
Constrained NLP via Gradient Flow Penalty Continuation: Towards
Self-Tuning Robust Penalty Schemes

Felipe Scotta, Raúl Conejerosb, Vassilios S. Vassiliadisc,∗

aGreen Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Chile,
Mons. Álvaro del Portillo 12455, Las Condes, Santiago, 7620001, Chile

bSchool of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso,
Chile

cDepartment of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK

Abstract

This work presents a new numerical solution approach to nonlinear constrained optimization prob-
lems based on a gradient flow reformulation. The proposed solution schemes use self-tuning penalty
parameters where the updating of the penalty parameter is directly embedded in the system of
ODEs used in the reformulation, and its growth rate is linked to the violation of the constraints
and variable bounds. The convergence properties of these schemes are analyzed, and it is shown
that they converge to a local minimum asymptotically. Numerical experiments using a set of test
problems, ranging from a few to several hundred variables, show that the proposed schemes are
robust and converge to feasible points and local minima. Moreover, results suggest that the GF
formulations were able to find the optimal solution to problems where conventional NLP solvers
fail, and in less integration steps and time compared to a previously reported GF formulation.
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1. Introduction1

Optimization problems arise in many areas of chemical engineering practice, from component2

and systems design [1] to operation and control [2]. Due to an increasing concern of legislators3

and the general public in environmental sustainability, optimization has been recently used to aid4

in the design of supply chains and products considering their life cycle [3], and as a tool for the5

design of new sustainable energy conversion systems [4, 5]. Applications encompass formulations6

ranging from linear programming problems (LP) to mixed-integer non-linear programming prob-7

lems (MINLP) and dynamic optimization problems (optimal control problems, OCP). A common8

feature of many of these classes of problems, is that at a certain point one or several non-linear con-9

strained programming problems (NLP) need to be solved. The solution of large-scale NLP problems10

was made possible by breakthroughs in non-linear programming during the previous decades. In11

particular, the development of modern barrier methods [6, 7, 8], sequential quadratic programming12

[9] and reduced gradient methods [10], led to implementations (solvers) such as IPOPT [8] , SNOPT13
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[9] and CONOPT [10] that can be used in user-friendly modeling and optimization environments14

such as GAMS [11], AMPL [12] and AIMMS [13].15

Most algorithms used to compute a local optimum of constrained NLP problems rely on Taylor16

series expansions truncated after the linear or quadratic term; according to this, constraints are17

linearized and large steps towards the local minimum are allowed. For this reason, in highly18

nonlinear problems intermediate iterations might prove infeasible and frequent failures to converge19

to a local optimum may arise. Alternatively to the Taylor expansion based methods, Gradient Flow20

(GF) methods have been proposed for the solution of unconstrained and constrained nonlinear21

programming problems. In its most simple version, the solution of an unconstrained problem22

minx f(x) can be obtained by solving the following set of coupled ordinary differential equations23

(ODEs):24

dx

dt
= −∇xf(x); x(0) = x0 (1)

where x ∈ Rn, f(x) : Rn 7→ R1. This approach creates a smooth trajectory that might offer an25

advantage for highly nonlinear problems compared with the conventional optimization techniques26

which take finite steps along line-search directions. For the latter, finding a suitable step-size can be27

difficult when the optimization function is non-quadratic and has large third derivatives, resulting28

in a slow progress towards the solution due to the smalls steps required [14].29

Another interesting feature of GF methods is the possibility of using state-of-the-art integration30

software to find the solution of optimization problems. This approximation for the solution of31

unconstrained problems can be traced to the work of Botsaris [15]. In the following decades, efforts32

were made to reach a competitive level in terms of computational time and iterations compared33

to conventional methods, with a summary found in Brown and Bartholomew-Biggs [14]. The34

application of GF methods was further extended by introducing new formulations that were able35

to cope with constrained nonlinear problems [16, 17, 18, 19]. The constraints of the NLP problem36

(h(x)) are incorporated to the objective function (f(x)) with a penalty scheme in order for GF37

methods to be employed, with one of the major issues being the updating of the penalty parameters38

utilized. For an optimization problem with equality constraints only, Tanabe [20] proposed the39

following Gradient Flow formulation:40

dx

dt
= −Q(x)∇xf(x); x(0) = x0 (2)

Q(x) = [I − JT (x)(J(x)JT (x))−1J(x)]

where ∇xf(x) and J(x) represents the gradient of the objective function with respect to the opti-41

mization variables and the Jacobian matrix, respectively. Equation 2 is a direct generalization of42

the gradient projection method proposed by Rosen [21] to a differential form, which is based on43

projecting the search direction given by ∇xf(x) into the subspace tangent to the active constraints.44

The method proposed by Tanabe [20] was further modified by Yamashita [22] and Evtushenko and45

Zhadan [17] to yield46

dx

dt
= −sQ(x)∇xf(x) +−J(x)(J(x)JT (x))−1h(x); x(0) = x0 (3)

with s a positive constant. Following the work of Evtushenko and Zhadan [17], Wang et al. [23]47

proposed an approach to include inequality constraints and bounds where a pseudo-inverse of the48
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square matrix J(x)JT (x) acts as a penalizer (equation 4), with this approach requiring a non-49

singular Jacobian.50

dx

dt
= −[∇f(x) + JT (x)(τh(x)− (J(x)JT (x))−1J(x)∇f(x))]; x(0) = x0 (4)

In their work, they avoid the use of slacks to account for variable bounds by using the state-space51

transformation technique proposed by Evtushenko and Zhadan [17], otherwise the use of quadratic52

slacks would result in singular Jacobians. As proved by the above mentioned authors, their GF53

formulations have the property that once the equality constraints are satisfied, the trajectory of the54

solution will stay on the manifold determined by the constraints. However, as analyzed by Brown55

and Bartholomew-Biggs [16], the ODE system that allows following a path with those characteristics56

needs to be solved quite accurately. This and the fact that inverses of large matrices need to be57

calculated, produce a heavy numerical overhead. Moreover, in the formulations represented by58

equations 2 to 4, authors do not present an approach to select the values of the parameters required59

in their formulations (such as τ in equation 4). In practice, the value of these parameters needs60

to be adjusted to each problem. Finally, Schropp and Singer [24] compare SQP methods and GF61

methods for the solution of nonlinear problems from a theoretical point of view and using two case62

studies. They concluded that SQP methods are efficient tools whereas the ODE approach may be63

more reliable, with the ODE approach being more efficient for problems with only a small number64

of highly nonlinear constraints. Moreover, they propose an approach combining differential and65

algebraic equations that, according to the authors, combines efficiency and reliability.66

In this work, a self-tuning penalty scheme is presented for the solution of constrained NLPs. The67

approach does not require the calculation of an inverse (or pseudo-inverse) of the Jacobian matrix,68

and the penalty parameters updating is directly embedded into the system of ODEs. The perfor-69

mance of the GF formulations presented in this work are compared to the formulation presented70

by Wang et al. [23] and also against several state-of-the-art NLP solvers.71

2. New formulations using the Gradient Flow approach for solving NLP problems72

2.1. Problem definition73

The minimization of the following standard constrained NLP is considered:74

min
xs

f(xs)
subject to:

hs(xs) = 0
g(xs) ≤ 0

xLs ≤ xs ≤ xUs

(5)

where xs ∈ Rns , f(xs) : Rns 7→ R1, hs(xs) : Rns 7→ Rm1 and g(xs) : Rns 7→ Rm2 . The subscript75

s stands for standard, as this problem will be converted to a penalized version were the subscripts76

will be dropped to simplify the notation. This problem is converted to a penalty function minimiza-77

tion, using a quadratic penalty scheme and standard transformations. Inequality constraints are78

converted to equalities via the use of squared slack variables as follows. First, inequality constraints79

are converted to equality constraints using the following transformation:80
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g(xs) + w2 = 0 (6)

where w ∈ Rm2 .81

Variables bounds are transformed to equalities, by using the following equations:82

xs +
(
sU
)2 = xUs (7)

xs −
(
sL
)2 = xLs (8)

where sL, sU∈ Rns . The equality constraints defined by equations 6 to 8 and the original constraints,83

hs(x), will be appended in the vector h(x) : Rn 7→ Rm with n = 3ns +m2, m = 2ns +m1 +m2 and84

x = {xs, sU , sL, w}. Using this new defined set of constraints and variables, the original problem85

posed in equation 5 can be redefined as the following (higher dimensionality) optimization problem:86

min
x
f(x) (9)

subject to:
h(x) = 0

with the Lagrangian of the problem defined by:87

L(x, µ) = f(x) + λTh(x) (10)

A pair of points (x∗, λ∗) is said to be a stationary point of equation 10 if the following first order88

necessary conditions (Karush-Kuhn-Tucker conditions, KKT) are satisfied:89

∇xL(x∗, λ∗) = ∇xf(x∗) + JT (x∗)λ∗ = 0 (11)

