The cost difference we described for cases 3 and 4 is also known as the
Value of the Stochastic Solution (VSS). More formally, it can be deter-
mined by solving the stochastic version of the problem with the investment
decisions fixed to the values of the deterministic solution (Birge and Lou-
veaux, 2011). If the deterministic and the stochastic solutions suggest the
same investment strategy, the VSS is equal to zero, as in cases 1 and 2.

In Fig. 15, we summarize the drivers behind different investment strate-
gies for the deterministic and the stochastic solution with a matrix structure,
and classify the investigated cases. Small deviations from the expected de-
mand are in favor for similar behavior in both solutions. For cases with low
utilization (low baseline demand and small growth), the deterministic as well
as the stochastic solutions suggest no investments. For cases with high uti-
lization (high baseline demand and high growth) both solutions propose new
investments. However, if the setup is unclear, i.e. if there are large devia-
tions from the expected demand, potentially skewed distributions and a high
prices for external product purchases, the deterministic and the stochastic
solution behave differently. For those cases, the VSS is greater than zero.

4.3.3 Discussion of computational performance

We solved all test cases within GAMS 23.9.1 (Brooke et al., 2012) on a Intel
i7-2600 (3.40 GHz) machine with 8 processors and 8 GB RAM. The com-
mercial solver CPLEX 12.4.0.1 was employed using a termination criterion
of 0.5% optimality gap. We specified branching priorities on the invest-
ment variables V N t

n, V U tu and V Stst,g. Additionally, we used the parallel
computing capabilities of CPLEX by setting threads=8.

As one can see from Table 3, the problem sizes for the deterministic
and the stochastic model are very large due to the multi-scale nature of the
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Figure 14: Analysis of the value of the stochastic solution (VSS).
The flexibility gained from the second liquefier and the additional
LN2 tank reduces electricity cost by means of flexible production
and helps avoiding costs for external product purchases.

Figure 15: Qualitative analysis of VSS (value of stochastic solution)
for capacity planning: Stochastic programming helps analyzing
unclear demand scenarios.
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Table 3: Sizes of the resulting optimization problems in terms of
constraints and variables for the deterministic and the stochastic
demand model.

Deterministic model Stochastic model

Number of 20 60
operational problems

Constraints 305,094 915,270

Variables 796,344 2,388,984

Binary Variables 73,940 221,780

optimization problem. In Table 4, we report the computational times and
the corresponding final gaps for deterministic and stochastic demand with
the distinction whether investments are jointly optimized or not.

In 10 out of 16 reported cases, we can converge to the required accuracy
of 0.50% final gap. In 5 out of the 6 cases, which do not achieve that
accuracy, the solver runs out of memory, but converges within 1.5% accuracy.
Only in one case, the solution process is terminated due to a time limit of
80 hours with a final gap of 3.23%. Case 1 is especially difficult to solve
because the high flexibility leads to a large solution space (3 runs do not
converge to the required accuracy). As expected, the deterministic cases as
well as the cases, in which investments are not optimized, are comparably
easier to solve due to a smaller solution space.

Since there is a final gap in some cases, it is interesting to understand
whether the obtained solutions are mathematically optimal in terms of in-
vestments. In fact, as we will explain in part II of this paper, this question
is one motivating factor for additional research on decomposition methods,
which confirms the optimality of the obtained investments for all cases.

5 Conclusion

In this paper, we have described a multi-scale model for the integrated
optimization of investments and operations for continuous power-intensive
processes under time-sensitive electricity prices and demand uncertainty. We
applied the model to an industrial case study of an air separation plant for
deterministic demand as well as stochastic demand.

For different baseline demands, annual growth rates and demand distri-
butions, we investigated the current flexibility of the plant and the additional
flexibility due to retrofitting. If the underlying demand distribution has a
low standard deviation, the deterministic and the stochastic solution yield
the same investment strategy. For cases with low utilization, no additional
flexibility needs to be incorporated. For cases with high utilization, the
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Table 4: Computational times for the investigated cases with flexi-
ble operations. Allowed gap: 0.50%. a: out of memory; b: terminated
after 80 hours of computation

case det./ investments Wall Final
stoch. optimized? time (s) gap (%)

1 det. no 9963 0.50%
1 stoch. no 5877 1.25% a

1 det. yes 20128 0.51% a

1 stoch. yes 78810 1.32% a

2 det. no 26 0.09%
2 stoch. no 2151 0.38%
2 det. yes 1657 0.50%
2 stoch. yes 67137 0.50%

3 det. no 37 0.47%
3 stoch. no 1190 0.50%
3 det. yes 4546 0.50%
3 stoch. yes 288000 3.23% b

4 det. no 111 0.46%
4 stoch. no 5237 0.55% a

4 det. yes 4814 0.50%
4 stoch. yes 154312 0.63% a
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current flexibility is low and additional flexibility is desirable. However, in
unclear demand setups, e.g. medium baseline demand and annual growth
rate, with a (potentially skewed) demand distribution that has a large stan-
dard deviation, the deterministic and the stochastic solution suggest differ-
ent investment strategies. For those case, we showed that the value of the
stochastic solution can be significant.

