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a  b  s  t  r  a  c  t

This paper  presents  a new  discretization  method  to  solve  one-dimensional  population  balance  equations
(PBE)  for  batch  and  unsteady/steady-state  continuous  perfectly  mixed  systems.  The  numerical  technique
is  valid  for  any  size  change  mechanism  (i.e., growth,  aggregation,  attrition,  breakage  and  nucleation
occurring  alone  or in  combination)  and  different  discretization  grids.

The developed  strategy  is based  on the  moving  pivot  technique  of  Kumar  and  Ramkrishna  and  the
cell-average  method  of  Kumar  et al. A novel  contribution  is  proposed  to  numerically  handle  the  growth
opulation balance equation
articles size distribution
iscretization method
ize change mechanisms

and attrition  terms,  for  which  a new  representation  of the  number  density  function  within  each  size
class  is developed.  This  method  allows  describing  the  number  particle  fluxes  through  the  class  interfaces
accurately  by  preserving  two  sectional  population  moments.

By  comparing  the numerical  particle  size  distributions  with  analytical  solutions  of  one-dimensional
PBEs  (including  different  size  change  mechanisms  and  particle-size  dependent  kinetics),  the  accuracy  of
the  proposed  numerical  method  was  proved.
. Introduction

Particulate systems play an important role in a wide variety
f industrial processes (among others: mining, food processing,
harmaceuticals and fertilizers manufacture). Changes in parti-
le size distributions (PSDs) often take place in these industries
ue to different mechanisms, which can occur either alone or in
ombination, such as aggregation, growth, breakage, attrition and
ucleation (Gerstlauer et al., 2006; Ramkrishna, 2000).

An appropriate modeling approach for quantify PSDs is the con-
ept of population balance equation (PBE), which was developed
everal decades ago (Hulburtz and Katz, 1964). Ramkrishna (2000)
efined the PBE as an equation to describe the density of a suit-
ble extensive variable, usually the particle number (in terms of
he number density function), so that the PBE represents a num-
er balance on particles of a specific state. Significant efforts were
hose of Hulburtz and Katz (1964), Randolph and Larson (1971) and

amkrishna (2000) to formalize a generic PBE capable of quantify-

ng the different mechanisms by which particles of a specific state
an either appear in or disappear from the system. Mathematically
he PBE corresponds to a non-linear partial integro-differential

∗ Corresponding author. Tel.: +54 291 486 1700x268; fax: +54 291 486 1600.
E-mail address: dbertin@plapiqui.edu.ar (D. Bertin).
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equation, which presents only very few analytical solutions for
some ideal cases. On the other hand, numerical solutions require
substantial computational resources because, in practical engineer-
ing processes, PSDs may  extend over several orders of magnitude
and can be very sharp (Vanni, 2000; Qamar, 2008). Moreover, some
methods exhibit lack of stability and accuracy of the solution. Since
there is a great variety of processes that are studied by means of
modeling and simulation (processes design, control and optimiza-
tion), there is still need of numerical methods development to solve
those mathematical models that include PBEs (Pinto et al., 2008;
Utomo et al., 2009).

Several numerical methods have been proposed/used in the lit-
erature to solve PBEs, among others, the methods of: moments
(Hulburtz and Katz, 1964; Motz et al., 2002; Madras and McCoy,
2004; Marchisio and Fox, 2005; Bajcinca et al., 2014), characteristics
(Kumar and Ramkrishna, 1997; Pilon and Viskanta, 2003; Qamar
and Warnecke, 2007), finite differences/discretization (Marchal
et al., 1988; Hounslow et al., 1988; Kumar and Ramkrishna,
1996a,b; Ma  et al., 2002) and Monte Carlo (Smith and Matsoukas,
1998; Kruis et al., 2000; Lee and Matsoukas, 2000; Lin et al.,

2002). Frequent problems related to the numerical solution of PBEs
include, among others, the inaccurate calculation of the PSD for
strong aggregation processes, numerical instabilities for growth
processes and stiffness of the equations system for rapid particle
nucleation (Maurstad, 2002; Kiparissides, 2006).
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Nomenclature

A attrition rate (m/s)
b breakage rate (s−1)
b0 constant in the breakage rate in Eq. (106) (m−1 s−1)
b′

0 constant in the breakage rate in Eq. (129) (m−3 s−1)
Bnuc discrete nucleation rate (s−1)
C1i parameter for the linear approximation in Eq. (45)

(m−2)
C2i parameter for the linear approximation in Eq. (45)

(m−1)
dp particle diameter (m)
dpcrit

critical diameter in Case 3 (m)
dpi

mean diameter in class i (m)
dnuc diameter of particles born by nucleation (m)
dnv number–volume mean diameter (m)
Dpi

lower node in class i (m)
D̄pi

arithmetic mean diameter in class i (m)

D̄A
p i

average diameter of particles born by aggregation in
class i (m)

D̄B
pi

average diameter of particles born by breakage in
class i (m)

D̄B
pj→i

average diameter of particles born by breakage in
class i from class j (m)

D̄in
p average diameter of particles of class i in the inlet

flowrate (m)
G growth rate (m/s)
G0 constant in Eq. (82) (m1−q/s)
G′

0 constant in Eq. (93) (m/s)
G′′

0 constant in Eq. (119) (s−1)
hA+ particle birth rate by aggregation (m−1 s−1)
hA− particle death rate by aggregation (m−1 s−1)
hB+ particle birth rate by breakage (m−1 s−1)
hB− particle death rate by breakage (m−1 s−1)
HA+

i
flow of particles born by aggregation in class i (s−1)

HA−
i

flow of particles dead by aggregation in class i (s−1)
HB+

i
flow of particles born by breakage in class i (s−1)

HB−
i

flow of particles dead by breakage in class i (s−1)
I0 modified Bessel function of the first kind of order

zero
I1 modified Bessel function of the first kind of order

one
k index of summation in Eqs. (76) and (77)
n number density function (m−1)
n0 number density function (m−1)
ni discrete number density function in class i (m−1)
ṅin number density function of the particles entering

the system (m−1 s−1)
ṅnuc rate of number density function of particles by

nucleation (m−1 s−1)
ṅout number density function of the particles leaving the

system (m−1 s−1)
N0 initial total particle number
Ni particle number in class i
Ṅiin

inlet number flow rate of particles in class i

Ṅinuc flow of particles born by nucleation in class i (s−1)
Ṅiout

outlet number flow rate of particles in class i
p exponent in Eq. (82)

Qgrowth volume flow rate fed to the system which con-
tributes to the particle growth (m3/s)

Qin inlet volumetric flow rate (m3/s)
Qout outlet volumetric flow rate (m3/s)
r geometric grid ratio between classes
S total particle surface area (m2)
V total particle volume (m3)
V0 initial total particle volume (m3)
t time (s)
T dimensionless time
x integration variable (m)
x′ integration variable (m)
x′′ integration variable (m)

Greek letters
˛i parameter defined in Eq. (52)

 ̌ aggregation kernel (s−1)
� i parameter defined in Eq. (57)
ı Dirac delta function
� half width of the pulse defined in Eq. (96) (m)
� Gamma  function
�j jth population moment (mj)
�ji

jth sectional population moment in class i (mj)
�̄ arithmetic mean diameter of the PSD (m)
�0 arithmetic mean diameter of the initial PSD (m)
� average number of particles formed by breakage
�0 standard deviation of the initial PSD (m)
� mean residence time (s)

Subscripts
i class of the discrete PSD
P breakage probability function (m−1)

q index of the conserved population moment
Qattrition volume flow rate leaving the particles population by

attrition (m3/s)
j class of the discrete PSD
k class of the discrete PSD

In particular, discretization techniques have been one of the
most popular numerical methods. They consist in dividing the con-
tinuous range of particle specific state (usually the particle size) into
discrete classes and discretizing the density function in the domain
of the internal coordinate by concentrating the particles within
each class on a mean class size. Several discretization methods are
available in the literature, which basically differ in the choice of
the discretization grid and the global population properties that are
conserved (Hounslow et al., 1988; Kumar and Ramkrishna, 1996a,b;
Vanni, 2000; Nopens et al., 2005).

Hounslow et al. (1988) developed a discretization procedure for
growth, nucleation and aggregation processes, limited to the use
of a geometric grid. Vanni (2000) extended that method to break-
age processes. Kumar and Ramkrishna (1996a) also developed a
discretization method (called the fixed pivot technique) to solve
PBEs for batch systems with aggregation and breakage, which is
capable to predict desired global properties of the PSDs by using an
arbitrary discretization grid. Although results of fixed pivot tech-
nique proved to be generally very accurate for estimating PSDs, the
method failed to correctly predict the PSDs for aggregation pro-
cesses in large size ranges represented on a coarse geometric grid.
Then, Kumar and Ramkrishna (1996b) developed a new discreti-
zation technique to overcome this problem by defining moving
pivots that concentrate the particle number of a given size range.
Kumar et al. (2006) developed a numerical procedure for solv-
ing PBEs for batch aggregation processes that guarantees the exact
conservation of two population properties of interest. This tech-
nique (called the Cell Average Technique) involves the computation
of the average size of newborn particles by aggregation and their
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ssignment to neighboring existing grid classes. The proposed
ethod, for any kind of grid, solves the overprediction in the

arge size range given by the fixed pivot technique (Kumar and
amkrishna, 1996a).

For processes involving growth/attrition mechanisms (convec-
ive flows), the PBE exhibits partial derivatives and thus the
quation is hyperbolic. It is known that hyperbolic equations
resent several difficulties in obtaining accurate numerical solu-
ions (LeVeque, 2002). One of the main challenges for a numerical
cheme is to capture the steep moving fronts that may  appear in the
SD. A simple strategy is to use finite differences to approximate the
nvolved derivatives (Durran, 2010). However, classical finite dif-
erence approaches are not recommended for the PBE numerical
olution because its hyperbolic nature often leads to broadening
f the sharp discontinuities due to numerical diffusion (Mesbah
t al., 2009). Numerical diffusion acts similarly to physical diffu-
ion, smoothing sharp gradients in the final solution. It is also well
nown that first order finite difference schemes show numerical
iffusion. On the other hand, higher order schemes reduce numeri-
al diffusion but tend to introduce numerical dispersion that causes
nphysical oscillations. Second (or higher) order methods induce
umerical dispersion through the odd-order terms in the trun-
ation error (Sweby, 1984).