∇µL(x∗, λ∗) = h(x∗) = 0 (12)

where ∇xf(x∗) is the gradient vector of the objective function (n× 1 rows and columns), h(x) the90

vector of equality constraints (m × 1), λ the vector of Lagrange multipliers (m × 1) and J(x) the91

Jacobian matrix (m×n). Furthermore, the second order sufficient conditions require that for some92

feasible point x∗ and a Lagrange multiplier vector λ∗, if93

1. linear independence constraint qualification (LICQ) holds at x∗, and94

2. for any vector d satisfying J(x∗)d = 0 holds that: dT∇xxL(x∗, λ∗)d > 0,95

then x∗is a strict local solution of 9 . In the following, it will be assumed that problem 9 show this96

properties.97

Using a penalty function, the problem defined by equation 9 can be stated as:98

min
x
PPP (x;M) = f(x) + 1

2Mh(x)Th(x) (13)

whereM is a positive penalty parameter. This is a classical approach used to solve the original NLP99

problem that is notorious for yielding badly conditioned unconstrained problems for conventional100

NLP solvers as M is increased [25].101
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In the following section, a gradient flow method with a novel self-tuning scheme for updating the102

value of the penalty parameter is presented.103

2.2. A gradient flow formulation for constrained NLP problems104

Considering the approach for the solution of unconstrained NLP problems represented by equa-105

tion 1, the unconstrained formulation of the originally constrained NLP (equation 9) can be written106

as the following set of coupled ODEs:107

dx

dt
= −∇xPPP

dx

dt
= −

[
∇xf(x) +M J(x)Th(x)

]
; x(0) = x0 (14)

where 0 ≤ t ≤ +∞.108

In order for this scheme to be successful, the updating of the penalty parameter needs to be109

embedded in a coupled way within the GF scheme and the value of the penalty parameter can be110

linked to the constraint norm. Thus, considering a κ > 0 the value of the penalty can be formulated111

as112

dM

dt
= κ ‖h(x)‖2 ; M(0) = M0 (15)

On the other hand, by considering a simple updating scheme according to the original penalty-113

multiplier approach (Hestenes method) [26], following the minimization at any iteration (k), if114 ∥∥h(k)
∥∥ ≥ γ

∥∥h(k−1)
∥∥ with 0 < γ < 1, e.g. γ = 0.25, then the penalty parameter is increased by115

M (k+1) = α ·M (k). To derive a continuous variant, suitable for embedding in a GF methodology,116

the following algebraic steps are considered:117

M (k+1) −M (k) = κ ·M (k) −M (k) (16)

∆M (k) = (κ− 1) ·M (k) (17)

with (κ− 1) > 0 and by renaming (κ− 1)→ α > 1 in the limit it can be obtained that118

dM

dt
= αM ; M(0) = M0 (18)

The scheme should allow the possibility of not increasing the penalty parameter if sufficient119

progress towards feasibility is made, so that the formulations in equations (15) and (18) may be120

combined as121

dM

dt
= αM ‖h(x)‖2 ; M(0) = M0 (19)

Since the value ofM is updated within the integration of the ODE system, and embeds a type of122

exponential growth forM when the norm of the constraints is large, the above scheme will limit the123

necessary value for α. Combining the penalty parameter differential equation and the set of coupled124

ODEs representing the original GF approach, the following novel scheme is obtained (scheme PP)125
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dx

dt
= −

[
∇xf(x) +MJ(x)Th(x)

]
; x(0) = x0 (20a)

dM

dt
= αMβ ‖h(x)‖2 ; M(0) = M0 (20b)

with 0 ≤ t ≤ +∞. The parameter β can take any positive value, or be set to zero, however some126

considerations are required. Since, the term Mβ was included to act as an acceleration parameter127

of the trajectory of M(t), it is convenient to analyze the behavior of the following equation128

dMp

dt
= Mβ

p ; Mp(0) = Mp0 (21)

for different values of β, where Mp represents a simplified version of the trajectory of the penalty129

parameter M . Clearly, this equation is a first order separable ODE. Its solution depends on the130

value of β according to131

Mp(t) =


(1− β)1/(1−β)

[
M1−β
p0

1−β + t

]1/(1−β)
0 ≤ β < 1

et β = 1

(β − 1)1/(1−β)
[

(β−1)Mβ−1
p0

1−(β−1)Mβ−1
p0 t

]1/(β−1)
β ≥ 1

(22)

When β ≥ 1, the values of Mp0 are restricted to be lower than [(β − 1)tf ](1−β), where tf is132

the final integration time, to avoid a zero value in the denominator of the equation defining Mp(t).133

Figure 1 shows the trajectories of Mp(t) for different values of β and a final integration time of 10134

units. For β = {0, 0.5, 1}, Mp0 was set to 1.0 while for values of β equal to 2 and 3, the value of135

Mp0 was taken as 0.99 · [(β − 1)tf ](1−β). The trajectories for β = {2, 3} show smaller values when136

compared to β equal to zero or greater. Since the purpose of this function is to increase the rate137

of growth of the penalty parameter (M), only β values of 0 and 1 will be considered for further138

analysis as they represent two extreme cases.139
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Figure 1: Trajectories of the acceleration parameter Mp as a function of time for different values of β.

2.2.1. Incorporating the Hestenes method to a gradient flow approach140

The Hestenes multiplier scheme considers an Augmented Lagrangian for the NLP problem in141

equation 9 as follows [26]142

min
x
PPM (x;M,λ) = f(x) + λ̃Th(x) +M

1
2h(x)Th(x) (23)

Following minimization for a given value of M = M (k), the minimizer x∗(M (k)) is obtained.143

The Lagrange multipliers are updated by144

∆λ̃(k) = M (k)h(x∗(Mk)) (24)

For this scheme it is known that there is a lower value of M for which if M ≥ M it converges145

to the true solution of the NLP (x∗) [27]. Considering that the updating of the multipliers can be146

embedded also as an ODE in a GF scheme, the following formulation results (scheme PM )147

dx

dt
= −

[
∇xf(x) + J(x)T

(
λ̃+M h(x)

)]
; x(0) = x0 (25a)

dλ̃

dt
= M h(x); λ̃(0) = λ̃0 (25b)

dM

dt
= αMβ ‖h(x)‖2; M(0) = M0 (25c)

with 0 ≤ t ≤ +∞.148

2.2.2. Proofs of convergence and stability analysis149

In the following section, it will be proven that if x∗ is a stationary point of the NLP defined by150

9, then x∗ is an equilibrium point of the PP scheme and vice versa (theorems 1 to 4). Theorems151
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5 and 6 show that the PM scheme converges to a stationary point of the original NLP problem,152

and that a solution of the aforementioned problem is a stationary point of the PM scheme. Finally,153

theorems 7 and 8 establish that the equilibrium points are asymptotically stable and theorems 9154

and 10 show that the penalty functions used in both schemes define a strictly decreasing trajectory.155

Theorem 1. If x∗is the optimal solution to the unconstrained problem 13 for the penalty parameter156

M∗,then (x∗,M∗) is the equilibrium point for the system of ODEs defined by equations 20a and 20b157

with β = 0.158

Proof. According to the assumptions of the theorem, first order necessary conditions hold. Then,159

∇xPPP (x∗;M∗) = −dx
∗

dt
= 0 (26)

Furthermore, if x∗ is the optimal solution of problem 13, it is also a stationary point of the NLP160

defined by 9 (see theorem 17.1 in Nocedal and Wright [28]). Thereby, h(x∗) = 0 and dM

dt
=161

α ‖h(x∗)‖2 = 0. Thus, (x∗,M∗) is the equilibrium point of the dynamic system formed by equations162

20a and 20b for β = 0.163

Theorem 2. If x∗is the optimal solution to the unconstrained problem 13 for the penalty parameter164

M∗ andM∗h(x∗) = λ∗ is the vector of Lagrange multipliers at a stationary point of the NLP defined165

by 9, then x∗is the equilibrium point of equation 20a and the left hand side of equation 20b with166

β = 1 is constant.167

Proof. According to the assumptions of the theorem,168

∇xPPP (x∗;M∗) = −dx
∗

dt
= ∇xf(x∗) +M∗J(x∗)Th(x∗) = ∇xf(x∗) + J(x∗)Tλ∗ = 0 (27)

since the first order necessary conditions for problems 13 and 9 are satisfied. Now,169

lim
t→∞

dM

dt
= lim
t→∞

α
√
Mh(x)TMh(x) = αλ∗Tλ∗ (28)

since according to theorem 17.2 in Nocedal and Wright [28], for a sufficiently large value of M∗ the170

vector of Lagrange multipliers that satisfies the KKT conditions for the NLP defined by 9 can be171

approximated by M∗h(x∗) = λ∗. Thereby, x∗ is the stationary point of equation 20a and the left172

hand side of equation 20b takes a constant value asymptotically.173

Theorem 3. If (x∗,M∗) is the equilibrium point of the ODE system defined by equations 20a and174

