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Abstract

Vacuum/pressure swing adsorption (VPSA) may be an attractive alternative to other separation processes
for some applications. In particular, VPSA may be more energy efficient. However, there is often a trade-off
between the different objectives in the separation: product purity, product recovery and power consumption.
Identifying those trade-offs is possible through use of multi-objective optimisation methods. The use of
multi-objective optimisation for the generation of a trade-off curve or surface is computationally challenging
due to the size of the search space and the need for high fidelity simulations of the VPSA designs. The
latter is necessary due to the inherently dynamic nature of the process. This paper presents the use of
surrogate modelling to address the computational requirements of the high fidelity simulations needed to
evaluate alternative designs. Surrogate modelling is an approach for defining simpler, lower fidelity models
that capture the key behaviour of the high fidelity model that is necessary to select between alternative
designs. We present SbNSGA-II ALM, surrogate based NSGA-II. It is a robust and fast multi-objective
optimisation method based on kriging surrogate models and NSGA-II with Active Learning MacKay (ALM)
design criteria. The SbNSGA-II ALM method is faster than the NSGA-II method while preserving the
robustness and diversity of the Pareto front identified. The properties and capabilities of the SbNSGA-II
ALM method are evaluated through the application to an industrially relevant cases study. Specifically,
we consider a two column six step VPSA system for CO2/N2 separation. Using the surrogate modelling
approach, we observe a 5 times reduction in the number of high-fidelity VPSA simulations required, when
compared with NSGA-II applied directly to the high fidelity model, to generate a similar Pareto front.
The surrogate based multi-objective optimisation method may enable the comprehensive optimisation of
adsorption based separation processes. This could lead to more efficient separations for applications ranging
from carbon capture to portable oxygen concentrators.

Keywords: carbon capture; kriging; multi-objective optimisation; surrogate modeling; vacuum/pressure
swing adsorption; dynamic simulation

1. Introduction

The separation of CO2 from flue gas is a challenging problem which imposes a large energy penalty on
the power station or industrial process. Compared with traditional separation processes, such as absorption
and membrane processes, the separation with Vacuum/Pressure Swing Adsorption (VPSA) has the potential
to lower the energy penalty (Ruthven, 1984). However, to achieve an efficient and cost-competitive VPSA5

process requires the optimisation of the process conditions to maximise the product purity and recovery at a
low power consumption. This optimisation is challenging due to the complex and dynamic nature of VPSA
processes. A detailed description of the underlying principles and of how to model pressure swing adsorption
processes is provided by Ruthven et al. (1994).
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For carbon capture, the process design is particularly challenging: the adsorption capacity needs to be10

large because of the large amount of CO2 emitted but the fact that CO2 is the more strongly adsorbed
component in a dry flue gas makes the regeneration of the adsorbent to achieve high purity the difficult
step. Thus, the optimal combination of system and cycle configurations is a compromise between competing
requirements. The system configuration can be a single stage multi-column multi-step VPSA system with
pressure equalizations to minimise energy consumption or it can be a combination of two VPSA stages,15

each of could be complex multi-column and multi-step cycles. The cycle configuration depends on the
temperatures, flow rates, pressures and step times. The search space for the full optimisation of the system
and cycle configuration is therefore large and hence computationally expensive.

Over the years, many publications have considered the optimisation of VPSA systems (Haghpanah et al.,
2013; Jiang et al., 2003; Nikoli et al., 2009; Nilchan & Pantelides, 1998; Krutka & Sjostrom, 2011; Ishibashi20

et al., 1996; Krishnamurthy et al., 2014; Ribeiro et al., 2009, 2008; Da Silva et al., 1999). Usually, the
governing hyperbolic/parabolic partial differential algebraic equations (PDAE) are simulated to cyclic steady
state for each parameter set generated by the optimisation solver. Since the system of PDAEs is usually large
and stiff, this approach is computationally expensive. Most optimisation approaches proposed for VPSA
optimisation are therefore unfortunately computationally intractable for solving large-scale optimisation25

problems. Hence, for optimal design, low-fidelity VPSA models are often used or, alternatively, the search
for the optimal design is performed over a reduced set of parameters (Biegler et al., 2005).

An alternative approach is to use reduced order modelling techniques (Agarwal et al., 2008). Specifically,
surrogate modelling has been considered for VPSA optimisation (Beck et al., 2012; Hasan et al., 2012,
2013). A surrogate model is a fast-to-evaluate approximation of a computer model output, which is built30

from known sample of input-output data points, and can be used to predict the output response at untried
points/configurations. However, previous work on surrogate based optimisation for VPSA needs to be
extended if it is to be applied to multi-criteria design problems. The implementation of surrogate based
optimisation algorithm for multiple criteria is a hard problem (Fiandaca et al., 2009; Liu & Sun, 2013), and
may be less efficient than its single objective counterpart if not implemented carefully.35

In this paper, we use surrogate models to optimise the cycle configuration for a fixed system configu-
ration. In the future, we will consider the simultaneous identification of the combined system and cycle
configurations. We propose an efficient surrogate based multi objective optimisation algorithm for the de-
sign of VPSA systems, using NSGA-II (Non-dominated Sorting Genetic Algorithm-II) (Deb et al., 2002).
Greater efficiency is achieved by using the kriging surrogate model (Stein, 1999) that has been shown to40

be advantageous when linked to existing optimisation methods (Forrester & Keane, 2009). In our case, the
surrogate model is built from design points (input-output data points) calculated from the VPSA simulator
(Friedrich et al., 2013). Kriging based algorithms have been widely used for single-objective optimisation
but there are other issues involved in the multi-objective setting (Sóbester et al., 2014; Voutchkov & Keane,
2010). We propose a novel transformation of the purity and recovery outputs in the surrogate model training45

phase, as well as a procedure for dealing with the possible failure in the simulator runs during the search.
The solution obtained by the surrogate based optimisation procedure is validated against the original model
and, if necessary, the NSGA-II optimisation procedure is repeated with an updated surrogate model, using
the validation simulations with the detailed model to update the surrogate.

A case study for the design of a VPSA system for the separation of a CO2/N2 mixture will be used50

to illustrate the potential of a surrogate modelling approach for multi-criteria design. The design problem
considers the purity and recovery of CO2 as criteria and is sufficiently complex to provide a challenging,
multi-objective test of the optimisation procedure.

2. Experimental setup of the VPSA system

As a case study, we consider the first stage of a two stage VPSA system for the separation of a CO2/N255

mixture representative of the flue gas of a coal fired power station Wang et al. (2013b,a); Liu et al. (2012);
Wang et al. (2012). With currently available adsorbents, a two stage process is favoured because a single
stage process would require very low vacuum pressures. The first stage, also known as the enrichment stage,
increases the CO2 concentration while ensuring a high recovery, ideally above 95%. In the second stage, also
know as the purification stage, the CO2 concentration is increased to the purity target while the combined60

recovery needs to be above 90%. The configuration and performance of the second stage depend entirely
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Figure 1: Schematic of the two stage extended Skarstrom cycle VPSA configuration. CH and V stand for column header and
valve, respectively.

on the purity and recovery achieved in the first stage. Thus it is important to perform a comprehensive
optimisation of the first stage and to identify the Pareto front of purity and recovery trade-offs as a starting
point for the optimisation of the second stage.

Specifically, we consider a two column, six step VPSA system as the example case study (Fig. 1).65

This VPSA system can, depending on the adsorbent and cycle configuration, be used for a wide range of
separations. For example, the system can produce the light component in an air separation process (Farooq
et al., 1989) or can be used as the first stage in post-combustion carbon capture for the production of the
heavy component (Park et al., 2002).