In recent years, high-resolution methods have emerged as an
nteresting option for solving PBEs containing convective flow.
hese techniques aim to obtain high accuracy on coarse grids, solv-
ng sharp discontinuities in order to avoid both numerical diffusion
nd dispersion (Qamar et al., 2007). To achieve this, the discretized
rowth and attrition terms are conditioned by a function called
ux limiter that tends to high order accuracy in the PSD smooth
egion and a first order scheme is used in the vicinity of large gra-
ients. Hence, these methods are effective in reducing numerical
iffusion present in first order discretization and also in eliminat-

ng the oscillations caused by higher order discretization schemes
Gunawan et al., 2004). Although these methods have proven to
e accurate, high-resolution methods still require high compu-
ational time (Majumder et al., 2010), limiting their application
o optimization and control problems that require the PBE solu-
ion many times to find optimal operating conditions or control
arameters.

Another numerical technique to solve the PBE with growth
nd/or attrition is the Method of Characteristics (MOC), which is
ased on the Lagrangian approach, i.e., on the description of each
article along its characteristic in the particle size-time plane. MOC
llows lumping the accumulation and convective flow terms within
he material derivative (Qamar and Warnecke, 2007). Then, the
BE (partial differential equation) becomes a system of two ordi-
ary differential equations along the characteristic curves. This
athematical structure avoids the numerical diffusion/dispersion

rrors caused by the growth/attrition term discretization (Kumar
nd Ramkrishna, 1997).

Due to the several serious difficulties like numerical diffusion
nd dispersion, inaccuracy and restriction to non-generic grids,
t is very difficult to recognize the best method for a general
rowth/attrition problem (Ramkrishna, 2000). The more sophisti-
ated methods available in the literature are more complicated to
mplement and difficult to couple with other conservation balances
Kumar, 2006).

The different discretization techniques, which are simple to
mplement and then widely used, still present problems to handle
he growth/attrition term. These methods typically allow calcu-

ating the desired global properties of the particles’ distribution
ccurately (Hounslow et al., 1988; Kumar and Ramkrishna, 1997).
owever the PSD may  be subject to severe errors, in fact the cal-
ulated PSDs frequently exhibit non-physical oscillations that give
egative particle number values in some classes, or deviate from
l Engineering 84 (2016) 132–150

the exact solution due to numerical diffusion at the discontinuous
moving fronts (Mesbah et al., 2009).

Most of the existing numerical methods to solve PBEs were
derived for specific size change mechanisms (Hounslow et al., 1988;
Marchal et al., 1988; Qamar, 2008; Ramkrishna, 2000). The aim of
this work is the development of a numerical method, appropriate
to solve PBEs defined by only one internal coordinate, having the
following main features:

• Appropriate to model batch or unsteady/steady-state continuous
perfectly mixed systems.

• Valid for any size change mechanism (i.e., nucleation, growth,
aggregation, attrition and breakage occurring alone or in combi-
nation).

• Applicable to any type of grid.
• Neither requires the reassignment of newborn particles to pre-

defined sizes nor the addition or subtraction of size classes over
time.

• Preserves two population moments exactly: the total number of
particles (or moment 0) and an arbitrary moment �q (i.e., 0 and
q are the conservated population moment indexes) for each grid
class and then for the entire population.

• Provides accurate PSDs prediction.
• Simple implementation.

The proposed method extends the moving pivot technique of
Kumar and Ramkrishna (1996b) developed for aggregation and
breakage, by using a cell-average property for newly born parti-
cle redistribution. Besides, a simple strategy (based on an upwind
linear scheme) is developed to minimize the above-mentioned
problems caused by the growth/attrition term discretization.

2. Theory

For a perfectly mixed system and one internal coordinate (par-
ticle diameter, dp), the PBE is given by (Ramkrishna, 2000):

∂n(dp, t)

∂t
= − ∂

∂dp
[G(dp)n(dp, t)] + ∂

∂dp
[A(dp)n(dp, t)]

+ ṅin − ṅout + hA+ − hA− + hB+ − hB− + ṅnuc (1)

For the formulation of Eq. (1), it is implicitly assumed that a num-
ber density of particles n(dp, t) exists at every point of the particle
size domain (Ramkrishna, 2000).

In Eq. (1), G and A represent the growth and attrition rates,
respectively, and ṅin and ṅout are the number density function flows
associated to the particles entering and leaving the system, respec-
tively. hA+ and hA− are the source and loss terms of the number
density function by aggregation, respectively. Similarly, hB+ and hB−

are the source and loss terms of the number density function by
breakage, respectively. Finally, ṅnuc is the rate of nucleation for the
number density function.

In order to completely define the PBE formulation given by Eq.
(1), initial and boundary conditions are required. The initial condi-
tion for the time domain is:

n(dp, 0) = n0(dp) (2)
where n0(dp) represents the initial PSD within the system. The fol-
lowing boundary condition is considered (Rigopoulos and Jones,
2003):

n(0, t) = 0 (3)
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For the density function n(dp, t), the jth population moment �j
s defined as (Randolph and Larson, 1971):

j =
∫ ∞

0

n(dp, t)dj
pddp (4)

Population moment balances are macroscopic equations
erived from the integration of the microscopic PBE. In fact, if Eq.
1) is multiplied by dj

p and integrated with respect to dp in the entire
ize domain (i.e., between zero and infinity), the balance for the jth
oment is given by:

d�j

dt
= −
∫ ∞

0

∂
∂dp

[G(dp)n(dp, t)]dj
pddp

+
∫ ∞

0

∂
∂dp

[A(dp)n(dp, t)]dj
pddp

+
∫ ∞

0

(ṅin − ṅout + hA+ − hA− + hB+ − hB− + ṅnuc)dj
pddp (5)

While PBEs allow determining the PSDs changes, the macro-
copic balances (also called moment equations) allow calculating
he population global properties (or moments), such as the total
article number (N), surface (S) or volume (V). In the moment
quations, the internal coordinate gradients are not involved. For
xample, for a one-dimensional PBE, only the time remains as
ndependent variable (Cameron et al., 2005). The loss of detail of
he moment equations with respect to PBEs greatly simplifies the

athematical description and solution; however, inherent infor-
ation regarding the population distribution is lost (Ramkrishna,

000).
Commonly, only the first population moments are of interest.

n fact, considering dp as internal coordinate, �0 represents the
otal particle number of the population, while �2 and �3 are pro-
ortional to the total particle surface and volume, respectively
Hounslow et al., 1988). In particular, for spherical particles these

oments are given by (Allen, 2003):

�2 = S (6)




6
�3 = V (7)

here S and V are the total particle surface and volume, respec-
ively.

The equations that describe the rate of change of the moments
re commonly used to evaluate the accuracy of the PSDs calculated
y solving PBEs numerically. The procedure involves the compar-

son of the population moments estimated by using the predicted
SDs (by numerical evaluation of Eq. (4)) with the correspond-
ng values calculated from macroscopic balances given by Eq. (5)
Randolph and Larson, 1971; Hounslow et al., 1988), as the process
ime evolves.

Before introducing the novel numerical technique proposed to
olve the PBE, the terms of Eq. (1), that represent different size
hange mechanisms, are below described.

.1. Growth

In this work, growth is defined as the gradual particle size
nlargement by coating, being mathematically represented by the
rst term of the right-hand side of Eq. (1). This mechanism is a size

hange phenomenon that can occur in granulation processes, and it
s characterized by the particle growth through deposition of suc-
essive liquid droplets (i.e., of binder) or fine powder on the solids
urface (Smith and Nienow, 1983; Kayaert and Antonus, 1997; Mörl
t al., 2007).
l Engineering 84 (2016) 132–150 135

Growth is a number-conserving but mass-increasing process
that shifts the PSD toward larger sizes (Bucalá and Piña, 2007).
The growth rate (G), which describes the differential growth of the
particles, is defined as:

G(dp) = ddp

dt
(8)

where G(dp) ≥ 0. If Eq. (5) is used to evaluate �3 for spherical par-
ticles and the particle flux goes to zero at the boundary dp → 0, by
comparison of its first term of the right-hand side with the mass
balance, the growth term must satisfy:




2

∫ ∞

0

G(dp)n(dp, t)d2
pddp = Qgrowth (9)

where Qgrowth is the volumetric flowrate fed to the system con-
tributing to particle growth.

2.2. Attrition

The attrition term is used to denominate all the gradual parti-
cle size reduction mechanisms, such as physical erosion (Rhodes,
2008) or surface chemical reaction (Wang et al., 2003; Leturia,
2013). Attrition is a number-conserving and mass-decreasing pro-
cess that shifts the PSD toward smaller sizes. The attrition rate is
defined as:

A(dp) = −ddp

dt
(10)

Since attrition reduces the particle size, A(dp) ≥ 0. Analogously to
the growth term, when attrition takes place the following equation
must be satisfied:




2

∫ ∞

0

A(dp)n(dp, t)d2
pddp = Qattrition (11)

where Qattrition is the material volume flowrate leaving the particles’
population due to attrition.

2.3. Aggregation

The mechanism of aggregation, agglomeration or coalescence
refers to the successful collision of two  particles to give a new com-
posite particle (Qamar, 2008). During each aggregation event, the
total particle volume remains conserved while the total particle
number decreases (Bucalá and Piña, 2007). In granulation pro-
cesses, the aggregation rate is usually a function of the particles’
and binder’s physical properties, the particle size and operating
conditions (Cameron et al., 2005).