20b with β = 0, then x∗is an optimal solution of the unconstrained optimization problem defined by175

13 and the NLP defined by 9.176

Proof. Since (x∗,M∗) is the equilibrium point of the ODE system 20a and 20b, then the first order177

necessary conditions of problem 13 are satisfied:178

∇xPPP (x∗;M∗) = ∇xf(x∗) +M∗J(x∗)Th(x∗) = 0 (29)

∇MPPP (x∗;M∗) = 1
2h(x∗)Th(x∗) = 0 (30)
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satisfaction of ∇xPPP (x∗;M∗) = 0 is clear since ∇xPPP (x∗;M∗) = −dx
∗

dt
= 0. Satisfaction of179

equation 30 is ensured by:180

dM

dt
= α ‖h(x∗)‖2 = α

√
h(x∗)Th(x∗) = 0 (31)

The second order sufficient optimality condition requires that Hessian matrix of the penalty181

function defined by 13 to be positive definite:182

∇xxPPP (x∗;M∗) = ∇xxf(x∗) +
m∑
i=1

M∗hi(x∗)∇xxhi(x∗) +M∗JT (x∗)J(x∗) (32)

Replacing the Hessian matrix of problem 13 :183

∇xxPPP (x∗,M∗) = ∇xxL(x∗, λ∗) +M∗JT (x∗)J(x∗) (33)

Now, consider a vector d satisfying J(x∗)d = 0, multiplying ∇xxPPP (x∗,M∗) at both sides:184

dT [∇xxL(x∗, λ∗) +M∗JT (x∗)J(x∗)]d = dT∇xxL(x∗, λ∗)d+ dTM∗JT (x∗)J(x∗)d > 0 (34)

sinceM∗JT (x∗)J(x∗) is positive definite and dT∇xxL(x∗, λ∗)d > 0 by assumption of the properties185

of problem 9.186

Theorem 4. If x∗ is the equilibrium point of the ODE system defined by equation 20a and the left187

hand side of equation 20b with β = 1 is constant, then x∗is an optimal solution of the unconstrained188

optimization problem defined by 13 and the NLP defined by 9.189

Proof. Since x∗ is the equilibrium point of equation 20a, equation 29 is satisfied and remains to be190

proven that ∇MPPP (x∗,M) is equal to zero to show that the first order necessary conditions for191

problem 13 are satisfied. To do so, consider that:192

dM

dt
= αM ‖h(x∗)‖2 = α

√
Mh(x∗)TMh(x∗) (35)

Then lim
t→∞

Mh(x∗) = λ∗ and since lim
t→∞

dM

dt
= k, where k is a positive real number, it follows that193

lim
t→∞

h(x∗) = 0. Thereby lim
t→∞

∇MPPP (x;M) = lim
t→∞

1
2h(x∗)Th(x∗) = 0. Note that lim

t→∞

dM

dt
= k is194

required in order for x∗to be an equilibrium point of equation 20a and that the value of M used in195

this theorem is not an equilibrium value (M∗) since the growth rate dM
dt is different than zero.196

The satisfaction of the second order optimality conditions for this case is identical to Theorem197

1, thus will be omitted.198

Theorem 5. If x∗is the optimal solution to the unconstrained problem 23 for the penalty parameter199

M∗and multiplier λ̃∗, then (x∗, λ̃∗,M∗) is the equilibrium point for the system of ODEs defined by200

equations 25a to 25c.201

Proof. According to the assumptions of the theorem, first order necessary conditions hold. Then,202

∇xPPM (x∗, λ̃∗,M∗) = −dx
dt

= 0 (36)
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Furthermore, if x∗ is the optimal solution of problem 23, it is also a stationary point of the NLP203

defined by 9 (see theorem 17.5 in Nocedal and Wright [28]). Thereby, h(x∗) = 0 and dM
dt

= dλ̃

dt
= 0.204

Thus, (x∗, λ̃∗,M∗) is the equilibrium point of the dynamic system formed by by equations 25a to205

25c. By virtue of using the Lagrange multiplier method M goes to an equilibrium value M∗, as206

oppose to theorem 4. The same is true for theorem 6.207

Theorem 6. If (x∗, λ̃∗,M∗) is the equilibrium point of the ODE system defined by equations 25a208

to 25c, then x∗is an optimal solution of the unconstrained optimization problem defined by 23 and209

the NLP defined by 9.210

Proof. Since (x∗, λ̃∗,M∗) is the equilibrium point of the ODE system25a to 25c, then the first order211

necessary conditions of problem 23 are satisfied:212

∇xPPM (x∗, λ̃∗,M∗) = ∇xf(x∗) + J(x∗)T
(
λ̃∗ +M h(x∗)

)
= 0 (37)

∇MPPM (x∗, λ̃∗,M∗) = 1
2h(x∗)Th(x∗) = 0 (38)

∇λPPM (x∗, λ̃∗,M∗) = h(x∗) = 0 (39)

satisfaction of ∇xPPM (x∗, λ̃∗,M∗) = 0 is clear since ∇xPPM (x∗, λ̃∗,M∗) = −dx
∗

dt
= 0. Satisfaction213

of equations 38 and 39 are ensured by:214

dλ̃∗

dt
= M∗h(x∗) = 0 (40)

dM

dt
= αMβ ‖h(x)‖2 = 0 (41)

The second order sufficient optimality condition requires that Hessian matrix of the penalty215

function defined by 23 to be positive definite:216

∇xxPPM (x∗, λ̃∗,M∗) = ∇xxf(x∗) +
m∑
i=1

[λ̃∗i +M∗hi(x∗)]∇xxhi(x∗) +M∗JT (x∗)J(x∗) (42)

According to theorem 17.2 in Nocedal and Wright [28], for a sufficiently large value of M∗ the217

vector of Lagrange multipliers that satisfies the KKT conditions for the NLP defined by 9 can be218

approximated by λ̃∗ +M∗h(x∗) ' λ̃∗ ' λ∗. Then, replacing the Hessian matrix of problem 9:219

∇xxPPM (x∗;M∗) = ∇xxL(x∗, λ∗) +M∗JT (x∗)J(x∗) (43)

which was shown to be positive definite in Theorem 1. Thereby, x∗is a strict local solution of 9.220

Theorem 7. (asymptotic convergence of PP scheme) Assume that (x∗, λ∗) is a stationary point of221

equations 10. As usual, suppose LICQ holds at x∗and that for any vector d satisfying J(x∗)d = 0222

holds that: dT∇xxL(x∗, λ∗)d > 0. Then, if x0 is close enough to x∗, then lim
t→∞

[x(t),M(t)h(t)] =223

(x∗, λ∗).224
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Proof. For a system of ODEs represented by the following equation:225

dx

dt
= φ(x) (44)

the Poincaré-Lyapunov theorem (theorem 6.9 in Verhulst [29], page 191) states that if φ is continu-226

ously differentiable, it can be shown that x∗ is an asymptotically stable point of 44 if all eigenvalues227

of the matrix ∇xφ(x∗) have negative real value. From equation 20a, φ(x∗,M∗) = −∇xPPP (x∗,M∗)228

and ∇xφ(x∗,M∗) = −∇xxPPP (x∗,M∗) = −[∇2
xxL(x∗, λ∗) +M∗J(x∗)TJ(x∗)].229

We now show that the matrix ∇2
xxL(x∗, λ∗) + M∗J(x∗)TJ(x∗) is positive definite. Let σi ∈ R230

be an eigenvalue of ∇2
xxL(x∗, λ∗) + M∗J(x∗)TJ(x∗) and zi ∈ Rn an eigenvector corresponding to231

σi. Then, σi and zi satisfy232

[∇2
xxL(x∗, λ∗) +M∗J(x∗)TJ(x∗)]zi = σizi (45)

Multiplying by zTi by the left side233

zTi [∇2
xxL(x∗, λ∗) +M∗J(x∗)TJ(x∗)]zi = σi ‖zi‖2

2 (46)

which yields,234

σi = (zTi ∇2
xxL(x∗, λ∗)zi + zTi M

∗J(x∗)TJ(x∗)zi)/ ‖zi‖2
2 (47)

However, by the assumptions of the theorem zTi ∇2
xxL(x∗, λ∗)zi is positive definite, M is positive235

for every t and J(x∗)TJ(x∗) is also positive definite (provided LICQ holds). Moreover, J(x∗)zi =236

0 if zi satisfies the conditions of the theorem. Therefore, σi > 0 for all i = 1, 2, ..., n and all237

eigenvalues of ∇xφ(x∗) are strictly negative, and thus by the Poincaré-Lyapunov theorem it follows238

that lim
t→∞

x(t)− x∗ = 0. Finally, since (x∗, λ∗) is a stationary point of 10, it follows from theorems239