The system is symmetrical with the axis of symmetry going through the feed and vent units. On both70

sides of each column is a column header which is typically used to ensure a homogeneous flow distribution in
the column. The units labeled “Feed”, “Vacuum” and “Vent” provide the boundary conditions for the VPSA
system: the Feed unit is an inlet which provides the gas mixture to separate; the Vacuum unit is an outlet
which provides vacuum pressure for the purge and blowdown steps; the Vent unit is an outlet at atmospheric
pressure and represents the flue gas stack in the power plant. These three units are referred to as feed units.75

The tanks next to the feed units buffer the flows so that the pumps can be operated continuously. The tanks
and column headers are connected by valves which control the flow rates in the system and thus the cycle
steps.

The operating cycle consists of the following 6 steps: pressurisation, feed, one-sided pressure equalisation,
blowdown, purge and one-sided pressure equalisation. This is the original Skarstrom cycle extended by two80

pressure equalisation steps (Skarstrom, 1966). Fig. 2 shows these 6 steps and the corresponding gas flows
and connections between the two columns.

The two sides of the system are cycled through the same steps but with a half cycle offset between them.
For example, during the feed step of column 1, the other column performs the purge step. The different
cycle steps are defined by opening and closing the 7 valves of the system. This is illustrated by the stem85

position of the valves: 0 indicates a closed valve, 1 an open valve and any value in between a partially open
valve. The stem positions for the 6 cycle steps shown in Fig. 2 are given in Table 1. Note that due to the
symmetry in the configuration, s3 and s6 will be the same.

In this case study, we consider a lab-scale system with silicalite pellets (HiSiv 3000) supplied by UOP

3
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Figure 2: Steps of the Skarstrom cycle with one-sided pressure equalisation.

Table 1: Stem positions for the 7 valves for the 6 cycle steps. The stem positions s3 (≡ s6) and s7 are to be determined by
the optimisation procedure.

Steps for column 1 Valve 1 Valve 2 Valve 3 Valve 4 Valve 5 Valve 6 Valve 7

Pressurisation 1 0 0 0 1 0 0
Feed 1 0 s3 0 1 0 s7

Pressure equalisation 0 0 0 0 0 0 1
Blowdown 0 1 0 1 0 0 0
Purge 0 1 0 1 0 s6 s7

Pressure equalisation 0 0 0 0 0 0 1

4



Table 2: System parameters

Description Parameter Value

Column length Lc 0.12 m
Column radius Rc 0.0175 m
Column void fraction ε 0.387
Column header length LCH 0.14 m
Valve coefficient cv 0.000171
Pressurisation/blowdown time tpr 6 s
Pressure equalisation time tpe 4 s
Pellet radius Rp 0.000915 m
Pellet void fraction εp 0.35
Axial diffusion coefficient DL

i 1.73× 10−4 m2 s−1

Axial thermal conductivity λLf 0.37 W m−1 K−1

Heat transfer coefficient hw 10 W m−2 K−1

Crystal density ρcry 1390 kg m−3

Saturation capacity qs 3.13 mol kg−1

Equilibrium parameter CO2 b1 5.042× 10−5 bar−1

Equilibrium parameter N2 b2 1.052× 10−4 bar−1

Heat of adsorption CO2 −∆H̃1 24900 J mol−1

Heat of adsorption N2 −∆H̃2 16010.4 J mol−1

Effective macropore diffusivity CO2 De
m,1 3.7× 10−6 m2 s−1

Effective macropore diffusivity N2 De
m,2 3.9× 10−6 m2 s−1

Feed mole fraction CO2 x1 1/6
Feed mole fraction N2 x2 5/6

(see supplementary information for more details on the lab-scale system). The adsorption isotherm for CO2

and N2 on silicalite was taken from (Golden & Sircar, 1994). The isotherm was measured at 31.4 ◦C and at
68.4 ◦C and these data were fitted with the multi-component Langmuir isotherm

q∗i =
qsbi exp

(
−∆H̃i
RT

)
Pxi

1 +
∑Nc
j=1 bj exp

(
−∆H̃i
RT

)
Pxj

. (1)

We assume that the mass transfer in the silicalite pellets is dominated by macropore diffusion; CO2 has a
kinetic diameter of less than 0.35 nm and silicalite has channels with width greater than 0.5 nm. We use
the Linear Driving Force (LDF) model to describe the mass transfer in the macropore and assume that the
adsorbed concentration in the micropore is in equilibrium with the macropore concentration. The macropore
LDF parameter is calculated from the effective macropore diffusivity by

kpi =
5De

m,i

Rp
.

The adsorbent parameters and the system dimensions are collected in Table 2.
To fully describe the system, the feed flow rate, feed time, vacuum pressure, feed temperature and the90

stem positions of the purge valve (V7) and the vent valves (V3 and V6) must be specified. These will
define the search space for the design optimisation problem and will be described in Section 5 below. The
numerical simulator is described in the next section, and is sufficiently general to design VPSA systems with
an arbitrary number and combination of units and cycle steps.

3. Dynamic adsorption cycle model95

The VPSA system and the associated cycle shown in Fig. 1 and 2 can be simulated in two ways: i) simu-
lating only the columns (Webley & He, 2000) or ii) simulating the columns and the supporting infrastructure,
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such as valves and tanks (Liu et al., 2011; Nikolic et al., 2008). In the former approach, the different cycle
steps are defined through the boundary conditions of the columns while, in the latter approach, valves are
opened and closed according to the schedule of an equivalent experimental apparatus. The former approach100

has a slightly lower computational complexity while the latter approach is closer to the experiment. Since
the increase in computational complexity is manageable and the aim is to simulate an existing experimental
system, the second approach is used.

The VPSA system is build from four unit types (column, valve, tank and feed unit) and the simulations
are performed with an in-house general adsorption cycle simulator. Briefly, the simulator implements the105

mass, momentum and energy balances for adsorption columns and auxiliary units such as valves, splitters
and tanks. Since the governing equations for these units have been presented previously (Banu et al., 2013;
Friedrich et al., 2013), we give here only a list of the used models. However, the governing equations are
repeated for completeness in the supplementary information in Appendix A.

The column model uses the axially dispersed plug flow model and the pressure drop is described by the110

Ergun equation. The adsorption equilibrium is described by the Langmuir model and the mass transfer by
the macropore LDF model. The energy balance takes heat transfers between the surroundings, column, gas
phase and solid phase into account. The system of partial differential algebraic equations is discretized along
the column length with a flux-limited finite volume method. The resulting system of ordinary differential
algebraic equations is integrated in time with the backward differentiation formulas implemented in the115

SUNDIALS solver (Hindmarsh et al., 2005). The system is simulated cycle after cycle until the cyclic steady
state is reached.

3.1. Calculation of purity, recovery and molar work

The simulator is used to generate the composition and flow profiles to allow the calculation of the criteria
considered for ranking design alternatives. The design criteria are the purity and the recovery of CO2.120

These, together with the power requirements, are calculated, for the k-th cycle based on the number of
moles passing through the relevant feed units and the work done by those units:

PuritykCO2
=

nkvac,CO2
− nk−1

vac,CO2∑Nc
j=1

(
nkvac,j − n

k−1
vac,j

) , (2)

RecoverykCO2
=
nkvac,CO2

− nk−1
vac,CO2

nkfe,CO2
− nk−1

fe,CO2

, (3)

Molar workkCO2
=
W k
fe −W

k−1
fe +W k

vac −W k−1
vac

nkvac,CO2
− nk−1

vac,CO2

. (4)

The number of moles for any unit k, nkj,i, is a cumulative amount from the start of the process. The work
done in the feed units, i.e. Wfe and Wvac, is calculated from the pump power. Hence, the difference between
the amounts for cycle k and cycle k−1 give the number of moles and work during the k-th cycle. The purity125

and recovery of CO2 will be the objective functions for the subsequent multi-objective optimisation and are
always calculated at the ’Vacuum’ unit.