Aggregation terms are given as follows (Ramkrishna, 2000):

hA+(dp, t) = 1
2

∫ ∞

0

∫ ∞

0

ˇ(x, x′)n(x, t)n(x′, t)ı
[

x′ − (d3
p − x3)

1
3

]

×
(

∂x′

∂dp

)
dx′dx (12)

hA−(dp, t) =
∫ ∞

0

ˇ(dp, x)n(dp, t)n(x, t)dx (13)

where hA+(dp, t) and hA−(dp, t) denote the particle “birth” and
“death” rates by aggregation in each size dp. ˇ(x, x′) is called
the aggregation kernel and describe the frequency of aggrega-

tion between a particle of size x and another one of size x′. ˇ(x,
x′) relates the aggregation probability with operating conditions
and particles’ size and physical properties of both particles and
binder (Abberger, 2001; Cameron et al., 2005). Because of the
limited knowledge of the phenomena that underlie aggregation,
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For the particular case of a perfectly mixed system and non-
classified discharge, Eq. (24) can be simplified to (Randolph and
Larson, 1971):∫
36 D. Bertin et al. / Computers and Ch

ost of the proposed aggregation kernels are empirical or semi-
mpirical and involve unknown fitting parameters (Ramachandran
nd Barton, 2010).

In Eq. (12), ı(x′ − (d3
p − x3)

1/3
) is the Dirac delta function, which

as a null value for every size except for x′ = (d3
p − x3)

1/3
, where its

alue is infinitely large. (∂x′/∂dp) = [(d3
p − x3)

−2/3
d2

p] is the Jaco-
ian that transforms the particle density function with respect to
oordinates x and x′ into one in terms of dp (Ramkrishna, 2000). By
sing the integration property of the Dirac delta function, Eq. (12)
an be simplified to:

A+(dp, t) = 1
2

∫ ∞

0

ˇ
[

x, (d3
p − x3)

1
3

]
n(x, t)n

[
(d3

p − x3)
1
3

]

×
[

(d3
p − x3)

− 2
3 d2

p

]
dx (14)

.4. Breakage

Breakage refers to the generation of fragments from existing
articles by, for example, mechanical fracture (Ramkrishna, 2000).
he breakage terms are given as follows:

B+(dp, t) =
∫ ∞

0

�(x)b(x)P(dp, x)n(x, t)dx (15)

B−(dp, t) = b(dp)n(dp, t) (16)

here hB+(dp, t) and hB−(dp, t) represent the particle birth and
eath rates by breakage, respectively. b(x) is the breakage rate and
escribes the frequency of breakage for a particle of size x and v(x)

s the average number of particles generated by breakage of a single
article of size x. P(dp, x) is the breakage probability function, which
escribes the number density of particles of size dp produced from
he breakage of particles of size x. This function represents the size
istribution for the fragments born by breakage and must satisfy
he following normalization condition (Ramkrishna, 2000):

x

0

P(dp, x)ddp = 1 (17)

Besides, since P(dp, x) must be null for x < dp, the integration
nterval in Eq. (15) can be rewritten as:

B+(dp, t) =
∫ ∞

dp

�(x)b(x)P(dp, x)n(x, t)dx (18)

According to the breakage probability function P(dp, x), the num-
er of fragments originated from the breakage of a single particle
f size x is given as (Ramkrishna, 2000):

(x) = x3∫
x

0
P(dp, x)d3

pddp

(19)

For breakage processes, the total volume of particles is con-
erved while the total number of particles increases (Bucalá and
iña, 2007). The description of processes involving size reduction
f particulate solids through PBEs is still the subject of many exper-
mental as well as theoretical works (Holdich, 2002).
.5. Nucleation

Nucleation refers to the formation of new particles from a liquid
r fine powder feed (Cameron et al., 2005). Nucleation leads to the
irth of small particles providing the initial stage for further growth
r aggregation mechanisms.
l Engineering 84 (2016) 132–150

Although nucleation is sometimes considered just a boundary
condition (Ramkrishna, 2000), as suggested by other authors here
it is represented by an additional PBE term (Hounslow et al., 1988;
Kumar and Ramkrishna, 1997; Gunawan et al., 2004). Assuming
born particles of equal size, ṅnuc in Eq. (1) is represented by:

ṅnuc = Bnucı(dp − dnuc) (20)

Bnuc is the nucleation rate and dnuc is the size of the particles born
by nucleation. For dnuc > 0, nucleation increases both the total num-
ber and mass of the population particles. Although Eq. (20) only
includes particles of one size, it can be used more than once in the
PBE if the particles born by nucleation have different diameters.

3. Numerical method

As described earlier, the discretization methods divide the entire
domain of particles size into small cells or classes, where each class i
corresponds to the size interval defined as [Dpi

, Dpi+1 ]. Here, a rep-
resentative size dpi

(Dpi
≤ dpi

< Dpi+1 ) is proposed to concentrate
the particle number of the class i in a single size value. Thus, the
density function within class i can be mathematically represented
as (Kumar and Ramkrishna, 1997):

ni(dp, t) = Ni ı(dp − dpi
) (21)

where the particle number in each class (Ni) and dpi
vary also with

time (t) but its dependence has been omitted for notation simplic-
ity.

Then, a general expression for the density function in the entire
particle size domain can be written as:

n(dp, t) =
∑

i

ni(dp, t) =
∑

i

Niı(dp − dpi
) (22)

3.1. Inlet/outlet terms

Although a function to represent the inlet density function
flowrate can be used, in practice there are generally known dis-
crete values Ṅiin

located on arbitrary sizes D̄in
p , which are calculated

from ṅin as:

Ṅiin
=
∫ Dpi+1

Dpi

ṅin(dp, t)ddp (23)

On the other hand, the particle number flowrate leaving each
class can be obtained by integrating the outlet density function
flowrate as follows:

Ṅi =
∫ Dpi+1

ṅout(dp, t)ddp (24)
Ṅiout
=

Dpi+1

Dpi

n(dp, t)
�

ddp = Ni

�
(25)

where � is the mean residence time, defined as the ratio between
the total number of particles inside the system and the total outlet
particle number flowrate.



emica

3

o

h

h

E
n

H

n

H

H

w
g
c

s
s
n

D

D. Bertin et al. / Computers and Ch

.2. Aggregation terms

By replacing Eq. (22) in (14), the following expression is
btained:

A+(dp, t) = 1
2

∫ ∞

0

ˇ
(

x, (d3
p − x3)

1
3

)⎡⎣∑
j

Njı(x − dpj
)

⎤
⎦

× n
(

(d3
p − x3)

1
3

)  [
(d3

p − x3)
− 2

3 d2
p

]
dx (26)

Eq. (26) can be simplified to obtain:

A+(dp, t) = 1
2

∑
j

ˇ
(

dpj
, (d3

p − d3
pj

)
1
3

)
Njn
(

(d3
p − d3

pj
)

1
3

)

×
[

(d3
p − d3

pj
)
− 2

3 d2
p

]
(27)

To calculate the particle number born by aggregation in class i,
q. (27) is integrated with respect to dp between two contiguous
odes as follows:

A+
i

=
∫ Dpi+1

Dpi

hA+(dp, t)ddp

= 1
2

∫ Dpi+1

Dpi

∑
j

ˇ
[

dpj
, (d3

p − d3
pj

)
1
3

]
Njn
[

(d3
p − d3

pj
)

1
3

]
ddp

(28)

The density function in Eq. (28) can be written as:(
(d3

p − d3
pj

)
1
3

)
=
∑

k

Nkı
[

(d3
p − d3

pj
)

1
3 − dpk

]

=
∑

k

Nkı
(

dp − (d3
pj

+ d3
pk

)
1
3

)(dpk

dp

)2

(29)

By replacing Eq. (29) in (28):

A+
i

= 1
2

∑
j

∑
k

∫ Dpi+1

Dpi

ˇ
(

dpj
, (d3

p − d3
pj

)
1
3

)
NjNkı

×
(

dp − (d3
pj

+ d3
pk

)
1
3

)
ddp (30)

Finally, Eq. (31) is obtained:

A+
i

= 1
2

∑
j

∑
k/(j,k→i)

ˇ(dpj
, dpk

)NjNk (31)

here the notation k/(j, k → i) means: all classes k such that aggre-
ation between particles of classes j and k generate a particle of
lass i.

Following the development of Kumar et al. (2006), the average
ize of all newborn particles in class i is calculated by dividing the
ectional moment �qi

of the total newborn particles by the total

ewborn particle number:

Ā
pi

=
[∑

j

∑
k/(j,k→i)ˇ(dpj

, dpk
)NjNk(dq

pj
+ dq

pk
)∑

j

∑
k/(j,k→i)ˇ(dpj

, dpk
)NjNk

] 1
q

(32)
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On the other hand, the term of particle death by aggregation is
found by replacing Eq. (22) in (13) and integrating with respect to
dp between two  contiguous nodes:

HA−
i

=
∫ Dpi+1

Dpi

hA−(dp, t)ddp = Ni

∑
j

ˇ(dpj
, dpk

)Nj (33)

3.3. Breakage terms

Regarding breakage, the following expression is obtained by
replacing Eq. (22) in (18):

hB+(dp, t) =
∫ ∞

dp

�(x)b(x)P(dp, x)
∑

j

Njı(x − dpj
)dx

=
∑

dpj
>dp

�jbjP(dp, dpj
)Nj (34)

To calculate the particle number born by breakage, Eq. (34) is
integrated with respect to dp between two contiguous nodes as
follows:

HB+
i

=
∫ Dpi+1

Dpi

hB+(dp, t)ddp =
∑

j

�jbjNj

∫ Dpi+1

Dpi

P(dp, dpj
)ddp (35)

Discrete values of P(dp, dpj
) are introduced through the follow-

ing definition:

Pij =
∫ Dpi+1

Dpi

P(dp, dpj
)ddp (36)

Besides, particles of class i generated from the breakage of par-
ticles of class j are assigned to the average size that conserves the
particle number and the sectional moment �qi