3 and 4 that:240

∇xf(x∗) +M∗J(x∗)Th(x∗) = ∇xf(x∗) + J(x∗)Tλ∗ = 0 (48)

and thereby lim
t→∞

M(t)h(x)− λ∗ = 0241

Theorem 8. (asymptotic convergence of PM scheme) Assume that (x∗, λ∗) is a stationary point242

of equations 10. Suppose that LICQ holds at x∗ and that for any vector d satisfying J(x∗)d = 0,243

dT∇xxL(x∗, λ∗)d > 0, where L is the Lagrangian function for the NLP problem defined by equation244

9. If x0 is close enough to x∗, then lim
t→∞

[x(t), λ̃(t) +M(t)h(t)] = (x∗, λ∗).245

Proof. We start with equation 25a, defining φ3(x, λ̃,M) = [∇xf(x) + J(x)T
(
λ̃+Mh(x)

)
]and cal-246

culating ∇2
xxφ3(x∗, λ̃∗,M∗) :247

∇2
xxφ3(x∗, λ̃∗,M∗) = −[∇2

xxf(x∗) +
m∑
i=1

[λ̃∗i +M∗hi(x∗)]∇xxhi(x∗) +M∗JT (x∗)J(x∗)] (49)

From the Theorem 5 under the assumptions of Theorem 8, h(x∗) = 0, λ̃∗ ' λ∗ and,248
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∇2
xxφ3(x∗, λ̃∗,M∗) = −[∇xxf(x∗) +

m∑
i=1

λ̃∗i∇xxhi(x∗) +M∗JT (x∗)J(x∗)] (50)

∇2
xxφ3(x∗, λ̃∗,M∗) = −[∇2

xxL(x∗, λ̃∗) +M∗JT (x∗)J(x∗)] (51)

The right hand side of equation 51 was proven to be positive definite in Theorem 7. Recalling the249

definition of PM scheme (equation 25a):250

φ3(x, λ̃,M) = ∇xPPM (x∗, λ̃∗,M∗) = −dx
∗

dt
(52)

and using the Poincaré-Lyapunov theorem it follows that for equation 25a, lim
t→∞

x(t) − x∗ = 0.251

Finally, since (x∗, λ∗) is a stationary point of 10, it follows from theorems 5 and 6 that:252

∇xf(x∗) + J(x∗)T
(
λ̃∗ +M∗h(x∗)

)
= ∇xf(x∗) + J(x∗)Tλ∗ = 0 (53)

and thereby lim
t→∞

λ̃(t) +M(t)h(t)− λ∗ = 0.253

Moreover, the following theorem indicates that PPP (x,M) (equation 13) and PPM (x,M, λ)254

(equation 23) are strictly decreasing along a trajectory of x(t) that converges to x∗.255

Theorem 9. Let [x(t),M(t)] be a solution trajectory of equations 25a and 20b. For a fixed t0 ≥ 0,256

if ∇xPPP (x(t),M(t)) 6= 0 for all t > t0, then PPP (x(t),M(t)) is strictly decreasing with respect to257

t > t0.258

In an analogous way the following theorem is defined.259

Theorem 10. Let [x(t),M(t), λ̃(t)] be a solution trajectory of equations 25a to 25c. For a fixed t0 ≥260

0, if ∇xPPM (x(t),M(t), λ̃(t)) 6= 0 for all t > t0, then PPM (x(t),M(t), λ̃(t)) is strictly decreasing261

with respect to t > t0.262

Proof. Here the proof of theorem 9 is presented. Proof of theorem 10 is analogous and is thus263

omitted. From equation 20a, dxdt = −φPP (x(t)) and the trajectory of PPP (x(t)) can be calculated264

from265

dPPP (x(t))
dt

= dPPP (x(t))
dx

dx

dt
(54)

dPPP (x(t))
dt

= −‖φPP (x(t))‖2
2 (55)

Since φPP (x(t)) is different than zero when t > t0, then it can be concluded that dPPP (x(t))
dt < 0.266

Thereby, PPP (x(t)) is strictly decreasing with respect to t > t0.267

2.3. Comparison with previously reported GF formulations268

As stated in the introductory section, the GF approach proposed in this work, unlike previously269

reported methods, is an infeasible path method. To analyze the reasons behind this behavior,270

consider the solution of the ODE system represented by equations 25a to 25c. After multiplying271

equation 25a by J(x) we obtain272
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J(x)dx
dt

= dh(x)
dt

= −J(x)[∇xf(x) + J(x)T
(
λ̃+Mh(x)

)
]⇒

dh(x)
dt

+ J(x)J(x)TMh(x) = −J(x)[∇xf(x) + J(x)T λ̃]

The last equation corresponds to a linear differential equation in h(x) with variable coefficients.273

Thus, defining ν(x(t)) = J(x(t))J(x(t))TM and ω(x) = −J(x)[∇xf(x(t)) + J(x(t))T λ̃] and using274

an appropriate integration factor, the trajectory of h(x) can be implicitly expressed as275

h(x(t)) = e−
´ t

0 ν(x(t))dt

 tˆ

0

ω(x(t))e
´ t

0 ν(x(t))dtdt+ C


Now, suppose that for some t0 > 0, h(x(t0)) = 0. Then,276

e−
´ t0

0 ν(x(t))dt

 t0ˆ

0

ω(x(t))e
´ t0

0 ν(x(t))dtdt+ C

 = 0⇒

C = −
t0ˆ

0

ω(x(t))e
´ t0

0 ν(x(t))dtdt

Therefore, for t > t0:277

h(x(t)) = e
−
´ t
t0
ν(x(t))dt

 tˆ

t0

ω(x(t))e
´ t
t0
ν(x(t))dt + C

 (56)

and the only possibility for h(x(t)) to be zero for t > t0 is that both C and ω(x(t)) are zero for278

t > t0, implying that also ω(x(t0)) needs to be equal to zero. These conditions can be satisfied if279

at time t0 not only h(x(t0)) = 0, but also ∇xf(x(t)) + J(x(t))T λ̃ = 0. Clearly, a point satisfying280

both conditions will also be the optimal solution of the problem. Thereby, unlike the formulation281

presented by Wang et al. [23], once the ODE system reaches a feasible point, it will generally not282

remain feasible.283

Unlike previously proposed formulations based on the Gradient Flow approach, our GF scheme284

does not requires the calculation of inverse matrices (such as J(x)JT (x), see equations 2 and 4).285

Thereby, each integration step taken using the GF formulations presented in this work is less286

computationally demanding compared, for example, to the GF formulation presented by Wang287

et al. [23]. This is confirmed by the results presented in the next section. Moreover, although288

the squared slacks used in equations 6 to 8 may cause the Jacobian to be linearly dependent, this289

will occur at the point where the constraints are satisfied as equalities with zero slack, which in290

turns only occurs at the solution since the proposed approach is an infeasible path method as291

shown previously. Therefore, the use of squared slacks does not pose a problem for the GF schemes292

proposed in this work.293
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2.4. Implementation294

The original NLP problems (equation 5) were automatically converted to a system of differential295

equations (PP, equations 20a and 20b, and PM , equations 25a to 25c ) using a code developed in296

Wolfram Mathematica™ 10.3 that takes full advantage of this Computer Algebra System (CAS).297

The ODE equations are processed into a format suitable for Mathematica’s built-in differential298

equation solver NDSolve using an open package developed in Mathematica™ with flexible data299

structures that also allows system structural analysis [30]. NDSolve options were used with default300

values except for AccuracyGoal and PrecisionGoal which were increased to tighten constraint sat-301

isfaction when required. The option WhenEvent in NDSolve was used to reset the value of the302

penalty parameter when it exceeds a large value (1012). Of course, this approach is only imple-303

mented for the formulation that incorporates multipliers (PM ) since the formulation PP requires304

a large penalty value to achieve convergence. For the case study Problem 6, MATLAB™ ODE15s305

was used to obtain the solution of the problem when the PM formulation was tested. MATLAB™306

was used since it allows tailoring the execution of the integration. Specifically, for large problems307

RAM memory usage was limited by using short integration steps, storing the solution at the final308

integration time (x(tf )) and reinitializing the integration using the stored values (x0 = x(tf )).309

The ODE systems produced by PP and PM formulations are integrated until the merit function310

defined by equation 57 reaches a value below a prescribed tolerance equal to 10−6, unless otherwise311

stated. This value was chosen to be similar to the default tolerances used by CONOPT and IPOPT,312

10−7and 10−6, respectively.313

Merit function = ‖∇xf(x) + JT (x)µ‖2 + ‖h(x)‖2 (57)

where µ was calculated as µ∗ = M∗h(x∗) for PM formulations and as λ̃∗ for PP formulations.314

Finally, for the GF formulation PP, integration was stopped if the value of the penalty parameter315