4. Surrogate based optimisation with NSGA-II

The need to simulate a dynamic system to provide the data necessary for the evaluation of the design
criteria means that the optimisation of the system and cycle configuration is computationally intensive.130

Traditionally, the computational challenge is addressed through the use of simpler models. However, these
models may not capture the detail required to identify the best designs, especially in a multi-objective
scenario where potentially conflicting criteria are used to evaluate and compare alternative designs. This
section describes a surrogate based optimisation (SBO) procedure developed to address the computational
challenge through the automatic and adaptive definition of surrogate models.135

A surrogate model is a fast approximation of the computer model output z(x) : X → R. Here X ⊂ Rd
represents the design space and d is the number of design variables. Surrogate models are typically fitted to
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n pre-computed input-output data points of z(x), that is, training data (X, z) = (xj , z(xj))
n
j=1, and can

be used to make predictions for untried points in the design space X . Thus no modification of the original
computer code is needed. In the multi-output setting we can assign to each output its own surrogate.140

Kriging regression (Jin et al., 2001; Sóbester et al., 2014; Stein, 1999) is a popular surrogate modelling
technique for engineering design and is used in this work. Other popular techniques include polynomial
response surfaces, radial basis functions (RBF), artificial neural networks (ANN), multivariate adaptive
regression splines (MARS), and support vector regression (SVR) (Forrester & Keane, 2009). Kriging’s
popularity can be accredited to its ability to easily produce confidence bands for prediction, which has been145

proven to be a highly attractive feature for exploring the design space.
In the context of optimisation, it is possible to replace the computationally expensive objective function

with a surrogate model. However, by doing so, one solves an approximation of the original optimisation
problem, which may be considered a näıve approach. Instead, the problem can be approached by solving a
sequence of approximations of the original problem. First, employ the surrogate model in lieu of the objective150

to assist the optimiser in the search for the next design point. Then update the surrogate model using the
detailed model evaluation at some point determined by the optimisation procedure. Solve the problem again
and iterate. The surrogates are updated as new input-output data points are collected from the detailed
model. This procedure is illustrated in Fig. 3.

There are many potential criteria for selecting points with which to update the surrogate, referred to as155

“surrogate based criteria.” The most common and seemingly natural choice is would be to select the design
point x with the highest z(x) value, as predicted by the surrogate. This, however, may lead to premature
convergence (Jones, 2001). The expected improvement (EI) criterion (Jones et al., 1998) is another popular
choice, one which guarantees convergence to a global optimum.

4.1. Kriging model160

Kriging regression treats the computer model of interest z : X ⊆ Rd → R as an unknown deterministic
function, except for the inputs that already are known. Following (Sacks et al., 1989), we model z(x) as a
Gaussian random field, Z(x), with E

(
Z(x)2

)
< ∞ for all x ∈ X . The resulting statistical model is known

as the kriging model and can be used for prediction. The ordinary kriging, used in this work, is characterised
by a constant mean, β ∈ R, and a covariance function Σ(x,x′) = σ2K(x,x′), for x,x′ ∈ X . K(x,x′) is the
correlation function which must be positive semidefinite. A widely used correlation function is the squared
exponential correlation function (Rasmussen & Williams, 2006):

K(x,x′) = exp

(
−

d∑
i=1

(xi − x′i)2

2`i

)
, (5)

where ` = (`1, `2, . . . , `d) ∈ Rd+ are the correlation length-scales and σ2 is the process variance.
Let us assume we have some training data D = (X, z) where X = (xj)

n
j=1, z = (z1, z2, . . . , zn)T , and

zj = z(xj). Then, given that Z(x) is a Gaussian Process (GP), we also know that the joint distribution
Z̄ = [Z(x1), Z(x2), . . . , Z(xn)] follows a multivariate normal distribution with 1×n-dimensional mean vector
1β and n× n variance-covariance matrix Σ(σ2,`). Here 1 = (1, 1, . . . , 1)T and the (j, k)th element of Σ(σ2,`)

is given by Σ(xj ,xk) for xj ,xk ∈X. The predictive distribution of Z(x)|`, z is a GP, with mean

ẑ(x) = β̂ + k(x)K−1(z − 1β̂), (6)

and variance
s2(x) = σ̂2

(
1− kT (x)K−1k(x) + γT (x)

(
1TK−11

)−1
γ(x)

)
, (7)

where the m × 1 vector k(x) has entry j given by K(x,xj) for xj ∈ X, γ(x) = 1 − 1TK−1k(x), and

the generalized least square solution β̂ = (1TK−11)−11TK−1z. K is the correlation matrix given by

K = σ−2Σ. Here we estimate the process variance using the unbiased estimate σ̂2 = 1
n (z−1β̂)TK−1(z−1β̂).

Fig. 4 is an illustrative example included for readers unfamiliar with kriging modelling.165

The kriging mean is given by (6), which is our kriging predictor, and the kriging variance is given
by (7). The kriging expressions are derived under the assumption that the correlation parameters ` are
known which rarely is the case. The correlation parameters ` can be estimated by the data using Maximum

7



Figure 3: Sequence diagram for a surrogate based optimiser showing when the surrogate is invoked and when the detailed
model, or simulation, is invoked. This sequence is based on an optimiser that has some internal search procedure within an
outer iteration; an example of such a method would be a genetic algorithm.
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Likelihood Estimation (MLE). The ML estimates ˆ̀ can be determined by minimizing the profile log-likelihood
−2 lnL(`) = n lnσ2

` + ln |K`| (Sacks et al., 1989), where L(`) is the profile likelihood under the Gaussian170

assumption. We also add a small regularization parameter τ2 > 0 (known as the nugget, or the jitter) to the
diagonal elements of the correlation matrix K to improve its condition number before computing its inverse,
which is required in (6) and (7). Typically, τ2 is small. This results in a kriging model (with some slightly
perturbed correlation matrix entries) that does not ensure interpolation of the given data D. Nevertheless,
the use of a regularization parameter to improve numerical stability can be advantageous (Gramacy & Lee,175

2012). The Cholesky decomposition is used for the matrix inversion step.

4.2. Kriging prediction error analysis

Over the value domains for the decision parameters considered in our case study (described in Section 5)
we have assessed the prediction quality of the kriging surrogate model for both the product purity (2) and the
product recovery (3). The prediction error is the normalised root-mean-square prediction error (NRMSPE):

NRMSPE =

√(
1
M

∑M
j=1(ẑ(xj)− z(xj))2

)
maxj z(xj)−minj z(xj)

, (8)

where z(x) is the computer model output and ẑ(x) is the kriging predictor. The results of this analysis are
presented in Fig. 8. To calculate the NRMSPE, a hold-off set has been used, consisting of 1, 000 input-output
data samples of the VPSA simulator, and determined by maximin distance Latin-hypercube sampling (LHS).180

ML estimates are used for the parameters in the squared exponential correlation function (5). The kriging
model prediction errors for both objectives are below 10% if the training data set size exceeds 60. As the
number of design solutions in the training set increases beyond 60, the rate of the decrease in error slows
down, as expected (Loeppky et al., 2009). The conclusion of the error analysis is that the kriging surrogates
can be used for well-behaved VPSA model outputs such as purity and recovery.185

4.3. Developing a surrogate based optimisation procedure

A standard optimisation problem is to maximise (or minimise) an objective function z(x) : X → R:

x∗ = arg max
x∈X

z(x). (9)

9
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Alternatively, when the objective z(x) is expensive to evaluate, a surrogate model ẑ(x) can be used in lieu
of the objective, i.e.,

x̂∗ = arg max
x∈X

ẑ(x). (10)

The solution x̂∗ serves as an approximation to the solution of the original problem, x∗. Indeed, the more
accurate the surrogate, the more confidence we will have in the solution x̂∗. On the other hand, even with
an accurate surrogate, the difference between the two solutions may be very large. In practice, therefore,
the SBO method is used (Viana et al., 2014).190

SBO exploits the predictive power of the surrogate model in lieu of the objective. First the surrogate
is built on a set of training data. Then, at each iteration of the SBO method, the optimiser of choice is
applied for a design criterion evaluated with a surrogate model. At the end of each iteration, the surrogate
is updated with the design solution (xk, z(xk)) selected by the optimiser for the chosen design criterion. A
common surrogate based design criterion is to just optimise the surrogate response ẑDk(x). The procedure195

is repeated until the stopping criteria are met.
The SBO problem for iteration k = 1, 2, . . . can be written as:

xk = arg max
x∈X

C(x,Dk, ẑDk , ŝ2
Dk ; ·), (11)

for some surrogate based design criterion C(·), with Dk = D0

k−1⋃
i=1

(xi, z(xi)) being the input-output data

known at iteration k and where D0 denotes the initial data (xi, z(xi))
n
i=1. Here ẑDk(x) is the kriging mean

(6) and ŝ2
Dk(x) is the kriging variance (7), conditioned on the training data Dk.