D̄B
pj→i

=

⎡
⎣
∫

Dpi+1

Dpi P(dp, dpj
)dq

pddp∫
Dpi+1

Dpi P(dp, dpj
)ddp

⎤
⎦

1
q

(37)

By replacing Eq. (36) in (35), the following expression for HB+
i

is
obtained:

HB+
i

=
∑
j>i

�jbjPijNj (38)

If a continuous function for P is available, �j = �(dpj
) can be com-

puted from Eq. (19). On the other hand, if only discrete values of P
are known, �j can be calculated from a �q conservation balance for
each particle of size dpj

that is breaking:

�j =
dq

pj∑
kPkjD̄

B
p

q

j→k

(39)

As for aggregation, the average size of all newborn particles by
breakage in class i is calculated by dividing the sectional moment
�qi

of the total newborn particles by the total newborn particle
number:

D̄B
pi

=
[∑

j>i�jbjPijNjD̄
B
p

q

j→i∑
j>i�jbjPijNj

] 1
q

=

⎡
⎣
∑

j>i�jbjNj

[∫ Dpi+1
Dpi

P(dp, dpj
)dq

pddp

]
∑

j>i�jbjPijNj

⎤
⎦

1
q

(40)
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Taking into account Eqs. (16) and (22), the particle death term
s written as:

B−
i

=
∫ Dpi+1

Dpi

hB−(dp, t)ddp = biNi (41)

.4. Nucleation terms

The discretized nucleation term is obtained by integrating Eq.
20) with respect to dp between contiguous nodes as follows:

˙ nuci
=
∫ Dpi+1

Dpi

ṅnucddp = Bnuci
(42)

Ṅnuci
is the generation of particles of size D̄N

p i
= dnuc that appears

or a given class i that satisfies Dpi
< dnuc < Dpi+1 .

.5. Growth term

As aforementioned and due to the accumulation, growth
nd attrition derivative terms, the PBE becomes a hyperbolic
ype equation (Kumar and Ramkrishna, 1997). The existence of
rowth/attrition requires a further analysis of the PBE. The property
f the derivative of a product can be applied to the first two  terms
f the right-hand side of Eq. (1), and then the PBE can be rewritten
s:

∂n(dp, t)

∂t
+ [G(dp) − A(dp)]

∂n(dp, t)

∂dp

= ṅin − ṅout + hA+ − hA− + hB+ − hB−

+ ṅnuc − n(dp, t)
d

ddp
[G(dp) − A(dp)] (43)

Hyperbolic equations have two important features. First, their
olution can be interpreted as the propagation of the initial con-
ition through the space coordinate (in this case, the internal
oordinate) (LeVeque, 2002). Then, path lines (called characteris-
ics) can be mapped in the (dp, t) plane from every point of the initial
ondition, being [G(dp) − A(dp)] the speed of propagation along the
haracteristics. Moreover, if the right-hand side of Eq. (43) is zero
i.e., [G(dp) − A(dp)] is independent of the particle size and there are
ot aggregation, breakage, nucleation, inlet and outlet terms), the
BE solution can be regarded as a wave that propagates with a speed
qual to [G(dp) − A(dp)] (Strikwerda, 2004). Instead, if the right-
and side of Eq. (43) is not zero, an increase, decay or oscillations
ppear in the solution but the primary feature of the propagation
f the solution along the characteristics is not altered (Ramkrishna,
000).

Second, while Eq. (1) seems to have sense only if n(dp, t) is dif-
erentiable, the solution requires no differentiability of the initial
r boundary conditions. Therefore, discontinuous solutions can be
ound (Strikwerda, 2004). In general, such discontinuities, which
re a potential source of numerical instability, cannot often be accu-
ately handled by numerical methods (Kumar, 2006).

Getting back to the original PBE formulation (Eq. (1)), the inte-
ration of the growth term between consecutive nodes, can be
ritten as:∫ Dpi+1

Dpi

∂[G(dp)n(dp, t)]

∂dp
ddp

= G(D )n(D , t) − G(D )n(D , t) (44)
pi pi pi+1 pi+1

(Dpi
)n(Dpi

, t) and G(Dpi+1 )n(Dpi+1 , t) represent the particle number
ux that enter and exit each class i. To complete the discretization,

t is necessary to express the above equation in terms of particle
umbers rather than density functions. There are several methods
l Engineering 84 (2016) 132–150

to approximate n(Dpi
, t) and n(Dpi+1 , t) in terms of Ni (Hounslow

et al., 1988; Ramkrishna, 2000; Kumar, 2006), and they strongly
affect the accuracy of the discretization.

The use of Eq. (22) to compute particle number flux at nodes is
not appropriate, since the n(Dpi

, t) and n(Dpi+1 , t) values are null.
Instead, a number density function to spread the particles over the
whole range of each class i is required. To this end, the following
simple function is proposed to represent the number density in the
discretized growth term:

ni(dp, t) = C1idp + C2i (45)

where the parameters C1i and C2i are defined so that two sectional
moments are satisfied: the 0th moment Ni and an arbitrary moment
�qi

= Nid
q
pi

:∫ Dpi+1

Dpi

(C1idp + C2i)ddp = Ni (46)

∫ Dpi+1

Dpi

(C1idp + C2i)d
q
pddp = Nid

q
pi

(47)

Integrating Eqs. (46) and (47) and solving for C1i and C2i:

C1i =
Dq+1

pi+1
−Dq+1

pi
Dpi+1 −Dpi

− (q + 1)dq
pi

1
2 (Dpi+1 + Dpi

)(Dq+1
pi+1

− Dq+1
pi

) − q+1
q+2 (Dq+2

pi+1
− Dq+2

pi
)
Ni (48)

C2i =
Ni − C1i

2 (D2
pi+1

− D2
pi

)

Dpi+1 − Dpi

(49)

This novel approach to represent the density number function
at any particle size (Eqs. (45), (48) and (49)), satisfies exactly the
total number of particles (or moment 0) and the generic moment
�qi

(i.e., any other arbitrarily selected) at each class i (i.e., sectional
moments) and consequently ensures the closure of both moments
for the entire population.

Eqs. (48) and (49) can be replaced in (45) to obtain a continuous
expression of n(dp, t) within each class i to be used in Eq. (44).
n(Dpi

, t) and n(Dpi+1 , t) are:

n(Dpi
, t) = C1i−1

Dpi
+ C2i−1

(50)

n(Dpi+1 , t) = C1iDpi+1 + C2i (51)

As the particles that appear by growth into the ith class become
from the size range (i − 1), the n(Dpi

, t) is calculated using the C1
and C2 parameters corresponding to the previous class.

Although the integral between contiguous nodes of the linear
function proposed in Eq. (45) has to be always positive, the linear
function itself may  numerically have negative values in a partial
region of the interval [Dpi

, Dpi+1 ]. In fact and as shown in Fig. 1, three
possible cases of ni(dp, t) vs. dp can be found. According to Eq. (44),
the number density function evaluated at the class nodes n(Dpi

, t)
and n(Dpi+1 , t) cannot be negative for growth processes. Therefore
n(Dpi

, t) and n(Dpi+1 , t) are assumed to be zero when they adopt
negative values. This strategy has a physical basis: negative number
density values adjacent to a class node can occur only when the
particles are concentrated toward the other node. In other words,
the mean diameter of the class that satisfies both selected moments
is far away from the class node where n is negative. Taking into
account this numerical approach, the discretized growth term is
written as:
−
∫ Dpi+1

Dpi

∂G(dp)n(dp, t)

∂dp
ddp = ˛i−1G(Dpi

)(C1i−1
Dpi

+ C2i−1
)

− ˛iG(Dpi+1 )(C1iDpi+1 + C2i) (52)
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The first term of the right-hand side in Eq. (62) is integrated by
parts as follows:

−
∫ Dpi+1 ∂

∂dp
[G(dp)n(dp, t)]dq

pddp
Fig. 1. Three possib

here:

i =
{

1 if (C1iDpi+1 + C2i) > 0

0  if (C1iDpi+1 + C2i) ≤ 0
(53)

According to Eq. (52), the particle number flux entering to each
lass i is computed based on information from class (i − 1). This
trategy is consistent with the basic concept behind upwind meth-
ds, in which the positive convective speeds are written by means
f a backward method (Pulliam and Zingg, 2014).

.6. Attrition term

A discretized version of the attrition term can be derived fol-
owing the same steps that those presented for the growth term.

hen the attrition term of Eq. (1) is integrated between consecutive
odes, the following discretized expression is obtained:

Dpi+1

Dpi

∂[A(dp)n(dp, t)]

∂dp
ddp = A(Dpi+1 )n(Dpi+1 , t) − A(Dpi

)n(Dpi
, t)

(54)

A(Dpi+1 )n(Dpi+1 , t) and A(Dpi
)n(Dpi

, t) represent the particle
umber fluxes that enter and exit each class i. As in growth, Eq. (45)

s used to represent ni(dp, t), with C1i and C2i calculated from Eqs.
48) and (49), respectively. Because in attrition the particle number
ux is negative along the dp direction, n(Dpi

, t) and n(Dpi+1 , t) are
pproximated as:

(Dpi
, t) = C1iDpi

+ C2i (55)

(Dpi+1 , t) = C1i+1
Dpi+1 + C2i+1

(56)

Finally, the discretized attrition term is written as:

Dpi+1

Dpi

∂A(dp)n(dp, t)

∂dp
ddp

= �i+1A(Dpi+1 )(C1i+1
Dpi+1 + C2i+1

) − �iA(Dpi
)(C1iDpi

+ C2i) (57)

here:

i =
{

1 si (C1iDpi
+ C2i) > 0

0 si (C1iDpi
+ C2i) ≤ 0

(58)
In Eq. (57), the particle number flux entering to each class i is
omputed with the information of class (i + 1). Similarly to growth,
q. (57) is an upwind method, in which the negative convective
peeds are written by means of an upward scheme (Pulliam and
ingg, 2014).
es for ni in Eq. (44).