M exceeds 1012 to avoid numerical problems (overflow).316

The GF formulations proposed in this work are compared against the formulations reported317

in Wang et al. [23] using two approaches: WM and WA, For problems with a small number of318

variables (problems 1 and 2 in Section 3) a calculation procedure termed WM (Wang’s Method)319

was implemented in Mathematica™. In this scheme, matrix J(x)TJ(x) in equation 4 is symbolically320

inverted and the resulting function is stored in Mathematica™ for its use by NDSolve. Therefore,321

matrix J(x)TJ(x) is not inverted at each integration step but the stored function is used to evaluate322

it. Moreover, the CPU time reported for the WM scheme, as for other GF schemes, corresponds to323

the CPU time consumed by the execution of NDSolve, thus for the WM scheme it does not include324

the time required to calculate the inverse of J(x)TJ(x) (symbolically).325

As the number of variables increases (problems 3 to 7 in Section 3), the time required to326

symbolically invert the matrix J(x)TJ(x) in WM approach rises to impractical levels. Therefore,327

in order to compare the GF approaches presented in this paper with the method proposed by328

Wang et al. [23] a new approach was required. This approach, termed WA (Wang’s Algorithm)329

was also presented in Wang et al. [23] and is based in the discretization of equation 4 using the330

implicit backward Euler’s scheme. According to this algorithmic scheme, the matrix J(x)TJ(x) is331

not symbolically inverted but in each step [J(x)TJ(x)]−1 is numerically calculated.332

The GF schemes presented in this work and WM are compared in terms of CPU times, number333

of integration steps and function evaluations used by NDSolve to achieve the same merit function334

value. When WA and conventional NLP solvers (CONOPT, MINOS, SNOPT and IPOPT) are335

used, CPU times and number of iterations are compared.336
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3. Case studies337

The new Gradient Flow schemes were numerically tested against five standard constrained338

nonlinear problems and two nonlinear problems derived from optimal control problems, all obtained339

from the open literature.340

3.1. Constrained non-linear problems341

3.1.1. Problem 1342

Problem 1 corresponds to a constrained nonlinear optimization problem with a nonlinear objec-343

tive function, linear constraints and variable bounds. Its optimal solution is x = {0, 1, 2, 0} with an344

objective function value equal to −1.5. Problem 1 is a convex one with linear constraints; thereby,345

its difficulty is low and a global solution is expected, both for conventional NLP solvers and for the346

GF schemes presented in this work.347

min
x

1.5x2
1 − x1x2 + 1.5x2

2 + x1 − 3x2

subject to:
− x1 + 2x2 + x3 = 4 (58)
x1 + x2 + x4 = 1 (59)

(60)
0 ≤ xi ≤ 10; i = {1, ..., 4}

Problem 1 was solved using x = [2, 1, 3, 4] as initial values and with α = 106 for scheme PM348

with β = 0, and α = 103 for scheme PM with β = 1 and for scheme PP. Table 1 shows a summary349

of the numerical results when the integration was stopped after a merit function value equal or350

lower than 10−6 was achieved for every GF formulation. Every solver tested, including this work’s351

and Wang’s formulation [23], finds the optimal solution of the problem. CPU time and RAM352

memory usage obtained using GF schemes are competitive with conventional solvers. Using an353

identical termination criteria, the GF formulation proposed by Wang and coworkers with their354

tuning parameter set to τ = 1 [23] requires nearly 129 times more CPU time compared to the GF355

formulations presented in this work. This difference increases as τ increases, with 23 CPU seconds356

for τ = 1000, due to the stiffness of the problem that forces the integrator to use small integration357

steps. The quality of the solution, in terms of constraint satisfaction and objective function is358

similar for the conventional solvers and the GF formulations.359
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Table 1: Solution summary for Problem 1 including results obtained using commercial optimization solvers and the
GF formulations proposed in this work.

IPOPT CONOPT MINOS SNOPT PP(β=0) PP(β=1) PM(β=0) PM(β=1) WM (τ = 1)
CPU (s) 0.11 0.02 0.08 0.05 0.02 0.02 0.02 0.03 2.37
Memory (Mb) 3.0 2.0 3.0 3.0 1.1 1.0 1.8 2.0 11.2
Nfun 89 NAa 4 2 1183 1384 914 1639 1172
Iterations 15 9 2 1 - - - - -
Integration steps - - - - 510 511 490 546 757
Obj −1.50 −1.50 −1.50 −1.50 −1.50 −1.50 −1.50 −1.50 -1.50

7.1 · 10−9 0 0 2.2 · 10−16 2.7 · 10−15 3.4 · 10−12 6.8 · 10−12

Merit function NAb NAb NAb NAb 1.0 · 10−6 1.0 · 10−6 1.0 · 10−6 1.0 · 10−6 1.0 · 10−6

aNot reported by GAMS CONOPT. bDefault values in GAMS were used

The effect of varying the value of α in the PP, PM and Wang’s (increasing τ) formulations360

[23] is shown in Figure 2, indicating that the satisfaction of the constraints is largely independent361

of the value of parameters α and τ for this problem (where only linear constraints are present).362

However, as the value of these parameters increases the system of differential equations becomes363

stiff, requiring more integration steps (and computational time) to achieve the same norm of the364

constraints. This is evident in Wang’s formulation (WM) where the merit function value oscillates365

for τ = 106. Since in PP and PM formulations the value of the penalty parameter M is tied to366

the violation of the constraints, it is not necessary to use large values of α, especially with the PM367

formulation where multipliers are also used.368
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Figure 2: Norm of the constraints vector as the integration proceeds for Problem 1 and GF formulations using a
penalty parameter scheme (PP) or a penalty and multipliers scheme (PM). For panels A, B, C and D the value of
α is 10−2,1, 103 and 106 respectively.

3.1.2. Problem 2369

This problem has been taken from Example 6.8 in Biegler [25], and it was designed to challenge370

Newton-based interior point methods when starting from an infeasible point. The problem has only371

one solution at x∗ = [1, 0, 0.5].372
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min
x
x1 (61)

subject to:
x2

1 − x2 − 1 = 0
x1 − x3 − 0.5 = 0

− 10 ≤ x1 ≤ 10
0 ≤ xi ≤ 10; i = {2, 3}

The infeasible initial point for this problem is x = [−2, 3, 1] and for the GF formulations an373

α value of 106, for PM with β = 0, and 103 for the rest of the formulations was chosen. Table 2374

shows the numerical results for this problem where the merit function satisfaction was set to 10−6
375

for GF based formulations (including the one proposed by Wang et al. [23]). As expected, IPOPT376

fails in finding the optimal solution, but CONOPT, MINOS and SNOPT provide the solution.377

The solutions provided by GF schemes are optimal, show excellent constraint satisfaction and are378

obtained using less RAM memory and CPU time compared to the conventional NLP solvers. On379

the other hand, the GF formulation proposed by Wang et al. [23] reaches the limit of iterations380

(105) without achieving the solution of the problem when τ = 1, finds the solution for τ = 1000 and381

fails again for a larger value of this parameter. This result is indicative of the importance of the382

selection of the τ value for NLP problems with nonlinear constraints, unlike the situation shown383

for Problem 1, where τ values only affect the stiffness of the problem. The independence to the α384

value shown by the algorithms presented in this paper is a consequence of the self-tuning behavior385

of the penalty parameter in the GF schemes presented in this work. On the contrary, Wang et al.386

[23] reports linear rate of convergence for small values of the penalty parameter and quadratic rate387

of convergence for large values. Thereby, in their approach the value of the penalty parameter388

needs to be tuned carefully for each problem to obtain a quadratic convergence and to avoid a stiff389

problem that prevents finding a solution.390

3.1.3. Problem 3391

Problem 3 corresponds to the flowsheet optimization problem of the Williams-Otto process [31],392

adapted from Biegler [25]. The process flowsheet is shown in Figure 3 where also the reaction393

network for the synthesis of P (main product), E (by-product) and G (waste product) is presented.394

Two feed streams with pure A and B components (streams FA and FB ) are fed to a stirred tank395

reactor whose operating temperature, T , is subject to optimization. The effluent stream is cooled396

and sent to a centrifuge to separate G (in stream FG). The clarified stream is fed to a column397

separator to recover P where 90% of the product P is recovered in the column’s top stream. This398

stream is separated into purge (Fpurge) and a recycled stream (FR) that is recycled to the reactor.399

The optimization problem is represented by equations 62 to 74. Variable bounds, initial values,400

optimal values and the values obtained using formulation PM with β = 0 are shown in Table 3.401
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Figure 3: Flowsheet for Problem 3, the Williams-Otto process.

min
x
−

2207 · FP + 50 · Fpurge − 168 · FA − 252 · FB − 2.22 · F sumeff − 84 · FG − 60 · V · ρ
6 · ρ · V

(62)
subject to:

k1 − 5.9755 · 109e−
120
T = 0 (63)

k2 − 2.5962 · 1012e−
150
T = 0 (64)

k3 − 9.6283 · 1015e−
200
T = 0 (65)