In developing an SBO, the following must be addressed:200

• the choice of optimiser;

• the criteria which form the objective functions;

• the initial training for the surrogate;

• how to handle failures in the evaluation of the detailed model; and,

• a parallel implementation, if any.205

For the development of the SbNSGA-II SBO method, each of these is discussed in turn.
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The choice of optimiser. Most conventional optimisation methods can be used within the SBO framework.
We have used the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002). The NSGA-
II method has been extensively used for multi-criteria design problems. It is a genetic algorithm suitable
for optimisation where gradient information is not present and where any of the objective function, the210

constraints or the design space may be non-convex. NSGA-II is able to incorporate infeasible design points
into the selection procedure. It also offers diversity control for the evolving population of designs to generate
an approximation to the Pareto front that is as broad as possible.

The criteria. The choice of the surrogate based criteria should ensure the surrogates adaptively target the
regions of the design space believed to contain good design solutions and should guarantee convergence in
the limit to the global optima. With the correct choice, the surrogate should actively learn as the search
progresses. Some popular kriging-based design criteria are the kriging mean,

C(x, ẑDk) = −ẑDk(x), (12)

the kriging variance,
C(x, ŝ2

Dk) = ŝ2
Dk(x), (13)

and the expected improvement (EI) (Jones et al., 1998). The latter selects the design point xk with the
largest expected improvement relative to the best known design solution:

C(x, zDk , Z(x)) = EZ (max{zmin − Z(x), 0}) , (14)

where zmin = min zDk . Based on the Gaussian assumption for Z(x), conditioned on the known data Dk,
the EI criterion can be expressed in closed-form:

C(x, zDk , ẑDk , ŝ
2
Dk) = (zmin − ẑDk(x))Φ

(
zmin − ẑDk(x)

ŝDk(x)

)
+ ŝDk(x)φ

(
zmin − ẑDk(x)

ŝDk(x)

)
(15)

where Φ(·) is the cumulative distribution and φ(·) is the probability density function for the conditional
posterior probability distribution of the kriging model. The EI criterion is useful when applied iteratively to215

improve the global approximation while searching for the optima.
The kriging mean criterion tends to be too optimistic unless the objective function is easy to approximate

or convex. Jones (2001) demonstrated that using an optimiser on the kriging mean can cause the method to
get trapped at a local optimum and, in turn, the improvement of the surrogate stagnates. The goal of the
kriging variance criterion is equivalent to learning the value at the design point of highest uncertainty and,220

hence, strives to improve prediction accuracy rather than targeting regions of interest in the design space.
SBO with the EI criterion is also known as efficient global optimization (EGO) (Jones et al., 1998). EGO
has gained popularity as an SBO method but a drawback is that, if the process variance is under-estimated,
the EGO search may have limited exploration as it concentrates too early on the current best solution. On
the other hand, if the variance is over-estimated, the fact that the location of the currently best solution is225

known is not exploited enough and the result is slow convergence.
Motivated by Voutchkov & Keane (2010), we use the following hybrid criterion to promote robustness:

C(x, ẑDk , ŝ
2
Dk) =

(1− (−1)k)

2
ẑDk(x) +

(1− (−1)k−1)

2
ŝ2
Dk(x). (16)

This criterion is well-balanced between exploration (kriging variance) and exploitation (kriging mean), guar-
antees global convergence in the limit, and is easy to interpret.

Initial training data. Prior to running the SBO algorithm, the design space is sampled to obtain the initial
training data for building the kriging model. For kriging regression, a rule of thumb for the moderate size230

of the training data is 10d (Loeppky et al., 2009). Examples of classical experimental design techniques
for physical experiments are full-factorial and central composite design (Montgomery, 2007). For designing
computer experiments, however, Latin hypercube sampling (McKay et al., 1979) is commonly used as it scales
well to high-dimensional design spaces and is easy to implement. Our initial training data are generated
through a maximin Latin hypercube design (MmLHD). First we generate a number of latin hypercube235
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design (LHD) points and the design which has the largest minimum inter-point distance is selected (maximin
criterion). MmLHD could be viewed a compromise between the maximin and minimax criterion.

As another option for sampling, although not used in our work, is to sequentially design the training
data. Sequential design using entropy-based criteria generally outperform LHDs (Beck & Guillas, 2014), as
long as the underlying computer model is computationally expensive. We will be considering this and other240

alternatives in the future. For the moment, however, we note that LHD works well.

Handling simulation model failures. VPSA process simulations may become unstable for certain design
configurations. An unstable design may cause a failure in the evaluation of the design point. In our case,
simulator failures are mainly due to failure to solve the set of differential algebraic equations whenever the
dynamic behaviour in the adsorbent beds is too challenging. In such a case, even if no output is returned by245

the simulator, we still include the design point in the training data. This additional information improves
the kriging variance (7). Note that the kriging variance does not explicitly depend on the output data,
only implicitly via σ̂2. The uncertainty can be modelled more accurately by accounting for the failed design
points. When the search is guided by the kriging variance, this approach helps us avoid revisiting failed
design points, as well as points in close proximity.250

Parallel implementation. The parallel implementation of the algorithm is based on the approach of Schonlau
(1998) for multi-point selection, known as the Kriging Believer (Janusevskis et al., 2012). In the k-th SBO
iteration, n design points are selected sequentially but without evaluation until all the points have been
selected. We denote the jth design point selected during the kth SBO iteration by xkj . First we select xk1

by performing the kth SBO iteration algorithm as before. Next, we add (xk1, ẑ(xk1)) to the training data,255

and the kriging is updated. Observe that we updated the training data with the kriging mean ẑ(xk1), instead
of the true model output z(xk1). The same steps are performed for xkj , j = 2, . . . , n, sequentially. The
computer model is then evaluated in parallel for the n design points, the training data set is corrected with
{(xkj , z(xkj))}nj=1, the kriging model is updated, and the next SBO iteration begins. With this approach,
n should be proportional to the number of allocated CPUs. The design selection becomes less efficient for260

large n, since the training data are updated with the kriging mean at each step j, leading to degeneracy.

4.4. The implementation of SbNSGA-II: a Surrogate based NSGA-II

This section describes the specifics of implementing an SBO based on NSGA-II for the VPSA design
problem.