3.7. Discretized PBE

According to the discretization of all the PBE terms above
detailed, Eq. (1) becomes:

dNi

dt
= ˛i−1G(Dpi

)(C1i−1
Dpi

+ C2i−1
) − ˛iG(Dpi+1 )(C1iDpi+1 + C2i)

+ �i+1A(Dpi+1 )(C1i+1
Dpi+1 + C2i+1

) − �iA(Dpi
)(C1iDpi

+ C2i)

+ Ṅiin
− Ṅiout

+ HA+
i

− HA−
i

+ HB+
i

− HB−
i

+ Ṅinuc (59)

Eq. (59) is complemented by Eqs. (53), (58), (48), (49), (23), (24),
(31), (33), (38), (41) and (42) for the evaluation of ˛i, � i, C1i, C2i,
Ṅiin

, Ṅiout
, HA+

i
, HA−

i
, HB+

i
, HB−

i
and Ṅinuc , respectively. Since many

of these variables are dependent on dpi
, an extra equation is still

necessary.
The mean size that satisfies the sectional population moments

0 and �qix in each class, dpi
, is given by:

dpi
=
(�qi

Ni

) 1
q

(60)

Therefore, its rate of change becomes:

ddpi

dt
=

d1−q
pi

qNi

(
d�qi

dt
− dq

pi

dNi

dt

)
(61)

The �qi
change rate is obtained by multiplying Eq. (1) by dq

p and
integrating with respect to dp between Dpi

and Dpi+1 :

d�qi

dt
=  −
∫ Dpi+1

Dpi

∂
∂dp

[G(dp)n(dp, t)]dq
pddp

+
∫ Dpi+1

Dpi

∂
∂dp

[A(dp)n(dp, t)]dq
pddp

+
∫ Dpi+1

Dpi

(ṅin − ṅout + hA+ − hA− + hB+ − hB− + ṅnuc)dq
pddp(62)
Dpi

= q

Dpi+1∫
Dpi

G(dp)n(dp, t)dq−1
p ddp − G(dp)n(dp, t)dq

p

∣∣Dpi+1
Dpi

(63)
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The relationships given by Eqs. (22) and (45) are used in the first
nd second terms of the right-hand side in Eq. (63) to obtain:∫ Dpi+1

Dpi

∂
∂dp

[G(dp)n(dp, t)]dq
pddp

= qG(dpi
)Nid

q−1
pi

+ ˛i−1G(Dpi
)(C1i−1

Dpi
+ C2i−1

)Dq
pi

− ˛iG(Dpi+1 )(C1iDpi+1 + C2i)D
q
pi+1

(64)

Similarly to growth, the attrition term in Eq. (62) becomes:
Dpi+1

Dpi

∂
∂dp

[A(dp)n(dp, t)]dq
pddp

= −qA(dpi
)Nid

q−1
pi

+ �i+1A(Dpi+1 )(C1i+1
Dpi+1 + C2i+1

)Dq
pi+1

− �iA(Dpi
)(C1Dpi

+ C2i)D
q
pi

(65)

The integral of the last term in Eq. (62) can be solved by using
irac functions to represent the density functions:

Dpi+1

Dpi

(ṅin − ṅout + hA+ − hA− + hB+ − hB− + ṅnuc)dq
pddp

=
∫ Dpi+1

Dpi

Ṅiin
ı(dp − D̄in

p )dq
pddp +

∫ ∞

Dpi

HA+
i

ı(dp − D̄A
p i

)dq
pddp

+
∫ Dpi+1

Dpi

HB+
i

ı(dp − D̄B
pi

)dq
pddp +

∫ ∞

Dpi

Ṅinuc ı(dp − D̄N
p i

)dq
pddp

−
∫ Dpi+1

Dpi

(Ṅiout
+ HA−

i
+ HB−

i
)ı(dp − dpi

)dq
pddp (66)

Therefore, the balance for �qi
becomes:

d�qi

dt
=  q[G(dpi

) − A(dpi
)]Nid

q−1
pi

+ ˛i−1G(Dpi
)(C1i−1

Dpi
+ C2i−1

)Dq
pi

− ˛iG(Dpi+1 )(C1iDpi+1 + C2i)D
q
pi+1

+ �i+1A(Dpi+1 )

× (C1i+1
Dpi+1 + C2i+1

)Dq
pi+1

− �iA(Dpi
)(C1iDpi

+ C2i
)Dq

pi

+ Ṅiin
D̄inq

p + HA+
i

D̄A
p

q

i
+ HB+

i
D̄B

p

q

i
+ Ṅinuc D̄N

p

q

i

− (Ṅiout
+ HA−

i
+ HB−

i
)dq

pi
(67)

By replacing Eqs. (59) and (67) in (61), the following equation
or dpi

is obtained:

ddpi

dt
= G(dpi

) − A(dpi
) +

˛i−1d1−q
pi

qNi
G(Dpi

)(C1i−1
Dpi

+ C2i−1
)(Dq

pi
− dq

pi
)

−
˛id

1−q
pi

qNi
G(Dpi+1 )(C1iDpi+1 + C2i

)(Dq
pi+1

− dq
pi

)

+
�i+1d1−q

pi

qNi
A(Dpi+1 )(C1i+1

Dpi+1 + C2i+1
)(Dq

pi+1
− dq

pi
)

−
�id

1−q
pi A(Dpi

)(C1iDpi
+ C2i)(D

q
pi

− dq
pi

)

qNi

+
d1−q

pi

qNi
[Ṅiin

(D̄inq

pi
− dq

pi
) + HA+

i
(D̄A

p

q

i
− dq

pi
)

+ HB+
i

(D̄B
p

q

i
− dq

pi
) + Ṅinuc (D̄N

p

q

i
− dq

pi
)] (68)
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Eq. (59) must be solved together with Eq. (68) for each class i.
Eq. (68) predicts the change of the location of the representative
particle size dpi

. In Eq. (68), [G(dpi
) − A(dpi

)] represents the convec-
tive movement of the particles within each class, and the following
four terms describe the passage of the particles through the class
interfaces due to growth and attrition. The inlet stream and aggre-
gation, breakage and nucleation mechanisms modify the dpi

value
by means of the last term of Eq. (68). Is important to note that, if only
aggregation and/or rupture occur, the method becomes the mov-
ing pivot technique presented by Kumar and Ramkrishna (1996b).
The new contribution is the discretization performed for the growth
and attrition terms, in which a linear approximation for the density
function within each class is considered to estimate the convec-
tive fluxes at the cell boundaries. On the other hand, the fluxes are
split in positive and negative contributions (i.e., growth or attri-
tion); the flux at each class boundary is calculated once the upwind
direction is available. Then, the proposed strategy corresponds to a
flux-vector splitting method (LeVeque, 2002). Moreover, the need
to apply a physical limitation to the particle flux when G < 0 or A < 0
by simply setting the unphysical flux to zero restricts the numerical
diffusion.

The second original contribution is the coupling between the
moving pivot technique of Kumar and Ramkrishna and the discre-
tization performed for growth and attrition terms. The usage of a
linear density function consistent with the same two population
moments conserved by the pivot moving discretization allows to
preserve the sectional and global population moments even as all
the size change mechanisms occur simultaneously.

The use of a representative particle diameter for each class that
is continuously updated avoids the need of reassignment of new
born particles to existing predefined sizes, as the fixed pivot tech-
nique of Kumar and Ramkrishna (1996a) or the cell average method
of Kumar et al. (1997). Although in the literature is recognized that
this feature gives difficulties to solve the resulting set of ordinary
differential equations requiring more computation time and result-
ing in a system of stiff differential equations (Kumar et al., 2006;
Nopens and Vanrolleghem, 2006), the predictions of the moving
pivot technique show superior predictions.

4. A simple example to illustrate the growth term
discretization

As it is mentioned in Section 3.7, the proposed strategy for
describing the four first terms of the right-hand side in Eq. (59)
is an upwind method which uses a decomposition or splitting of
the fluxes into terms with positive and negative convective speeds
so that appropriate differences schemes can be chosen for each. The
application of physical limitations (through Eqs. (53) and (58)) to
the particle fluxes by simply setting the unphysical values to zero
is the reason for the reduction in numerical diffusion.

To illustrate the behavior of the growth term discreti-
zation, a simple numerical example with a constant growth rate
G = 0.001 m/s  is solved and analyzed for a coating batch process.
For the numerical simulation, an arithmetic grid with Dp1 = 0 and a
class width equal to 0.001 m is used. The initial population consists
of 100 particles located in class 2 (i.e., particle sizes between 0.001
and 0.002 m),  as it can be seen in Fig. 2a. Besides, it is assumed that
the representative diameter of the initial population is 0.0015 m
(arithmetic mean size for class 2). The numerical method is applied
to preserve the moments 0 and 3 (i.e., q = 3).
Fig. 2b shows, for t = 0, the linear number density function ni
for the only class where particles exist, defined by Eq. (45), and
the representative diameter that conserves the chosen population
moments. As the initial representative diameter is the midpoint of
the class length and sectional moments 0 and 3 are conserved, C1i
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h term

a
fl
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p

c

Fig. 2. Example to illustrate the growt

nd C2i are such that n2 decreases (see Eq. (45)). The particle number

ux that exit from class 2 and enter to class 3 due to growth depends
n the value of n2 = (C12Dp3 + C22) (see Eq. (52)). Since this value is
ositive, there is a particle convective flux toward class 3.

For t = 0.5 s, Fig. 2c shows the calculated PSD expressed as parti-
le number. As it can be seen, 52 particles are still in class 2, while
 discretization procedure (Section 4).

48 particles grew to sizes within class 3. In addition, the simula-

tion results indicate that no particles grew enough to be within
class 4. These results are consistent with Fig. 2d, in which the
corresponding number density function is presented. The repre-
sentative diameter dp3 is equal to 0.00225 m,  which means that N3
is far from the interface between classes 3 and 4 (i.e., Dp4 = 0.003 m).
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hen, n3 = (C13Dp4 + C23) is negative and the particle convective flux
oward class 4 is null.