FPeff − 0.1FEeff − FP = 0 (66)
FA + FB − FG − FP − Fpurge = 0 (67)
−k1F

A
effF

B
effV ρ

(F sumeff )2 −
FpurgeF

A
eff

F sumeff − FG − FP
+ FA = 0 (68)

(−k1F
A
effF

B
eff − k2F

B
effF

C
eff )V ρ

(F sumeff )2 −
FpurgeF

B
eff

F sumeff − FG − FP
+ FB = 0 (69)

((2k1F
A
eff − k2F

C
eff )FBeff − k3F

C
effF

P
eff )V ρ

(F sumeff )2 −
FpurgeF

C
eff

F sumeff − FG − FP
= 0 (70)

2k2F
B
effF

C
effV ρ

(F sumeff )2 −
FpurgeF

E
eff

F sumeff − FG − FP
= 0 (71)

(k2F
B
eff − 0.5k3F

P
eff )FCeffV ρ

(F sumeff )2 −
Fpurge(FPeff − FP )
F sumeff − FG − FP

− FP = 0 (72)

−1.5k3F
C
effF

P
effV ρ

(F sumeff )2 − FG = 0 (73)

FAeff + FBeff + FCeff + FEeff + FPeff + FG − F sumeff = 0 (74)
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Table 3: Bounds, initial conditions, optimal solution and solution obtained using formulation PM(β = 0) for Problem
3 .

Variable xL xU x0 x∗ x∗
PM(β=0) Variable xL xU x0 x∗ x∗

PM(β=0)
F sumeff 0.0 1000 52 366.369 370.523 Fpurge 0.0 100 0.1 35.910 36.126
FAeff 0.0 100 10 46.907 43.675 V 0.03 0.1 0.06 0.03 0.03
FBeff 0.0 500 30 145.444 149.517 FA 0 100 30 13.357 13.170
FCeff 0.0 100 3 7.692 6.989 FB 0.0 100 20 30.442 31.071
FEeff 0.0 1000 3 144.033 147.479 T 2 6.8 5.8 6.744 6.782
FPeff 0.0 100 5 19.115 19.511 k1 0.0 200 6.2 111.7 123.6
FP 0 4.763 0.5 4.712 4.763 k2 0 1000 15.2 567.6 643.8
FG 0.0 100 1 3.178 3.352 k3 0 1500 10.2 1268.2 1500

Computational results obtained using conventional NLP solvers and the GF formulations pre-402

sented in this work are shown in Table 4. Commercial solver CONOPT achieves a feasible local403

optimum, while the commercial solver MINOS reports the problem as infeasible. On the other404

hand, GF formulations achieve the demanded value for the merit function (≤ 10−6), although only405

local minima solutions are attained. However, this is not unexpected since the GF formulations406

do not incorporate provisions to achieve global optima. Using the algorithmic version of the for-407

mulation proposed by Wang and coworkers (WA), an algorithm based on the use of the implicit408

Euler method, with a small integration step of 0.01, the algorithm reaches a merit function value of409

2.75 ·1025 in four iterations producing numerical errors . The solution of this problem using Wang’s410

method (WM) implemented in NDSolve (as in Problems 1 and 2) was also not possible, since this411

requires the calculation of a 44 × 44 inverse matrix with symbolic entries which proves extremely412

time consuming.413

Table 4: Solution summary for Problem 3.
IPOPT CONOPT MINOS SNOPT PP(β=0) PP(β=1) PM(β=0) PM(β=1)

CPU (s) 0.4 0.25 0.26 0.61 54.8 97.8 0.55 8.8
Memory (Mb) 0.4 1.8 2.1 1.6 31.5 39.6 21.2 22.7

Nfun 152 NA 385 4406 12692 936 7866
Iterations 33 71 42 233 - - - -

Integration steps - - - - 4751 6490 1151 2507
Obj −121.1 10.0 INFb −121.1 −118.9 −118.9 −120.2 −71.3
‖h(x)‖ 6.4 · 10−7 0 2.9 1.1 · 10−12 8 · 10−6 1.9 · 10−6 1.6 · 10−9 3.7 · 10−11

Merit Function NAc NAc NAc NAc 1.0 · 10−6 1.0 · 10−6 1.0 · 10−6 1.0 · 10−6

aNot reported by GAMS CONOPT. bSolver reports an infeasible solution. cDefault values in GAMS were used

Using the solution obtained with PM(β = 1) scheme as a starting point, CONOPT declares the414

initial point as feasible after two iterations and finds the optimal solution in 18 iterations. Starting415

from the solution given by PM(β = 0), CONOPT reports a feasible solution in two iterations and416

an optimal solution in 19 iterations. Although, MINOS fails in finding a feasible solution from the417

starting point given in Table 3, it reports an optimal solution after 12 iterations starting from the418

solution provided by PM(β = 1) and in 10 iterations when starting from PM(β = 0).419

Therefore, the GF formulations presented in this paper result useful as an initialization method420

for this highly infeasible problem. It is important to stress that the commercial solvers only fail in421
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the initial point reported in Table 3 and in other highly infeasible starting points, while they are422

able to solve the problem to optimality for most initial points.423

3.1.4. Problem 4424

This problem corresponds to the simplified alkylation process presented in Berna et al. [32],425

including 14 continuous variables, 1 linear constraint, 5 nonlinear constraints and a nonlinear ob-426

jective function. Bounds for variables are shown in Table 5.427

min
x
−6.3x4x7 + 5.04x1 + 0.35x2 + x3 + 3.36x5 (75)

subject to:
x4 − (x1 + x5)/1.22 = 0 (76)

0.98x3 − x6(x4x9

100 + x3) = 0 (77)

10x2 + x5 − x1x8 = 0 (78)
x4x11 − x1(1.12 + 0.13167x8 − 0.0067x2

8) = 0

0.8635 + (1.098x8 − 0.038x2
8)

100 + 0.325(x6 − 0.89)− x7x12 = 0 (79)

35.82− 22.2x10 − x9x13 = 0 (80)
− 1.33 + 3x7 − x10x14 = 0 (81)

Table 5: Bounds and initial conditions for Problem 4.
xL xU xL xU

x1 0.0 2 x8 3.0 12.0
x2 0.0 1.6 x9 1.2 4.0
x3 0.0 1.2 x10 1.45 1.62
x4 0.0 5 x11 0.99 1.01
x5 0.0 2 x12 0.99 1.01
x6 0.85 0.93 x13 0.90 1.11
x7 0.90 0.95 x14 0.99 1.01

Problem 4 can be solved to optimality by every conventional NLP solver, and also by all the428

GF formulations proposed in this work (see Table 6) with demanded values of the merit function429

below 10−5 and 10−6for PP and PM formulations. CPU time are smaller and RAM memory usage430

are generally larger for GF formulations, except when compared to IPOPT.. As shown in Table 6,431

the algorithm proposed by Wang and coworkers fails in achieving a solution, even for a small value432

of the integration step.433
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Table 6: Solution summary for Problem 4.
IPOPT CONOPT MINOS SNOPT PP(β=0) PP(β=1) PM(β=0) PP(β=1) WA (h = 10)

CPU (s) 0.3 0.29 0.29 0.25 0.45 0.13 0.15 0.25 1612.08
Memory (Mb) 22.9 1.7 2.1 1.6 6.5 5.6 13.5 11.5 0.2

Nfun 79 NAa 316 192 1981 1955 2785 -
Iterations 15 19 13 22 - - - - 104

Integration steps - - - - 1081 835 1109 1070 -
Obj −1.765 −1.765 −1.765 −1.765 −1.765 −1.765 −1.765 −1.765 −9.7 · 106

‖h(x)‖ 8.3 · 10−9 4.7 · 10−9 2.5 · 10−11 4.3 · 10−8 6.3 · 10−5 8.2 · 10−7 1.9 · 10−9 6.4 · 10−12 5.6 · 106

Merit Function NAb NAb NAb NAb 1.0 · 10−5 1.0 · 10−5 1.0 · 10−6 1.0 · 10−6 1.3 · 107

aNot reported by GAMS CONOPT. bDefault values in GAMS were used

3.1.5. Problem 5434

Problem 5 was adapted from Wang et al. [23], where only seven variables were considered. In435

this work, the problem was modified to accommodate an arbitrary number of variables (nv) while436

maintaining its qualification as a constrained concave programming problem. The problem has437

multiple local minima and a global minimum of −1.0.438

min
x
−

nv∑
i=1

x2
i (82)

subject to:
nv∑
i=1

xi − 1 + slack = 0 (83)