SBO extension to multiple objectives in NSGA-II. A kriging model is used for each objective together with
a mixture of surrogate based design criteria (16), which can be written as follows:

C(x, ẑDk , ŝ
2
Dk) =

(1− (−1)k)

2
ẑDk(x) +

(1− (−1)k−1)

2
ŝ2
Dk(x). (17)

where ẑDk(x) = [ẑDk1(x), . . . , ẑDkq (x)], ŝ2
Dk(x) = [ŝ2

Dk,1(x), . . . , ŝ2
Dk,1(x)], and q is the number of objective265

functions. For the parallel implementation, the index k is replaced by the index j as described above. For
example, should eight CPUs be available, four CPUs would be used to compute design points selected by
optimising ẑDk(x) and the other four for points selected by maximising ŝ2

Dk(x).
What makes the NSGA-II environment more challenging with surrogates is that the optimiser is popu-

lation based and returns non-dominated solutions (in a Pareto sense). First NSGA-II is applied to design270

criterion (17). The näıve approach would then be to select one (or multiple) non-dominated solutions for
further consideration from the Pareto set. Instead, by respecting the nature of the multi-objective setting,
the kriging-based Pareto front (from applying NSGA-II on kriging models) is combined with the current
Pareto front and one or several non-dominated solutions for model evaluation are selected. This leads to a
Pareto front with better diversity, richness, and coverage.275

Transformation of purity and recovery. The kriging makes predictions on the real line R whereas our model
outputs, purity and recovery, are ratios in the interval [0, 1]. Some predictions made by the kriging will
inevitably violate physical constraints, such as concentrations. One could enforce the bounds by using the
extreme values 0 and 1 whenever a prediction falls outside the feasible domain [0, 1]. This manipulation of the
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kriging response may lead to non-differentiable behaviour. We instead suggest the following transformation
of the kriging’s training data z:

u = log

(
z

(1 + ε)1− z

)
, (18)

where u is the transformed data, and ε > 0 is a typically very small perturbation. This extends the output
space from [0, 1 + ε] to the real line R. Then, afterwards, in order to make predictions, we transform back
using ẑ(x) = ((1 + ε) exp(û(x)))/(1 + exp(û(x))), where û(x) is a transformed kriging prediction. Here ε
is a small perturbation to allow z = 1. The perturbation parameter ε may also be necessary to ensure the
transformation is valid if any output z(x) is above 1 due to numerical errors, e.g., producing a purity level280

of 1.0001.
An advantage of this transformation is that, when a multi-objective optimiser is applied, the Pareto order-

ing of the multi-objective function evaluations is preserved under transformation, i.e., if one response value
dominates another in the original space, this response will also dominate the same one in the transformed
space. Fig. 6 shows that the proposed transformation improves the algorithm’s robustness for multiple objec-285

tives with physical constraints. Other examples of transformation-based kriging models are the log-normal
kriging (Diggle & Ribeiro, 2007), trans-Gaussian kriging (De Oliveira et al., 1997) using Box-Cox transfor-
mations, and u = log(z+ 1) for non-negative outputs (Spiller et al., 2014). In fact, this data transformation
is an essential ingredient to ensure the kriging-generated Pareto front scales well with the current Pareto
front when combined.290

Diversity constraint in the design space. We impose a diversity constraint in the design space to avoid
clustering: if the distance between the most promising candidate design point x and the training data X,
given by the Euclidean norm,

∥∥∥x̃− X̃∥∥∥
2

= min
x̃∗∈X̃


√√√√√
 d∑

j

(x̃j − x̃∗j )2


 (19)

is ε−small, the candidate is rejected and the second most promising candidate is tested, and so on, until a
viable candidate is found. Here x̃ and X̃ are normalised.

Stopping criteria. One of the challenges with evolutionary strategies for optimisation is to decide when to
stop. In this work, we focus on the analysis of the methodology and therefore stop the algorithm when a
given number of iterations have been completed. A stop criterion could also be designed with respect to some295

computational budget or with respect to the change in the best design solution found, over a few iterations,
either in terms of change in the design space or in the objective space.

5. The case study

As a case study, we use the separation of the flue gas of a coal fired power station by a VPSA process with300

the adsorbent silicalite. The setup of the VPSA system is described in Section 2 above. In that description,
a number of parameters required to fully describe the VPSA process were not defined. These form the design
space and are given by the decision parameters presented in Table 3. Out of computational convenience, the
decision parameters have all been normalised to [0, 1] for use in the surrogate based optimisation.

While the VPSA process depends on a large number of parameters, these 6 parameters have the largest305

impact on the process and are those usually adjusted to optimise the process performance. The purge-to-feed
ratio controls the amount of gas flow during the purge step. A larger ratio usually results in faster desorption
but lowers the resulting purity. The feed time and flow rate influence the productivity and recovery of the
process. These parameters are linked if we only consider the purity and recovery. The vacuum pressure
controls how much CO2 is desorbed during the purge step. The lower the vacuum pressure the more CO2 is310

desorbed but at the expense of higher energy consumption. The stem positions of the vent valves control the
pressure during the feed step and thus the amount of CO2 adsorbed at equilibrium. The feed temperature
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Figure 6: Top: The Pareto front approximation generated by responses from the kriging predictor. Bottom: The Pareto front
approximation generated by the transformed-kriging. This illustates the benefit of using kriging in the transformed space when
performing multi-objective VPSA optimisation when there are physical constraints for any of the objective functions.

Table 3: Decision parameters

Parameter Range Units

Purge-to-feed ratio valve stem position s7 [0, 1] -
Feed/purge time tfe [10, 200] s
Feed flow rate Ffe [0.0005, 0.008] mol s−1

Vacuum pressure Pvac [0.02, 0.4] bar
Adsorption pressure regulator valves stem positions s3, s6 [0.3, 1.0] -
Feed temperature Tfe [290, 340] K
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influences the shape of the isotherm and thus the working capacity. At higher temperatures the isotherm
becomes more linear and the desorption step might be more efficient.

While the general effect each of these parameters individually has on the performance of the VPSA315

process is known, the interplay between these parameters and the conflicting objectives make the use of
optimisation methods mandatory for the design of efficient VPSA processes.

5.1. Optimisation methods: SbNSGA-II and SbNSGA-II ALM

We use our developed SBO method presented in Section 4.3. Ordinary kriging models (see Section 4.1)
are surrogate models chosen to approximate the product purity and recovery outputs and are trained on320

transformed data, as described earlier, to ensure predictions are made in [0, 1]. The kriging models assume
an empirical squared exponential correlation (5) fitted using maximum likelihood estimation (MLE). A
regularization parameter τ2 = 10−6 is introduced for numerical stability in the kriging computations. The
empirical correlation structure is updated when new input-output data arrives. MLE is quite computationally
intensive, so we only update the parameter estimates until we have 80 data points. In this case study, we325

do not expect using more than 80 data points will lead to any significant difference in the estimate values.
The initial training data is of size 16 and has been sampled as an MmLHD design.

For the NSGA-II, we have specified the following: population size Np = 128, mutation rate mr = 1/d,
mutation index nm = 20, crossover rate cr = 0.9, and crossover index nc = 5, with real-coded values,
simulated binary crossover (SBX) and polynomial mutation. We use ε = 10−3 for the explicit diversity330

constraint (19) in the design space.
Two implementations have been developed, one using the NSGA-II along with the kriging mean criterion

(SbNSGA-II) and one which introduces Active Learning MacKay (ALM) to construct a mixture of criteria
(17) that broaden the approximation to the Pareto front (SbNSGA-II ALM). The implementations make
full use of parallel computing with the Kriging believer approach and have been tested on an 8 CPU core335

system, yielding close to linear speed up. Eight design points are selected per SBO iteration, and for those
design configurations we run the VPSA model in parallel over the eight CPU cores.

5.2. Optimisation results

Two objectives are considered, the purity and the recovery, and these are maximised simultaneously in
a Pareto sense. For comparison, we have also included results for the stand-alone NSGA-II, given a budget340

of 1600 model evaluations of the VPSA simulator. We have used five separate sets of training data for
SbNSGA-II to show the method’s robustness with respect to the training data.

Fig. 7 shows the optimisation results of the stand-alone NSGA-II, SbNSGA-II, and SbNSGA-II ALM,
at different numbers of evaluations of the VPSA simulator. Although there is only a small difference in
performance between SbNSGA-II and SbNSGA-II ALM for 256 points, our criterion (17) is more robust345

as the optimiser can escape local optima and enables active learning for the kriging model. In Fig. 7, we
can see that, with some initial training data, the SbNSGA-II can be substantially worse than SbNSGA-II
ALM. The benefit with SbNSGA-II is its fast convergence when close to the optima. The Pareto front for
the SBO methods using 256 design points overlaps with the Pareto front for the stand-alone NSGA-II using
a normally excessive budget of 1600 design points (see bottom left in Fig. 8). The SBO methods reach a350

reliable Pareto solution. A trade-off between the SBO methods can be achieved by modifying the mixture
criterion of the SbNSGA-II ALM to use the predictive mean criterion more frequently than the predictive
variance criterion.