Fig. 2e shows the calculated PSD expressed as particle number
or t = 1 s. At this time, the PSD is distributed over three classes
i = 2–4). Classes 2 and 3 have 16 and 75 particles, respectively,
hile 9 particles grew enough to be within class 4. According to

ig. 2f, n3 = (C13Dp4 + C23) is positive, indicating that the particle
onvective flux at the interface between classes 3 and 4 must be
ositive. On the other hand, particles in class 4 have a representa-
ive size (dp4 = 0.00311 m)  close to the lowest boundary of class 4.
hen n4 = (C14Dp5 + C24) is negative and the particle convective flux
rom class 4 to class 5 is null.

. Accuracy of the proposed method

The proposed numerical method can be applied to solve all the
ombinations of size change mechanisms in perfectly mixed batch
r unsteady/steady-state continuous processes. In this section, dif-

erent examples, for which analytical solutions are available, are
onsidered to validate the numerical technique. PBEs for single
nd multiple simultaneous size change mechanisms are included
o verify the accuracy of the numerical method. Specifically, the
ight study cases shown in Table 1 are analyzed.

able 1
tudy cases to evaluate the accuracy of the numerical method.

Case Operation mode Size change
mechanisms

Size change

1 Continuous, steady
state

Aggregation Constant ag
rate

2  Batch Growth Power law 

3  Batch Growth + Attrition Linear incre
net growth
the particle
for particle
than a critic

4  Continuous, steady
state

Breakage Breakage ra
proportiona
size. Breaka
probability
each broken
generates f
fragments

5  Batch Growth + Aggregation Constant ag
rate. Growt
proportiona
volume

6  Batch Aggregation + Breakage Constant ag
rate. Breaka
proportiona
volume
Breakage p
function: ea
particle gen
fragments

7  Continuous, steady
state

Attrition Constant at

8  Batch Growth + Nucleation Growth rat
independen
size
Constant nu
rate
l Engineering 84 (2016) 132–150

For all these cases, it is considered that particles are spherical
and that the population moments 0 and 3 are conserved. For the
examples corresponding to continuous system (cases 1, 4 and 7),
the mean diameter of each class in the inlet flow rate is calculated
by conserving the sectional moments 0 and 3:

D̄in
pi

=

⎛
⎝
∫

Dpi+1

Dpi ṅind3
pddp∫

Dpi+1

Dpi ṅinddp

⎞
⎠

1
3

(69)

For each case, the prediction of these moments is evaluated
by calculating the relative difference between the population
moments obtained from the density function (by means of Eq. (4))
and the macroscopic balances (which are below presented for each
case):

�0

∣∣
PBE

− �0

∣∣
balance

�0

∣∣
balance

=
N
∣∣
PBE

− N
∣∣
balance

N
∣∣
balance

(70)

∣ ∣ ∣ ∣

�3∣PBE

− �3∣balance

�3

∣∣
balance

=
V∣

PBE
− V∣

balance

V
∣∣
balance

(71)

The results of this section are shown in Figs. 3–10. The PSDs are
plotted as number density function vs. particle diameter. To this

 kinetics Simulation parameters Maximum error

Moment 0 Moment 3

gregation Qin = 0.02 m3/s
V0 = 4 m3

0.03% 0.03%

growth rate V0 = 0.02 m3

N0 = 62,809
Qgrowth = 3 × 10−4 m3/s
�0 = 0.008 m
�0 = 0.002 m
t = 100 s

0.01% 0.01%

ase of the
 rate with

 diameter,
s different
al size

N0 = 5.40 × 104

G
′
0 = 4 × 10−5m/s

dp crit = 0.008 m
� = 0.007 m
�0 = 0.008 m

0.001% 0.2%

te
l to particle
ge

 function:
 particle

our

dpin = 0.0005 m 0.5% 2 × 10−5%

gregation
h rate
l to particle

d0 = 0.0156 m
t = 100 s

0.1% 1%

gregation
ge rate
l to particle

robability
ch broken
erates two

t = 100 s 0.26% 0.003%

trition rate dp0 = 0.001 m
Qin = 0.001 m3/s
� = 10 s

0.5% 1%

e
t of particle

cleation

V0 = 0.01 m3

G = 2 × 10−6 m/s
d0 = 0.001 m
dnuc = ¯Dp1

0.5% 1%
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Fig. 3. Comparison of analytical and numerical PSDs for Case 1 (Grid A: arithmetic grid, D
classes,  class width = 0.004 m;  Grid C: geometric grid, Dp1 = 1 × 10−4 m,  30 classes, r = 21/3)
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nd, the number of particles in each class (N ), which is calculated
i
y the numerical method (Eq. (59)), is converted, to the discrete
umber density function ni by dividing each Ni by the class width
Dpi+1 − Dpi

).
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ig. 5. Comparison of analytical and numerical PSDs for Case 3 (Grid A: arithmetic grid, 

0  classes, r = 2 × 101/10).
p1 = 0 mm,  34 classes, class width = 0.002 m;  Grid B: arithmetic grid, Dp1 = 0 mm,  17
.

5.1. Case 1

This problem was previously studied by Hounslow (1990). The
PBE for this case becomes:

ṅin − ṅout + hA+ − hA− = 0 (72)

The inlet PSD is given as:

ṅin = Ṅin

3d2
p

d3
0

e
−
(

dp
dnv

)3

(73)

where dnv is the number–volume mean diameter of the inlet PSD.
The aggregation kernel is assumed to be constant. For a perfectly
mixed system, the normalized outlet PSD is equal to the one inside
the system. Then, the flow of particles exiting the unit can be for-
ṅout = n(dp)
�

(74)
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For the inlet PSD and the conditions above-mentioned, the ana-
ytical solution is given by (Hounslow, 1990):
(dp) = Ṅin�
3d2

p

d3
0

I0

[
−T

1+2T

(
dp

d0

)3
]

+ I1

[
−T

1+2T

(
dp

d0

)3
]

e
(1+T)
1+2T

(
dp
d0

)3√
1 + 2T

(75)
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Fig. 8. Comparison of analytical and numerical PSDs for Case 6 (ar
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where T is a dimensionless time defined as:

T = ˇṄin�2 (76)

I0 and I1 are the modified Bessel function of the first kind of order
zero and one, respectively:

I0

((
dp

d0

)3
)

=
∞∑

k=0

[
1
4

(
dp

d0

)3
]k

k!� (k + 1)
(77)

I1

((
dp

d0

)3
)

= dp

2d0

∞∑
k=0

[
1
4

(
dp

d0

)3
]k

k!� (k + 2)
(78)

� is the gamma function. To calculate the total particle number N
within the system, Eq. (75) should be integrated with respect to
dp between zero and infinity. Alternatively, N can be obtained by
solving Eq. (5) for j = 0. By doing this, Eq. (5) becomes:

Ṅin − N

�
+ ˇ

2
N2 − ˇN2 = 0 (79)
Then, N is described by the following expression:

N
∣∣
balance

= −1 +
√

1 + 2�2ˇṄin

�ˇ
(80)
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Since the system is under a steady-state operation and only
ggregation occurs, the total particle volume remains constant.
hen V, obtained from the macroscopic balance, becomes:

V
∣∣
balance

= Qout� = Qin� (81)

In Fig. 3, the discrete number density values obtained by using
he proposed numerical method are compared with the analyti-
al solution for five different tests. The simulation conditions and
arameters used in the calculations are presented in Table 1. The
esults show that the numerical method provides very accurate
olutions for both arithmetic and geometric grids and for differ-
nt grid coarseness and number of classes. Since the only size
hange mechanism is aggregation, the numerical method matches
he moving pivot technique of Kumar and Ramkrishna (1996b).
hen it is expected that moments 0 and 3 are well conserved. In
act, according to Table 1 the numerical errors lower than 0.03% for
oth population moments.

.2. Case 2

For a perfectly mixed batch system and pure growth, the PBE
Eq. (1)) becomes:

∂n(dp, t)

∂t
= − ∂

∂dp
[G(dp)n(dp, t)] (82)
In order to find an analytical solution, a general power-law
odel for the particle growth rate is assumed (Alexopolous et al.,

005):

(dp) = G0dp
p (83)
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Fig. 10. Comparison of analytical and numerical PSDs for Case
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where G0 and p are particle growth rate constants. For spherical
particles, Eq. (9) becomes:

G0 = 2Qgrowth


�2+p
(84)

Eq. (84) indicates that G0 and p cannot be independently chosen
for a given Qgrowth. Furthermore, if Qgrowth and �2+p are a function
of t, G0 is also time dependent.

The analytical solution of Eq. (82) for the above-mentioned
assumption can be derived by using the Method of Characteristics
(Kumar and Ramkrishna, 1997; Ramkrishna, 2000). By applying this
technique, n(dp) is obtained as a parameterized equation, i.e., as a
set of coordinates (n, dp) which are a function of t:

n(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n0(dp0 )

[
1 + (1 − q)

d1−p
p0

∫ t

0

G0dt

]−
p

1 − p
p /= 1

n0(dp0 )e
−
∫ t

0

G0dt
p  = 1

(85)

dp(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
d1−p

p0
+ (1 − p)

∫ t

0

G0dt

] 1
1 − p

p /= 1

dp0 e

∫ t

0

G0dt
p = 1

(86)

n0(dp0 ) is the initial PSD which provides the initial values n(0) = n0
and dp(0) = dp0 . Eqs. (87) and (88) describe the evolution of n(t) and
dp(t) for every point of the initial PSD.

To evaluate the accuracy of the proposed numerical method, the
initial PSD is supposed to be Gaussian:

n0(dp0 ) = N0√
2
�0

e
− 1

2

(
dp0 −�0

�0

)2

(87)

where �0 and �0 are the arithmetic mean diameter and standard
deviation for n0.

For Case 2 only growth occurs in a batch system, then N remains
equal to its initial value N0.