Due to the multi-scale nature of the problem, the resulting MILP prob-
lems are large-scale and hard to solve. While most of the investigated prob-
lem instances could be solved within at most three days, there is a clear
demand for an efficient algorithm that can solve the problem faster with a
higher numerical accuracy, and can potentially solve instances with a larger
number of scenarios, which would reduce the need for the described aggre-
gation of seasons. Therefore, we outline a decomposition algorithm in part
II of the paper.
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Nomenclature

Sets

• DAL(m,m′): The set of disallowed transitions from mode m to m′

• G (index g): The set of products. For air separation plants it is
{LO2, LN2, LAr, GO2, GN2}.

• H (index h): The set of hours of a week in the operational represen-
tation

• I(m, o) (index i), abbreviated as I: The set of extreme points that
relate to option o of mode m

• M (index m): The set of operating modes

• MS(m,m’) characterizes all minimum stay relationships that hold once
a transition from mode m to mode m′ occurs. Examples include min-
imum uptimes, minimum downtimes and minimum transition times.

• N : The set of available new equipment to be added to the plant

• NewEq(m,n), abbreviated as NewEq: The set captures the links be-
tween the addition of equipment n with modes m that would be in-
troduced to the state graph
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• O(m) (index o), abbreviated as O: The set of options for mode m
depending on how the plant is modified

• S (index s): The set of demand scenarios

• ST : The set of available storage tanks

• T (index t): The set of time periods related to seasons (four per year);
each one’s operation is represented by a cyclic scheduling problem

• Tinvest ⊂ T : The set of time periods, in which investments can take
place

• Trans(m,m′,m′′): The set of possible transitions from mode m to a
production mode m′′ with the transitional mode m′ in between

• U : The set of equipment upgrades available

• Upgrade(m, o, u), abbreviated as Upgrade: The set captures the links
between the equipment upgrade u and the options o of mode m that
would be changed in their polyhedral representation

Variables

Binary investment variables

• V U tu: Indicates whether upgrade u is performed in time period t

• V N t
n: Describes whether the new equipment n is added in time period

t

• V Stst,g: Indicates whether storage tank st for product g is purchased
in time period t

Binary operational variables

• yt,s,hm : Determines whether the plant operates in mode m in hour h (of
time period t and scenario s)

• ỹt,s,hm,o : Determines whether the plant operates in option o for mode m
in hour h (of time period t and scenario s)

• zt,s,hm,m′ : Indicates whether there is a transition from mode m to mode
m′ from hour h− 1 to h (of time period t and scenario s)
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Continuous (operational) variables

• P̄r
t,s,h
m,o,g: Production amount of product g in option o of mode m in

hour h (of time period t and scenario s)

• Prt,s,hg : Total production of product g in hour h (of time period t and
scenario s)

• λt,s,hm,o,i: Variable for the convex combination of slates i to describe the
feasible region of option o of mode m in hour h (of time period t and
scenario s)

• INV t,s,h
g : Inventory level of product g in hour h (of time period t and

scenario s)

• St,s,hg : Sales of product g in hour h (of time period t and scenario s)

• Bt,s,h
g : External product purchases in hour h (of time period t and

scenario s)

• CAPEXt: Capital spent due to investments in time period t

• OPEXt,s: Operating expenses in scenario s of time period t

• TC: Objective function variable that represents total cost

Parameters

• et,s,h: Electricity price in hour h in time period t and scenario s

• Φm,o,g: Coefficient that correlates production level of product g for
option o of mode m with power consumption, in [power/volume]

• ρt,sg : Cost for product g shipped from another plant or procured from
a competitor in time period t and scenario s, in [$/volume]

• δg: Cost coefficient for inventory of product g, in [$/volume]

• ζm,m′ : Cost coefficient for transitions from mode m to m′, in [$]

• τ t,s: Probability of scenario s in time period t

• xm,o,i,g: Extreme points of the convex hull of the feasible regions

• Km,m′ : Number of hours the plant has to stay in mode m′ after a
transition from mode m

• rm,o,g: Maximum rate of change for product g in option o of mode m
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• dt,s,hg : Hourly demand for the products g in hour h (in time period t
and scenario s).

• INVU
g : Current tank capacity for product g

• Tankst,g: Tank size for new storage tank st for product g

• Cstst,g: Cost for purchasing storage tank st for product g in time period
t

• Cntn: Cost for investing in new equipment n in time period t

• Cutu: Cost for investing in the equipment upgrade u in time period t

Other symbols

• Dt: Random variable for the overall product demand in time period t

• µt: The expected demand in time period t, i.e. µt = E(Dt)

• σt: The standard deviation for the demand in time period t

• a: Annual growth rate for product demand

• blow, bhigh: Scaling factors
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