The ML estimates of the parameters in the squared exponential correlation function (5) are `purity =
(1.2, 4.7, 1.6, 15, 14.4, 15)T , and `recovery = (3.2, 1.8, 1.7, 5.6, 8.5, 15)T . The parameter order in the vectors355

is the same order as introduced in Table 3. These correlation parameters represent the importance of the
different parameters on the respective outputs and can be used to guide the analysis of the optimised design.
A small value of a correlation parameter indicates a strong nonlinear relationship between the objective and
the design parameter. Thus, parameters with lower values have a large influence on the objective. On the
other hand, for a large value of a correlation parameter, the objective function is smooth with respect to360

the corresponding design parameter. While this indicates that the relationship has no significant nonlinear
behaviour, it does not indicate that the design parameter has no influence at all on the objective. The
possible linear relationship can be deduced from the high level visualization given in Fig. 9.
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Figure 7: Results using different optimisation strategies. Top left: 64 evaluations of the high-fidelity simulation, right: 96.
Bottom left: 176, right: 256. The results for the different strategies are produced by combining five Pareto fronts resulting from
using five different initial training data.
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Figure 8: Power consumption per mole of CO2 captured.

17



While the optimisation performed above only considered the purity and recovery, the power consumption
is essential for the design of an effective VPSA system. For the design solutions, we also calculated the365

system’s power consumption defined by (4). Fig. 8 shows on the Pareto fronts the power consumption per
mole highlighted by the color range. The power consumption for our SbNSGA-II ALM and NSGA-II agree
along the whole Pareto front and both show a minimum at the bend of the Pareto front. This is to be
expected because at the bend the system recovers most of the CO2 at a high purity. Interestingly, the
SbNSGA-II optimisation does not show a clear minimum at the bend of the Pareto front. The reason for370

this higher power consumption of the solutions is not obvious but is probably due to the limited exploration
of the design space of SbNSGA-II.

5.3. Discussion

The low values of the correlation parameters `purity and `recovery tell us that the purge-to-feed ratio has
a large influence on the purity and that the feed/purge time and the feed flowrate have a large influence on375

the recovery. The purge flow controlled by the purge-to-feed ratio consists mostly of the light component
and thus the purity of the heavy component is reduced by a large value of this ratio. If the product of the
feed/purge time and the feed flowrate are too large, a part of the heavy component will break through during
the feed step which will reduce the recovery. Thus these relationships are expected and it is more interesting
to investigate why the other parameters have a lower influence.380

To investigate the influence of the design parameters with higher values of the correlation parameters, we
need to also consider the high level visualisation presented in Fig. 9. The link between the different Pareto
front segments highlighted with colours (cyan, red, green, and blue) and the design solutions is revealed in
Fig. 9. This link enables us to better understand the underlying process. For example, in the regime of high
purity, we can see that the purge valve should be closed during the feed/purge step. This is reasonable as385

the CO2 is the heavy product taken out during the feed step and to purge the second bed with a gas mixture
of high N2 is likely to deteriorate the CO2 level of the outgoing product.

The two correlation parameters for the feed temperature are at the upper limits and thus it seems that
the feed temperature has little influence on the outputs. Since the CO2 isotherm on silicalite is nonlinear
at the lower temperature and becomes more linear towards the upper boundary of the feed temperature,390

we would have assumed that the feed temperature has at least some influence on the purity and recovery.
However, the high level visualisation in Fig. 9 shows that the feed temperature varies without any discernible
trend, confirming that the feed temperature has very little influence on either the purity or recovery. This
very low influence can be explained by the large column headers in the CCSi VPSA unit (see Table 2). The
column headers act like heat exchangers so that, even for the highest feed temperature, the gas entering395

the adsorption column is cooled to almost room temperature. Thus the feed temperature has almost no
influence on the processes in the adsorption column and this validates the use of the estimated correlation
parameters in combination with Fig. 9 as a sensitivity analysis tool.

According to the correlation parameters, the vacuum and adsorption pressure have some influence on
the recovery. The two pressure values influence the working capacity of the system. For a larger pressure400

range, i.e. the difference between vacuum and adsorption pressure, the working capacity of the adsorbent is
larger and thus the amount of CO2 adsorbed in each cycle increases. This increases the recovery because the
losses of CO2 in each cycle to the vent are not increasing accordingly. On the other hand, the correlation
parameter for the purity is at the upper limit, indicating, similar to the feed temperature, that the pressures
have little influence on the purity. While Fig. 9 confirms that there is no trend in the feed pressure, this405

is not true for the vacuum pressure which is at the lower limit except for the design points with very low
purity, i.e. at or close to the feed concentration. It is intuitively clear that a sufficiently low vacuum pressure
is required to efficiently remove the adsorbed CO2 from the bed. Thus the best performance in terms of
CO2 purity is achieved when the vacuum pressure is at its lowest point in the specified range. This shows
that for high values of the correlation parameters it is essential to also look at the high level visualisation.410

The product of feed/purge time and feed flowrate is crucial to achieve high purity and high recovery. If
the product is large, the adsorption front will break through at the vent end of the column. This will lead to
high purity CO2 streams in the purge step but will yield a low recovery. If the product is small, none of the
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Figure 9: Pareto front divided into segments (Left) by colours. Parallel coordinates visualisation (Right) shows that the design
solutions associated with different Pareto front segments are clustered. The top figures are for the NSGA-II (1600 evaluations),
and the bottom ones are for the SbNSGA-II ALM (320 evaluations). The SbNSGA-II ALM, with only 320 evaluations, provides
a sufficient approximation of the Pareto curve as well as the associated design solutions.
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CO2 will leave the column at the vent end and thus the system will have a high recovery but a low purity.415

To reach a system with a high purity and high recovery the product of feed/purge time and feed flowrate
needs to be an intermediate value which ensures that the adsorption front almost reaches the vent end of the
adsorption column. As we move the adsorption front closer to the vent side of the column, a small amount
of CO2 is breaking through at the vent side. By increasing the purge-to-feed ratio, a larger percentage of
this CO2 is recovered which explains the influence of the purge-to-feed ratio on the recovery.420

It is interesting to note that the power consumption per mole of CO2 shown in Fig. 8 increases from the
bend for decreasing purity but goes back to the minimum value for very low purities. These low purities are
similar to the feed mole fraction and could be achieved without any separation at the vent side of the system.
However, the purity and recovery are always calculated at the vacuum side. The high level visualisation
shows that, for these cases, both the feed/purge time and feed flowrate are at very low values. This indicates425

that the flow through the system is low and that only a small amount of the feed gas leaves the system at
the vent side.

While the power consumption and productivity are not as important for a demonstration system, these
are critical in large scale applications. For example, the low vacuum pressure of 0.02 bar, while achievable in
a small lab-scale or demonstration unit, would be difficult to reach in large scale industrial applications and430

would lead to large power consumption. Furthermore, a high productivity of the process is crucial for small
and light systems. This is important for small scale portable units, e.g. portable oxygen concentrators, as
well as for large scale industrial units, e.g. carbon capture units for fossil fuel power station.

This discussion shows that the correlation parameters together with the high level visualisation in Fig. 9
are a valuable tool in the analysis of the optimisation results. The high level visualisation, in particular, helps435

to understand the interplay between different decision variables and the trade-off between purity and recovery.
Multi-objective visualization methods can be a valuable tool to explore the relationship between competing
objectives for the promising VPSA designs (Z̆ilinskas et al., 2015). For example, the lines connecting the
feed/purge time and feed flowrate for each segment of the Pareto front, i.e. lines of the same colour, are
almost all crossing. This indicates that the amount of feed gas (tfe × Ffe) for each segment of the Pareto440

front is almost constant. This shows that the feed/purge time and feed flowrate are linked with respect to
purity and recovery, i.e. purity and recovery depend only on the amount of feed gas. However, the two
design parameters are independent with respect to power consumption and productivity and this will be
investigated in a future publication.