0 ≤ x1 ≤ 0.8 (84)
slack ≥ 0 (85)
0 ≤ xi ≤ 1; i = {2, ..., nv}

For all solvers, the initial point was taken as xi = 0.5, i = {1, ..., nv}. Table 7 shows the solution439

of the problem for 50 to 600 variables using conventional NLP solvers and the GF formulations440

introduced in this work when integration was stopped after the merit function achieves values lower441

than 10−6. Using the algorithm presented by Wang et al. [23], only problems with 50 and 100442

variables were solved in less than 3600 CPU seconds. Every conventional solver reports a feasible443

solution, however, all fail to find the global minimum as they are all local solvers. Although the GF444

formulations presented in this work find the globally optimal solution of this problem with multiple445

local minima, there is no theoretical reason to support this behavior. Moreover, using a different446

starting point the commercial solvers also achieve the global solution for this problem.447

The CPU time required by GF formulations is competitive with the commercial solvers for 50448

and 100 variables but for a large number of variables, commercial solvers find a local optima for the449

problem using less CPU time and RAM memory. Considering that the commercial solvers represent450

the state of the art , rely on extensive preprocessing of the problem to achieve an efficient solution451
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and are coded on a faster platform, this is an expected result.452

We point the reader’s attention to the fact that the GF formulation proposed in this work453

are implemented using Mathematica NDSolve, a general purpose algebraic solver. This explains454

the increase in RAM memory usage, as NDSolve stores the solution of the problem as polynomial455

splines. Clearly, an algorithmic implementation of the GF formulations, where the trajectories are456

not stored, will consume less RAM memory. Despite the difference in performance as the number457

of variables increase, the GF formulations presented in this work achieve optimal solutions with458

sharp constraint satisfaction.459

As shown in Table 7, the algorithmic implementation of the GF formulation proposed by Wang460

and coworkers also achieves an optimal solution, however the CPU times required are several hun-461

dred times larger.462
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Table 7: Solution summary for Problem 5 .
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Figure 4 shows the value of the constraint as integration proceeds for increasing values of α463
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(panels A to C) and the values of the objective function (panel D). As it can be seen, constraint464

satisfaction when the maximum number of integration steps was limit to 2000 units depends on465

the value of α, at least for formulations PP (β = 0) and PP (β = 1). For example, Panel A shows466

that formulation PP (β = 0) achieves a constraint satisfaction in the order of 10−2 at the end of467

integration, requiring nearly 2000 integration steeps. However, this does not mean that formulation468

PP (β = 0) is unable to produce sharp constraint satisfaction. In fact, as shown in Table 7, a469

constraint satisfaction of 9.3 · 10−8 can be attained using a longer integration time (controlled by470

demanding a value of the merit function smaller than a certain threshold, 10−6 for this problem)471
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Figure 4: Constraint satisfaction for Problem 5 (with nv = 100) for α = 1(panel A), α = 10 (panel B) and α = 1000
(panel C). Panel D shows the value of the objective function for the Gradient Flow formulations with α = 1.
Integration time was set to 500 units.

As shown in Figure 4, once a feasible point is achieved (for example ‖h(x)‖ = 10−12 in panel C472

for formulation PM) the trajectory of the ODE system does not remain feasible, unlike the Gradient473
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Flow approach presented by Wang et al. [23] for the solution of NLP problems (see Section 2.3).474

3.2. Optimal control problems as NLP problems475

3.2.1. Problem 6476

Problem 6 corresponds to the determination of the optimal acceleration along time such that477

the total travel time is minimized for a car, subject to a path constraint (speed should be less than478

10 units), final point constraint (distance should be equal to 300 units (y2 = 300)), final velocity479

should be zero (y1 = 0) and bounds for acceleration. The optimal control problem is defined by480

min
tf ,u

tf (86)

subject to:
y′1(t) = u(t) (87)
y′2(t) = y1(t) (88)
y1(t) ≤ 10 (89)
y1(tf ) = 0 (90)
y2(tf ) = 300 (91)
− 2 ≤ u(t) ≤ 1
0 ≤ tf ≤ 50 (92)

Using the Euler backward difference formula, the optimal control problem can be written as a481

finite dimensional NLP problem:482

min
tf ,u

tf (93)

subject to:

y1,i − y1,i−1 −
(
tf
nh

)
ui = 0 (94)

y2,i − y2,i−1 −
(
tf
nh

)
y1,i = 0 (95)

y1,0 = 0 (96)
y2.0 = 0
y1,nh = 0 (97)
y2,nh = 300 (98)
0 ≤ yi ≤ 10; i = {0, 1, ..., nh} (99)
− 2 ≤ ui ≤ 1; i = {0, 1, ..., nh} (100)

where nh is the number of integration elements. For PP it was necessary to reduce the α value to483

10, while the value of this parameter for formulation PP was maintained in 103.484

Results are presented in Table 8 showing that every conventional NLP solver achieved an optimal485

solution for 5 and 20 intervals. Formulation PP (β = 1) was unable to achieve the optimal solution486
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as the integration terminated when the penalty parameter value exceeded 1012. On the other hand,487

formulation PM achieves feasibility and locally optimal solutions for 5 and 20 intervals in a fraction488

of the time required by the PP formulation. Still, the time consumed by the PM formulation to489

attain the solution of the problem is larger compared to the one required by CONOPT or other490

commercial NLP solvers. Using the algorithm presented by Wang et al. [23], WA with h = 10−5and491

τ = 1000 for nh = 5, no solution was attained after 1000 iterations and 7492 CPU seconds, reaching492

a merit function value equal to 7.9 · 105 with very slow progress towards constraints satisfaction.493

Table 8: Solution summary for Problem 6. The set of ODEs generated by the schemes PM(β = 1) and PM(β = 0)
were solved in MATLAB.

nh = 5 nh = 20 nh = 5 nh = 20
IPOPT, CPU (s) 0.8 1.1 CONOPT 0.7 0.7

Memory (Mb) 22.3 29.2 Memory (Mb) 0.6 2.1
Iters 14 16 Iters 20 63
Obj 39.56 37.62 Obj 39.64 37.62
‖h(x)‖ 1.0 · 10−11 3.1 · 10−11 ‖h(x)‖ 0 0.00

MINOS, CPU (s) 0.9 0.46 SNOPT 0.5 0.7
Memory (Mb) 2.0 2.1 Memory (Mb) 0.7 0.9

Iters 51 88 Iters 23 109
Obj 39.56 37.62 Obj 36.56 37.62
‖h(x)‖ 2.8 · 10−14 3.2 · 10−7 ‖h(x)‖ 1.6 · 10−7 9.1 · 10−8

PP (β = 0), CPU (s) 0.77 272.6 PP (β = 1) 2.06 310.1
Memory (Mb) 72.3 344.4 Memory (Mb) 10.4 425.4

Nfun 17648 17205 Nfun 14572 26905
Integration steps 8935 10195 Integration steps 7340 13551

Obj 49.97 Obj 50 50.1
‖h(x)‖ 2.1 · 10−6 3.5 · 10−7 ‖h(x)‖ 2.4 · 10−8 0.60

Merit function 1 · 10−6 9.93 · 10−7 Merit Function 8.9 · 10−7 168.1*
PM(β = 0), CPU (s) 0.64 12.1 PM(β = 1, α = 1) 1.6 15.1

Memory (Mb) 28.0 39.2 Memory (Mb) 76.4 13.0
Nfun 2897 16760 Nfun 8527 20683

Integration steps 1662 7970 Integration steps 4637 10431
Obj 50 37.62 Obj 50 37.62
‖h(x)‖ 2.1 · 10−6 9.3 · 10−6 ‖h(x)‖ 3.4 · 10−13 3.7 · 10−6

Merit function 1.0 · 10−6 1.0 · 10−5 Merit function 1.0 · 10−6 1.0 · 10−5

* Integration stops when M > 1012.

In Table 8 the system of differential equations PM(β = 1) reaches the demanded value for the494

merit function after 10431 integration steps reporting a local optimum. However, if the integration495

is allowed to continue and smaller values of α are used, a feasible point is achieved after 2500496

integration steps, and after several integration steps where the value of the objective function497

remains fixed, it starts decreasing towards the optimal value. When the norm of the constraint498

vector is plotted against the number of integration steps for PM(β = 1) and nh = 20, a behavior499

similar to Problem 5 is observed (compare figures 4 and 5). Interestingly, smaller α values require500

fewer integration steps to move from the plateau value of 50 units of time to the globally optimum501

value reported by the commercial solvers. This can be explained by the stiffness caused by large α502
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values.503
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Figure 5: Norm of the constraints vector in Problem 6 (with nh = 20) as the integration proceeds (as number of
integration steps) for increasing values of α. Integration time was set to 500 units.