N
∣∣
balance

= N0 (88)
On the other hand, the total particle volume V increases due to
Qgrowth. Then, the total volume balance becomes:

dV

dt
= Qgrowth (89)

Test (s-1) (s)
i 30000 50
ii 40000 100
iii 50000 200

0.003

Ini�al
Analy�cal (i)
Numerical (i)
Analy�cal (ii)
Numerical (ii)
Analy�cal (iii)
Numerical (iii)

 8 (geometric grid, 30 classes, Dp1 = 1 × 10−5 m, r = 21/3).
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By considering a constant Qgrowth value:

V
∣∣
balance

= V0 + Qgrowtht (90)

Table 1 shows the parameter values and discretization grid used
n the simulations. Fig. 4 shows that the numerical method is able
o accurately calculate the PSD for the three potential growth laws,
ven for test (i) that exhibits the sharpest PSD. As indicated in
able 1, errors in the predictions of moments 0 and 3 are lower than
.01%. As it can be seen in Fig. 4, the use of the proposed discreti-
ation technique avoids the presence of non-physical oscillations
n the number density function for low sizes, which is commonly
bserved when the PBE is discretized by finite differences.

.3. Case 3

To predict the PSD in perfectly mixed batch operation where
rowth and attrition occur simultaneously, the PBE is given by:

∂n(dp, t)

∂t
+ ∂

∂dp
[(G(dp) − A(dp))n(dp, t)] = 0 (91)

To evaluate the method accuracy to predict narrow PSDs, the
ollowing linear equation is chosen to represent the net growth
ate (G(dp) − A(dp)):

(dp) − A(dp) = G′
0

(
1 − dp

dpcrit

)
(92)

G′
0 is the growth rate for punctual particles (i.e., dp → 0) and

pcrit
is a critical diameter which enables or disables the growth or

ttrition mechanism. Therefore, particles with diameters less than
pcrit

increase in size while those particles larger than dpcrit
tend to

hrink. According to Eq. (92), the growth and attrition rate can be
ritten as:

(dp) =

⎧⎨
⎩G′

0

(
1 − dp

dpcrit

)
if dp < dpcrit

0 if dp ≥ dpcrit

(93)

(dp) =

⎧⎪⎨
⎪⎩

0 if dp < dpcrit

−G′
0

(
1 − dp

dpcrit

)
if dp ≥ dpcrit

(94)

The selected initial PSD is described by means of a triangular
ulse function centered in �0 with a 2� width; thus, the pulse is

imited by (�0 − �) and (�0 + �):

0(dp) = N0

⎧⎪⎨
⎪⎩

� −
∣∣dp − �0

∣∣
�2

if
∣∣dp − �0

∣∣< �

0 otherwise

(95)

The analytical solution of Eq. (91) for the above-mentioned
rowth and attrition rates is obtained as a parameterized equation
y using the Method of Characteristics (Ramkrishna, 2000):

(t) = n0(dp0 )e

G′
0

dpcrit
t

(96)

p(t) = dpcrit
+ (dp0 − dpcrit

)e
−

G′
0

dpcrit
t

(97)
Similarly to Case 2, since only growth or attrition occurs, N
emains equal to its initial value N0:

N
∣∣
balance

= N0 (98)
l Engineering 84 (2016) 132–150

The total particle volume V changes due to Qgrowth. To be consis-
tent with the mass balance, Qgrowth must be given by:

Qgrowth = 


2

∫ ∞

0

[G(dp) − A(dp)]n(dp, t)d2
pddp (99)

By replacing Eq. (92) in (99):

Qgrowth = 


2

∫ ∞

0

G′
0

(
1 − dp

dpcrit

)
n(dp, t)d2

pddp

= 


2
G′

0

(
�2 − �3

dpcrit

)
(100)

To analytically calculate the total particle volume, the three first
moment equations must be solved. Then, from Eq. (5):

d�1

dt
= G′

0

(
�0 − �1

dpcrit

)
(101)

d�2

dt
= 2G′

0

(
�1 − �2

dpcrit

)
(102)

d�3

dt
= 3G′

0

(
�2 − �3

dpcrit

)
(103)

where the initial conditions (i.e., the population moments for t = 0)
are computed by using Eqs. (4) and (95). After solving, the following
analytical solution is obtained for �3.

�3 = d3
pcrit

N0 + 3d2
pcrit

(�10 − dpcrit
N0)e

−
G

′
0

t

dpcrit

+ 3dpcrit
(�20 − 2dpcrit

�10 + d2
pcrit

N0)e
−

2G
′
0

t

dpcrit

+ (�30 − 3dpcrit
�20 + 3d2

pcrit
�10 − d3

pcrit
N0)e

−
3G

′
0

t

dpcrit (104)

where V
∣∣
balance

= (
/6)�3.
Numerical simulations are performed for the discretization

grids and parameter values shown in Table 1. Fig. 5 shows the ana-
lytical and numerical solutions obtained. The numerical method is
able to predict the PSD with errors in the predictions of moments
0 and 3 lower than 0.001% and 0.2%, respectively; verifying the
closure of the total number and volume balances. The numerical
prediction of the PSD for t = 300 s, as shown in Fig. 5, is remark-
able good considering that only four and six points have non-zero
values for the arithmetic and geometric grids, respectively. Simi-
larly to Case 2, when growth and attrition take place non-physical
oscillations are not found.

5.4. Case 4

If only breakage in a steady-state continuous and perfectly
mixed system takes place, Eq. (1) becomes:

ṅin − ṅout + hB+ − hB− = 0 (105)

where hB+ and hB− are given by Eqs. (18) and (16). The breakage
rate is assumed to be proportional to the particle size:

b = b0dp (106)
Besides, the following expression for the breakage probability
function P(dp, x) is considered:

P(dp, x) = 1
x

(107)
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Then, by using Eq. (19), the number of fragments given by the
reakage of a particle of size x is:

(x) = x3∫ x

0
P(dp, x)d3

pddp

= 4 (108)

In order to analytically solve Eq. (105), the number density func-
ion within the system is arbitrary proposed:

 = Ṅin

b0�̄2
e− dp

�̄ (109)

here �̄ is the arithmetic mean diameter of n. Assuming a mean
esidence time equal to 1/4b0�̄, the density function of the solids
utlet stream is given by:

˙ out = 4b0�̄n (110)

Using Eqs. (106)–(110) and the definitions hB+ and hB−, the PSD
or the inlet stream can be calculated by means of Eq. (105):

˙ in = Ṅindp

�̄2
e− dp

�̄ (111)

The inlet volumetric flowrate is computed by multiplying Eq.
111) by (
/6)d3

p and integrating over the entire domain of sizes:

in = 4
 Ṅin�̄3 (112)

The total particle number within the system is exactly calculated
y integrating Eq. (109) over the entire size domain (moment 0):

N
∣∣
balance

= Ṅin

b0�̄
(113)

The total particle volume remains constant; thus, at any time:

V
∣∣
balance

= 6 �̄2Ṅin

b0
(114)

In Fig. 6, the discrete number density values obtained by
pplying the proposed numerical method are compared with the
nalytical solution for the discretization grid and parameter values
f Table 1. The results show that the numerical method is accurate.
ccording to Table 1, moment 0 and 3 are satisfied, in fact numerical
rrors lower than 0.5 and 2 × 10−5% are found, respectively.

.5. Case 5

An analytical solution of the PBE for a perfectly mixed batch pro-
ess with simultaneous growth and aggregation is available from
amabhadran et al. (1976) and Qamar and Warnecke (2007). For
his Case, Eq. (1) becomes:

∂n

∂t
+ G

∂n

∂dp
= hA+ − hA− (115)

The mentioned authors proposed the following initial PSD:

0 = N0
3d2

p

d3
0

e
−
(

dp
d0

)3

(116)

N0 is the initial total particle number and d0 is the
umber–volume mean diameter of the initial PSD. Therefore, the

nitial total particle volume is:

0 = N0



6
d3

0 (117)

A constant value for the aggregation kernel is assumed. The rate
f change of the particle volume is considered proportional to the

article volume (Ramabhadran et al., 1976; Qamar and Warnecke,
007):

dVp

dt
= G′′

0Vp (118)
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Then, the growth rate is:

G = ddp

dt
= G′′

0
3

dp (119)

where G′′
0 is a proportionality constant. To be consistent with the

mass balance, the volumetric flowrate fed to the system that con-
tributes to particle growth must satisfy Eq. (9). By replacing Eq.
(119) in (9) and solving:

Qgrowth = G′′
0 V (120)

Eq. (120) indicates that Qgrowth must be proportional to the total
particle volume within the system. The mass balance for this case
becomes:

dV

dt
= Qgrowth = G′′

0 V (121)

By solving Eq. (121), the analytical solution for the total particle
volume is obtained:

V
∣∣
balance

= V0eG′′
0

t (122)

The solution for the total particle number is given by
Ramabhadran et al. (1976) and Qamar and Warnecke (2007):

N
∣∣
balance

= 2N0

2 + ˇN0t
(123)

Besides, the analytical solution for n is:

n = 3
N2

V
d2

pe− N
V d3

p (124)

Fig. 7 shows the initial PSD and the numerical and analytical
PSDs resulting from growth and aggregation for the discretization
grids and parameter values of Table 1. The numerical solutions
are in well agreement with the analytical ones and the errors in
the predictions of moments 0 and 3 are lower than 0.1% and 1%,
respectively. As observed for Case 1, the use of Eq. (68) to continu-
ously update the representative diameter of each class successfully
tracks the size of newborn particles by aggregation when growth
also occurs. Therefore, the novel discretization strategy proposed
for the growth/attrition terms and the moving pivot technique of
Kumar and Ramkrishna (1996b), which have been developed sep-
arately, are consistently coupled here to give the whole numerical
method is able to predict correctly the PSDs preserving the two
desired population moments.