6. Conclusion445

In this work, we propose the first multi-objective optimisation method that involves the use of kriging
surrogate models for providing fast solutions to the design of VPSA systems. We have demonstrated its
efficiency against the standard NSGA-II and verified its robustness by analysing the performance using
five different initial training data. It is well-known that surrogate based optimisation involving multiple
objectives is challenging. We propose a transformation of the objective space during the training phase of450

the surrogate models (for the purity and recovery) to constrain their response space to [0, 1] (i.e., to obey
the physical constraints). This modification leads to better predictions of the Pareto front.

We have developed two implementations, SbNSGA-II and SbNSGA-II ALM, which both outperform the
standard NSGA-II. SbNSGA-II ALM has been shown to be more robust than SbNSGA-II, although SbNSGA-
II displays a stronger convergence when close to the optima. Both SBO methods achieved a reduction in the455

number of VPSA model simulations by a factor between 2 and 5, depending on the desired resolution of the
Pareto curve approximation. This reduction in the number of high-fidelity simulations directly translates
to a reduction in the computational time and thus enables the efficient optimisation of VPSA systems.
Furthermore, the power consumption of the solutions of SbNSGA-II ALM is comparable with the solutions
of NSGA-II, while the solutions of SbNSGA-II show a significantly higher power consumption in the high460

purity and high recovery region. While the inclusion of power consumption and productivity as objectives is
beyond the scope of this contribution, the multi-objective SBO framework is capable of handling more than
two objectives and this will be investigated in the future.

A further advantage of the SBO methods is the calculation of the correlation parameters. Together with
the high level visualisation these parameters offer significant information about the interplay between the465
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decision variables and objectives. This insight can be used to analyse the optimisation results and to guide
further optimisation studies.

Appendix A. Supplementary information

Appendix A.1. Carbon Capture and Storage Interactive Unit

The Carbon Capture and Storage interactive (CCSi) unit was built by the University of Edinburgh in470

collaboration with SciFun (http://www.scifun.ed.ac.uk). The rigs primary function is to demonstrate the
idea of carbon capture using vacuum/pressure swing adsorption (VPSA) at science and engineering fairs.
Once it is not used for this purpose anymore, it will be refitted and recalibrated for scientific experiments.
The rig is shown in Fig. A.10.

Figure A.10: Picture of the CCSi unit

The rig is split into three sections: generation, capture and storage. Of these the generation and storage475

sections are only representations of the actual process while the capture unit is a fully functioning VPSA
unit. The generation section represents a typical power plant in which electricity is generated by the burning
of fossil fuels. The resulting flue gas is routed to the capture section. Since the combustion is only simulated,
compressed air and carbon dioxide cylinders are used to generate a simulated flue gas of 1/6 CO2 with the
remainder air.480

As shown in the diagram the rig uses LED lights which show the valve configurations. In Fig. A.10, the
valves are set to divert the flue gas to the capture unit which separates CO2 from the flue gas. The capture
unit makes use of a six step, two column VSA process. The flue gas enters at a feed flowrate of 3 L/min
and a pressure of 1.3 bar. The raffinate leaves the top of the column at atmospheric pressure through the
power station chimney stack. The chimney stack has a sensor with inbuilt LED indicators which measures485

the concentration of CO2 leaving in the raffinate stream. The extract (CO2 rich) stream leaves the process
under a vacuum of 0.1 bar. The columns are 0.3 m long and have an inner diameter of 0.035 m. The two
columns are filled with approximately 0.08 kg of silicalite pellets (HiSiv 3000) supplied by UoP. This amount
of silicalite fills about 0.12 m of each column. The remainder (evenly split between the top and bottom of
the columns) is filled with solid beads.490
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Once the CO2 has been separated, the gas flows to the storage section. The storage section shown in
Fig. A.10 illustrates the use of a geological structure for the storage of CO2.

Appendix A.2. Governing equations

The following paragraphs present the governing mass, energy and momentum balance equations for the
column, CSTR, valve and feed unit.495

Column. The flow through the packed bed is described by the axial dispersed plug flow model. More detailed
models, e.g. including radial dispersion, are generally not necessary (Ruthven, 1984) while the ideal plug
flow can be approximated by letting the dispersion coefficient go to zero. For the plug flow model the mass
and energy balance in the column are given by the following equations.

∂ci
∂t

= −1− ε
ε

dQ̄i
dt
− ∂ (v · ci)

∂z
− ∂Ji

∂z
, (A.1)

dQ̄i
dt

= εp
dcmi
dt

+ (1− εp)
dq̄i
dt

= kpi
Ap
Vp

(ci − cmi ) , (A.2)

dq̄i
dt

= kcri
3

Rcr
(q∗i − q̄i) , (A.3)

ε
∂Ǔf
∂t

= − (1− ε) ∂Ǔp
∂t
− ε

∂
(
Ȟf · v

)
∂z

− ∂JT
∂z

−
Nc∑
i=1

∂
(
JiH̃i

)
∂z

− hw
Ac
Vc

(Tf − Tw) , (A.4)

∂Ǔp
∂t

= εp
∂Ǔp,f
∂t

+ (1− εp)
∂Ǔp,s
∂t

= hp
Ap
Vp

(Tf − Tp) , (A.5)

ρw ĉP,w
∂Tw
∂t

= −hw
Ac
Vw

(Tw − Tf )− U Aco
Vw

(Tw − T∞) . (A.6)

Due to the large heat capacity of the wall the wall temperature calculated by Eq. A.6 is almost constant;
thus in this contribution the wall is assumed to be isothermal, i.e. Eq. A.6 is not used.

The mass and heat transfer into the pellet depend on the mass and heat transfer coefficient and the ratio
of the pellet surface area to pellet volume. In this contribution the pellets were assumed to be spherical so
that Ap/Vp = 3/Rp. The mass transfer into the adsorbent crystals assumes that the crystals are spherical
with radius Rcr. The pellet void fraction, εp, is the ratio of the macropore volume over the total pellet
volume. The macropore LDF parameter is calculated from the effective macropore diffusivity

De
m,i =

εp
τ

(
1

Dm
i

+
1

DK
i

)−1

(A.7)

where the individual diffusion coefficient are given by

Dm
i = 1.60× 10−7

√
T 3
(
MW−1

1 +MW−1
2

)
Pσ2

12Ω12

DK
i = 97rpore

√
T

MWi

Here MWi is the molecular weight in g mol−1, σ12 is the collision diameter from the Lennard-Jones potential
in A, Ω12 is a function depending on the Lennard-Jones force constant and temperature and rpore the mean
pore radius in m.500

The thermal diffusive flux JT and the diffusive flux of component i in the fluid phase Ji are given by

JT = −λLf ε
∂Tf
∂z
− λLp (1− ε)∂Tp

∂z
,

Ji = −DL
i cT

∂xi
∂z

. (A.8)
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Here the axial thermal conductivity in the fluid and pellet are given by λLf and λLp , respectively, and the

axial dispersion coefficient by DL
i .

The boundary conditions for the gas phase concentrations and the enthalpy are given by the Danckwerts
boundary conditions for flow into the column and the no diffusive flux for flow out of the column. With the
conventions that the positive flow directions is from 0 to Lc these can be written in a combined form as

JT |z=0 =
v + |v|

2

(
Ȟf,0− − Ȟf,0

)
(A.9)

JT |z=Lc =
v − |v|

2

(
Ȟf,L+

c
− Ȟf,Lc

)
(A.10)

Ji|z=0 =
v + |v|

2

(
ci,0− − ci,0

)
(A.11)

Ji|z=Lc =
v − |v|

2

(
ci,L+

c
− ci,Lc

)
(A.12)

where the superscripts − and + indicate the concentration values to the left and right of the boundary,
respectively.