3.2.2. Problem 7504

Problem 7 corresponds to the maximization of the harvested amount of a biological resource,
provided this resource grows as time passes. The growth rate is assumed to be proportional to the
amount of the resource present at a given time. The optimal control problem is defined by
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min
u
−
ˆ tf

0

√
u(t)dt (101)

subject to:
x′(t) = (ϕ− 1)x(t)− u(t) (102)
x(0) = x(tf ) (103)
x(t) ≥ 0 (104)
u(t) ≥ 0 (105)
0 ≤ t ≤ tf (106)
x(0) = x0 (107)

where x(t) is a scalar function representing the amount of a biological resource, (ϕ− 1) > 0 is the505

growth rate and u(t) is the amount of the resource extracted at a given time. Moreover, the problem506

demands that the amount of resource at the final time be equal to its initial amount. By using a507

discretization in time of 1 unit, the problem can be rewritten as the following finite-dimensional508

NLP problem [33]:509

min
uk
−
N−1∑
k=0

√
uk (108)

subject to:
xk+1 = ϕxk − uk (109)
x0 = xN (110)
0 ≤ uk ≤ uUk ; k = {0, 1, ..., N} (111)
0 ≤ xk ≤ xUk ; k = {0, 1, ..., N} (112)

The optimal value of the NLP problem represented by equations 108 to 112 is known analytically510

to be [33] given by511

512

J∗ =

√
xini(ϕN − 1)2

ϕN−1(ϕ− 1) (113)

513

The optimal control problem was solved for N with values of 10, 20, 30 and 50, xini = 1514

and ϕ = 1.1. For PP (β = 0) and PM(β = 0), α was set as 104 while for PM(β = 0) and515

PM(β = 1), α was set as 102. The systems of ODEs were integrated until the merit function value516

was less than 10−6. The upper bounds for the amount of resource (xUk ) and control variable (uUk )517

need to be increased as N increases. Hence, for values of N = {10, 30, 50}, xUk = {2, 5, 30} and518

uUk = {1, 2, 10}for every k.519

Table 9 shows the computational results for this case study. Solvers MINOS and SNOPT report520

infeasible solutions for every value ofN , despite the problems having a moderate number of variables521

(2 · N). CONOPT and IPOPT achieve the optimal solution values, −3.282 for N = 10, −13.060522

for N = 30 and −35.629 for N = 50. GF formulations achieve between 98.2% to 100% of the523
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optimal solution with excellent constraint satisfaction, especially for PM(β = 0) and PM(β = 1)524

formulations.525

Table 9: Solution summary for Problem 7.
N = 10 N = 30 N = 10 N = 30

IPOPT, CPU(s) 0.32 0.30 CONOPT 0.23 0.25
Memory (Mb) 30.8 31.0 Memory (Mb) 1.8 1.9

Nfun 54 74 Iters NAa NA
Obj −3.282 −13.060 Obj −3.282 −13.060
‖h(x)‖ 1.0 · 10−11 1.0 · 10−11 ‖h(x)‖ 2.2 · 10−16 3.6 · 10−8

PP (β = 0), CPU(s) 0.23 0.81 PP (β = 1) 0.14 0.66
Memory (Mb) 9.0 28.7 Memory (Mb) 8.2 34.9

Nfun 1680 2398 Nfun 1801 3060
Integration steps 853 1075 Integration steps 902 1360

Obj −3.281 −13.061 Obj −3.282 -13.061
‖h(x)‖ 9.4 · 10−7 4.8 · 10−7 ‖h(x)‖ 8.4 · 10−7 3.4 · 10−7

Merit function 1.0 · 10−6 1.0 · 10−6 Merit function 1.0 · 10−6 1.0 · 10−6

PM(β = 0), CPU(s) 0.078 0.55 PM(β = 1) 0.12 0.68
Memory (Mb) 7.3 45.2 Memory (Mb) 12.9 58.3

Nfun 678 2083 Nfun 1293 2701
Integration steps 363 956 Integration steps 684 1207

Obj −3.282 −13.060 Obj -3.282 -13.060
‖h(x)‖ 6.2 · 10−9 1.8 · 10−9 ‖h(x)‖ 8.3 · 10−10 1.7 · 10−10

Merit function 1.0 · 10−6 1.0 · 10−6 Merit function 1.0 · 10−6 1.0 · 10−6

aNot reported by GAMS CONOPT. bSolver reports an infeasible solution

An attempt to use the algorithm presented by Wang et al. [23], WA, to solve this problem with526

N = 10 was undertaken. After a systematic search of τ and integration step values (h), the values527

producing the best solution were τ = 1000 and h = 0.001. The algorithm achieves a merit function528

value of 0.66, objective function value of -5.2 and norm of the constraint vector equal to 1.2 · 10−4
529

in 1797 CPU seconds and 3000 iterations.530

Figure 6 shows the progress of merit function and constraint satisfaction as well as the obtained531

solution for the amount of resource and the control variable. Panels C and D show the trajectory532

of the state and control variables. Trajectories produced using formulation PM(β = 1) are slightly533

different compared to those obtained using CONOPT or IPOPT, which explains the near optimal534

objective function value calculated for PM(β = 1) and N = 30 in Table 9.535

Summarizing our results, the case studies show that the GF approach presented in this work536

is faster, in terms of CPU time, compared to a previously reported GF formulation [23], which is537

representative of a family of formulations used to transform NLP problems to a system of ODEs,538

and requires fewer function evaluations and integration steps (WM implementation versus PP and539

PM schemes). This family of formulations makes extensive use of the inverse matrix [J(x)JT (x)]−1,540

introducing a computational overhead that it is eliminated in our formulations thanks to a simpler541

approach to penalizing functions. Moreover, in the GF formulation reported by Wang et al. [23] a542

penalty parameter τ has to be tuned for each problem, and for the algorithmic version of the GF543

scheme reported bythe authorsnot only τ has to be tuned for each problem but also the integration544

step of the backward Euler’s scheme (h). Results obtained for Problem 2 show that in WM method,545
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Figure 6: Progress towards the solution as integration proceeds for Problem 7.Merit function for Problem 7 (with
N = 30, panel A) , norm of the constraints vector value (panel B), Panels C and D show the trajectory of the state
variables (x(t), representing the amount of resource) and control variable (u(t), amount of resource extracted at a
given time) for N = 30.

selection of τ plays a critical role, while low values produce slow converge, too high values produce546

a very stiff system of ODEs. For problem 4, 5, 6 and 7 WA scheme fails to reach a solution for547

the problem. For these problems, the reported solutions correspond to the best solution achieved548

after testing several combination of h and τ values, being the best ones obtained for low values of549

h and high values of τ , however, the low h values produce a slow convergence, a result that can be550

expected from the analysis presented by Wang et al. [23], who claims a linear rate of convergence551

for small h values. The GF schemes presented in this work successfully avoid this issues by using a552

self-tuning approach of the penalty parameters.553

In our approach, the solution of the problem is approached from the exterior of the feasible554

set at every step, except when the optimal solution is attained. This in turns allow the use of555

conventional slacks to bound variables. Compared to the state-of-the-art NLP solvers used in this556

work as benchmark, the proposed GF formulation remains competitive for problems with less than557

one hundred variables, being especially useful for problems with highly non-linear constraints, either558

as a solution or an initialization method.559
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4. Conclusions560

This work presents a novel Gradient Flow formulation for the solution of nonlinear optimization561

problems with equality and inequality constraints. The proposed schemes were shown theoretically562

to converge (asymptotically) to a local minimum of the original problem under conventional as-563

sumptions on the objective function and constraints. These formulations were theoretically and564

numerically compared to other reported Gradient Flow formulations for the solution of nonlin-565

ear constrained optimization problems, showing that the proposed formulations outperforms the566

reference method in terms of computational time and the size of problems that can be solved. More-567

over, the self-tuning nature of the proposed approach reduces the numerical problems introduced568

by increasing the value of the penalty parameter.569

Numerical experiments using a set of seven specially selected problems, ranging from 3 to 600570

variables, show that the proposed schemes are robust and converge to feasible points and local571

minima, irrespective of the choice of the value of parameter α used in the formulations, due to the572

self-tuning properties of the penalty parameters introduced in this work.573

Moreover, results suggest that, for the set of problems analyzed, the GF formulations were able574

to find the optimal solution to problems where conventional NLP solvers fail. Primarily this is due575

to the fact that constraints are not linearized at intermediate iterations, with the solution being576

approached from the exterior of the feasible set.577

As shown by the computational experiments, the GF formulations presented in this work achieve578

feasibility for problems with difficult nonlinear constraints. The combined multiplier and penalty579

approach in formulation PM provides solutions in shorter times and with sharp constraint satis-580

faction for almost every problem compared to the other GF formulations presented and compared581

in this work.582

Most likely, if a customized integrator were used to solve the ODE systems produced by this and583

the other GF formulations, solution times and the number of function evaluations and iterations584

will be significantly reduced.585

Future work includes an algorithmic implementation of the formulations presented in this work586

using a customized integrator and the exploration of the possibility of exploiting the special structure587

of the linear constraints and bounds as to reduce the ODE system size, for example incorporating588

the ideas presented in Schropp and Singer [24] and Shikhman and Stein [34], that might allow the589

decoupling of the original variables from the variables used to enforce bounds, thereby reducing the590

size of the dynamical system.591
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