5.6. Case 6

An analytical solution for the PBE in a perfectly mixed batch
process with simultaneous aggregation and breakage is available
from Patil and Andrews (1998) and Lage (2002). For Case 6, the PBE
becomes:

∂n

∂t
= hB+ − hB− + hA+ − hA− (125)

These authors proposed the following breakage probability
function:

P(dp, x) = 3d2
p

x3
(126)

Therefore, the number of particles born by breakage is given by:

�(x) = x3∫ x

0

3d2
p

x3 d3
pddp

= x6

3
∫ x

0
d5

pddp

= x6

3 x6

6

= 2 (127)
Thus, it is assumed that each particle breaks into two  fragments.
As additional conditions, the breakage rate is considered propor-
tional to the particle volume:

b = b′
0




6
d3

p (128)
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here b′
0 is a constant. In addition, a constant value for the aggre-

ation kernel is assumed.
For the available analytical solution, the selected initial PSD is:

0 = 


2
N2

0
V0

d2
pe

− N0
V0



6 d3

p (129)

For the conditions above detailed, the analytical solution is (Patil
nd Andrews, 1998; Lage, 2002):

 = 


2
N2

V
d2

pe− N
V



6 d3

p (130)

The total particle number is obtained by replacing Eq. (130) in
4) for j = 0 and solving:

N
∣∣
balance

=
√

2b′
0V

ˇ

⎡
⎢⎢⎣

1 + 1
N0

√
2b′

0
V

ˇ
tan h

(√
b′

0
ˇV

2 t

)
1

N0

√
2b′

0
V

ˇ
+ tan h

(√
b′

0
ˇV

2 t

)
⎤
⎥⎥⎦ (131)

The total particle volume remains equal to the initial one (only
ggregation and breakage occur):

V
∣∣
balance

= V0 (132)

In Fig. 8, the calculated discrete values of number density func-
ion are compared with the analytical solution for the parameter
alues and discretization grids listed in Table 1. The numerical
ethod is able to predict satisfactorily the PSDs satisfying the total

umber and volume balances (according to Table 1, the numerical
rrors for the predictions of moments 0 and 3 are lower than 0.26%
nd 0.003%, respectively). The updating strategy to calculate the
epresentative diameters of each class (Eq. (68)) is also satisfactory
hen both agglomeration and breakage takes place.

.7. Case 7

In this case, only attrition in a perfectly mixed steady-state con-
inuous system is considered. Besides, a constant value for the
ttrition rate is assumed. Then Eq. (1) becomes:

A
dn

ddp
= ṅin − ṅout (133)

ṅout is computed by means of Eq. (74).
Eq. (133) is integrated to obtain:

 = e
dp
A�

A

∫ ∞

dp

ṅine− dp
A� ddp (134)

For the inlet PSD, the following function is proposed:

˙ in = Ṅin
dp

d2
p0

e− dp
dp0 (135)

By replacing Eq. (135) in (134), the PBE solution is obtained:

 = Ṅin�
dpdp0 + (dp + dp0 )A�

dp0 (A� + dp0 )2
e− dp

dp0 (136)

Applying the definition of population moment (Eq. (4)) to the
nalytical solution for j = 0 and j = 3, expressions for the total particle
umber and volume are respectively found:

N
∣∣
balance

= Ṅin�dp0 (dp0 + 2A�)

(A� + dp0 )2
(137)
V
∣∣
balance

=

Ṅin�d4

p0
(24dp0 + 30A�)

6(A� + dp0 )2
(138)

Although the only size change mechanism is attrition, the equa-
ion predicts a decrease in the total particle number. This is because
l Engineering 84 (2016) 132–150

the particles that shrink until dp = 0 disappear. Then, this case com-
bines particle size reduction with disappearance.

For the discretization grid and parameter values of Table 1,
Fig. 9 shows the analytical and numerical solutions three simu-
lation tests. The numerical solutions are in good agreement with
the analytical ones, being the errors in the predictions of moments
0 and 3 lower than 0.5% and 1%, respectively.

5.8. Case 8

In this Case, the PBE for a process with simultaneous growth and
nucleation in a batch perfectly mixed system is solved. Constant
values for the growth and nucleation rates are assumed. Then, Eq.
(1) becomes:

∂n(dp, t)

∂t
+ G

∂n(dp, t)

∂dp
= Bnucı(dp − dnuc) (139)

The analytical solution of Eq. (139) is obtained by using the
Method of Characteristics:

n = n0(dp − Gt)  + Bnuc

G
Heaviside

(
t − dp − dnuc

G

)
(140)

The selected initial PSD is:

n0 = No
3d2

p

d3
0

e
−
(

dp
dnv

)3

(141)

where dnv is the number–volume mean diameter of the initial PSD.
By replacing Eq. (141) in (140), the analytical solution becomes:

n = No
3(dp − Gt)2

d3
0

e
−
(

dp−Gt

d0

)3

+ Bnuc

G
Heaviside

(
t − dp − dnuc

G

)
(142)

The total particle number and volume are respectively:

N
∣∣
balance

= No + Bnuct (143)

V
∣∣
balance

= Vo +
∫ t

0

Qgrowthdt + BnucG3t4

4
(144)

Qgrowth is obtained from Eq. (9):

G = 2Qgrowth


 �2
(145)

Eq. (145) indicates that Qgrowth must change with time propor-
tionally to �2. By replacing Eq. (145) in (144):

V
∣∣
balance

= Vo + 


2
G

∫ t

0

�2dt + BnucG3t4

4
(146)

Simulations are performed using the discretization grid and
parameter values listed in Table 1. In Fig. 10, the predicted val-
ues by using the proposed numerical method are compared to the
analytical solution. The results show that the proposed method
works properly to predict the distributions despite the sharp fronts
exhibited by the PSDs. Nonetheless, it is worth to mention that
there is an overestimation of the density function in the edge of
the growing front of nucleated particles. This numerical deviation
is visible because the analytical solution for nucleation is a hor-
izontal straight line. However, this deviation is only 2% from the

analytical value.

Table 1 indicates that the population moments 0 and 3 are well
predicted with errors lower than 0.01% and 0.7%, respectively. This
result reinforces the advantage of the proposed method to han-
dle any kind of size change mechanism and PSDs shape. The good
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redictions are attributed to two main characteristics of the numer-
cal technique: (a) the ability to satisfy moments 0 and q for each
lass and consequently for the entire population and (b) the rep-
esentative class size updating strategy to numerically capture the
ewborn particles by nucleation.

. Conclusions

The relatively simple proposed numerical technique is able to
olve PBEs using any type of discretization grid (e.g., geometrical,
rithmetical) with different coarseness and number of classes. The
riginal contributions of this work are:

The discretization performed for the growth and attrition terms,
in which a linear approximation for the density function within
each class is considered to estimate the convective fluxes at the
cell boundaries. On the other hand, the fluxes are split in positive
and negative contributions (i.e., growth or attrition); the flux at
each class boundary is calculated once the upwind direction is
available. For PBEs including growth and/or attrition terms, the
discretization technique is able to overcome the commonly found
numerical difficulties. The novel approach to represent the den-
sity number function within each size class allows describing the
particle number flux between nodes properly. Thus, the numer-
ical diffusion is significantly minimized. Moreover, the method
is efficient in predicting steep moving fronts that might appear
in PSDs. The performed simulations and the comparison with
analytical solutions indicate that the numerical technique is capa-
ble to solve the PBE despite its hyperbolic nature, minimizing
the broadening tendency of sharp discontinuities. Furthermore,
for growth processes, the numerical solutions do not show non-
physical oscillations, demonstrating that numerical dispersion is
also minimized. The updating strategy proposed to calculate the
representative size classes also allows achieving good closure of
the population moments even for complex size change kinetic
laws.
The coupling between the moving pivot technique of Kumar
and Ramkrishna (1996b) and the discretization proposed for the
growth and attrition terms. The usage of a linear density func-
tion, which is consistent with the same two population moments
conserved by the pivot moving discretization, allows preserving
the sectional and global population moments even when all the
size change mechanisms occur simultaneously.
The combination between the moving pivot technique (Kumar
and Ramkrishna, 1996b) and the cell-average technique (Kumar
et al., 2006) introduced to conserve the desired sectional popu-
lation moments without redistribution of newly born particles.

The testing results indicate that the proposed method was  capa-
le to properly handle any kind of size change mechanism, either
lone or in combination, and different initial or inlet PSD shapes,
ven those having steep fronts and/or sharp discontinuities. The
ood predictions are attributed to two main characteristics of the
umerical technique: (a) the ability to satisfy moments 0 and q
arbitrarily selected) for each class (sectional moments) and con-
equently for the entire population and (b) the representative
lass-size updating strategy to numerically capture newborn par-
icles. This approach avoids the reassignment of newborn particles
o existing predefined sizes and the need of adding or subtracting
lasses to keep constant the grid density.
Since the numerical method solves two differential equations
er class, it is expected that the method is less computation-
lly efficient than those methods that use only one equation per
lass (e.g., the Fixed Pivot technique of Kumar and Ramkrishna
1996a) and the Cell Average method of Kumar et al. (2006)).
l Engineering 84 (2016) 132–150 149

For pure aggregation and/or brakeage processes, since the pro-
posed method matches the Moving Pivot technique of Kumar and
Ramkrishna (1996b), simulations are carried out with the same
computational demands that the Moving Pivot method. Moreover,
since the moving pivot discretization results in a stiff differential
equations system, the set of ordinary differential equations (ODEs)
requires a stiff solver. In this work, the model code is implemented
in FORTRAN programming language by means of a Gear subroutine,
and no robustness problems are found to solve the ODEs.

When only growth and/or attrition mechanisms occur, the PBE
is solved much faster than for pure aggregation problems because
there is no need to evaluate double summations. On the other hand,
the proposed method is more robust than other techniques that
show oscillations and give incorrect predictions of the PSDs (e.g.,
the Hounslow discretization, 1988).

Expanding the proposed numerical technique to solve multi-
variate PBEs is the subject for future work.
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