The constitutive equations for the energy terms are given by

Ǔf = cT Ũf,ref + cT
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Ǔp = εpǓp,f + (1− εp) Ǔp,s
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Ǔads = Ȟads = qT H̃ads,ref + qT
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dq,
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Ǔsol and Ǔads are the internal energy per unit volume in the adsorbent and the adsorbed phase, respectively.505

Here the tilde indicates the molar quantities and the subscript “ref” indicates the reference value at Tref and
Pref . The total concentration in the fluid phase and in the macropore are given by cT and cmT , respectively.
ρcry is the crystal density, qT is the total adsorbed concentration in the micropore and ĉP,sol is the specific
heat capacity at constant pressure in the solid phase. The total heat of adsorption per unit volume ∆Ȟads

is calculated from the component heat of adsorptions ∆H̃i.510

The molar heat capacities at constant volume c̃V in the fluid phase and at constant pressure in the fluid
c̃P and in the adsorbed phase c̃P,ads are calculated from the respective component heat capacities by

c̃V =

Nc∑
i=1

xic̃V,i, c̃P =

Nc∑
i=1

xic̃P,i,

c̃P,ads =

Nc∑
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qi
qT
c̃P,i, c̃mV =

Nc∑
i=1

xmi c̃V,i.
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The superscript m indicates the macropore concentrations and heat capacities and xi are the component
mole fractions.

The pressure drop along the column is given by the Ergun equation

−dP
dz

=
150µ(1− ε)2

ε2(2Rp)2
v +

1.75(1− ε)ρf
ε2Rp

v|v|. (A.13)

Continuously stirred tank. The column header and the tanks are modelled as continuously stirred tanks with
an arbitrary number of connections NI . The governing equations are given by

Fj = −Fnj , j = 1, . . . , NI , (A.14)

V
dci
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(
Fj + |Fj |

2

ci,nj
cT,nj

+
Fj − |Fj |

2

ci
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, (A.15)

dUf
dt

=

NI∑
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(
Fj + |Fj |

2
H̃f,nj +

Fj − |Fj |
2

H̃f

)
+ hwA(Tw − Tf ). (A.16)

The pressure in the tank is calculated from the temperature and total gas concentration by the ideal gas law.
Equation A.14 requires that the flow rate is provided by the neighbouring units. For the inlets connected to
either a valve or feed unit, this is fulfilled since these units calculate the flow rate from the composition and
temperature. However, for the inlet connected to the column, the flow rate needs to be provided. Here the
flow rate is calculated by

F = k(Pn − P ). (A.17)

With a sufficiently large value of the coefficient k, the pressure drop between the column header and column
will be neglible.

Valve. The flow rate through the valve is calculated by

F = sjcvcT

√
|P0 − P1|

ρf
(A.18)

where cv is the valve coefficient, P0 and P1 are the pressures at the two inlets, respectively, cT is the total515

concentration and ρf is the fluid density. The stem position, sj , of the valve indicates if the valve is open
or closed. Here 0 indicates a closed valve, 0.5 a half open valve and 1 a fully open valve. The simulator
allows the opening and closing of valves at specified times. Through the coordinated operation of the valves,
different steps in the cycle, e.g. blowdown and pressure equalisation, are performed (see Table 1). Pressure,
temperature and gas composition are passed through the valve to the neighbouring units.520

Feed unit. Pressure, temperature and feed composition are kept constant at the initial conditions. The flow
rate is set according to

F =

{
Fi,

∣∣P−Pn
P

∣∣ > 0.01,
Fi, 0.5

(
1 + cos

(
100π

(
0.01−

∣∣P−Pn
P

∣∣))) , otherwise.
(A.19)

Here, Fi is the set flow rate and P and Pn are the pressures in the feed unit and the neighbouring unit,
respectively.

The feed unit also calculates the number of moles of each component to pass through the outlet and the
power consumption of the blower or vacuum pump. The number of moles is calculated through the following
ODEs

dni
dt

=
F + |F |

2

ci,n
cT,n

+
F − |F |

2

ci
cT
, (A.20)
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with initial values of ni = 0. Since the sign on the right hand side of equation A.20 changes with the flow
direction, this equation gives a positive result if more molecules have entered the feed unit than have left
the feed unit and a negative results otherwise.525

The power consumption is calculated by

Pow =


γ
γ−1RTF

[(
Pn
Patm

) γ−1
γ − 1

]
, if Pn > Patm and F < 0,

γn
γn−1RTnF

[(
Patm
Pn

) γn−1
γn − 1

]
, if Pn < Patm and F > 0,

0, otherwise.

(A.21)

dW

dt
= Pow, W (0) = 0 (A.22)

Here γ = c̃P
c̃V

is the ratio of the molar heat capacities at constant pressure and constant volume.

Table A.4: Nomenclature

Parameter Description Units
A Surface area m2

Ac Inner surface area of the column m2

Aco Outer surface area of the column m2

Ap Pellet surface area m2

bi Equilibrium parameter of comp. i bar−1

ci Concentration of component i mol m−3

ĉP Specific heat capacity J kg−1 K−1

c̃P Molar heat capacity at constant pressure J mol−1 K−1

cT Total concentration mol m−3

cv Valve coefficient m2
√

10−5

c̃V Molar heat capacity at constant volume J mol−1 K−1

DK
i Knudsen diffusion coefficient of comp. i m2 s−1

Dm
i Molecular diffusion coefficient of comp. i m2 s−1

De
m,i Effective macropore diffusivity of comp. i m2 s−1

DL
i Effective axial dispersion coefficient of comp. i m2 s−1

F Molar flow rate mol s−1

Ffe Feed flow rate mol s−1

hp Pellet-to-fluid heat transfer coefficient W m−2 K−1

hw Fluid-to-wall heat transfer coefficient W m−2 K−1

−∆H̃i Heat of adsorption of comp. i J mol−1

Ȟ Enthalpy per unit volume J m−3

H̃ Molar enthalpy J mol−1

Ji Diffusive flux of comp. i in the fluid phase mol m−2 s−1

JT Thermal diffusive flux in the fluid phase J m−2 s−1

k Flow rate coefficient mol s−1 bar−1

kcri LDF coefficient of comp. i in the adsorbent crystal m s−1

kpi LDF coefficient of comp. i in the pellet m s−1

Lc Column length m
ni Number of moles of comp. i mol
nkj,i Cumulative number of moles of comp. i through unit j at the end of the k-th cycle
P Pressure bar
Pvac Vacuum pressure bar
q̄i Sorbate concentration of comp. i mol m−3

qs Saturation capacity mol m−3

q?i Sorbate concentration of comp. i at equilibrium mol m−3

qT Total adsorbed concentration mol m−3
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Table A.4: Nomenclature

Parameter Description Units
Q̄i Concentration of comp. i in the pellet mol m−3

R Gas constant J mol−1 K−1

Rc Column radius m
Rcr Crystal radius m
Rp Pellet radius m
sj Stem position of valve j -
tfe Feed/purge time s
T Temperature K
Tfe Feed temperature K
U Internal energy J
Ǔ Internal energy per unit volume J m−3

v Interstitial velocity m s−1

V Volume m3

Vc Column volume m3

Vp Pellet volume m3

Vw Column wall volume m3

W Work J
xi Mole fraction of comp. i

γ Ratio of heat capacities at constant pressure and volume
δw Column wall thickness m
ε Column void fraction -
εp Pellet void fraction -
λL Effective axial thermal dispersion coefficient W m−1 K−1

µ Fluid viscosity Pa s
ρ Density kg m−3

τ Pore tortuosity of the pellet -

Subscript
ads Adsorbed phase
atm Atmospheric
c Column
f Fluid phase
n Neighbouring unit
p Pellet
ref Reference state
s Solid phase
sol Adsorbent phase
w Column wall
∞ Surroundings

Superscript
cr Crystal
L Axial
m Macropore
p Pellet
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