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Abstract

The variability challenge inherent in the design and sizing of stand-alone renewables-based energy systems
incorporating storage is addressed at the design stage. The framework developed for reliability evaluation
combines the stochastic modelling of renewable resources with chronological simulation of energy system
performance for the evaluation of system reliability. The e�ect of inter-year variability is quanti�ed by using
a modi�ed form of the loss of power supply probability as the reliability objective. A bi-criteria problem
of capital cost minimization and reliability maximization is solved for two cases of remotely-located mining
operations in Chile and Canada to demonstrate the capabilities of the methodology. Approximations to the
Pareto-optimal fronts generated using a multi-objective genetic algorithm (NSGA-II). The performances of
the minimum-cost designs generated are investigated in each case. The methodology provides the decision
maker with necessary information about a number of alternative designs based on which sizing decisions may
be made.
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1. Introduction1

Mining operations are often located in geographically remote regions of the world where grid electricity is2

unavailable. Such mines are typically run on diesel generators, with the fuel transported over large distances3

to the mine location. Problems with greenhouse emissions, fuel transport safety and the ever-�uctuating4

cost of fuels have driven mining operations to seek alternative sources of energy. Local generation from5

renewables is a possible solution to the energy problem (Paraszczak and Fytas, 2012). However, doubts6

exist about renewables-based energy systems due to the variable and intermittent nature of the resources,7

and these doubts have limited their use as the main source of energy in large-scale continuous processes.8

Storage integration has been identi�ed as a solution to the variability and generation-demand imbalance9

challenges(Bermudez et al., 2014). Because of the stochastic nature of the solar and wind resources which10

in�uences the resulting energy production, power system reliability assessment is an important step in any11

system design process (Yang et al., 2008).12

Reliability refers to �the ability of power system components to deliver electricity to all points of consumption,13

in the quantity and with the quality demanded by the customer �(Osborn and Kawann, 2001). It is a measure14

of the frequency, duration and extent to which a power system experiences failure (i.e. unable to satisfy load15

demand) and therefore provides a basis on which the performance of di�erent types of energy systems may16

be compared. A reliable power system is one that can supply su�cient power to satisfy the load demand17

over a certain time period. The problem of designing energy systems for o�-grid mining therefore requires18
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the identi�cation of appropriate combinations of both generating and storage technologies which minimize19

the cost of energy system while satisfying certain reliability requirements.20

Several works in literature incorporate the reliability concept in the design of stand-alone hybrid energy21

systems (Yang et al., 2008; Tina and Gagliano, 2008; Diaf et al., 2008; Yang et al., 2009; Al-Shamma'a22

and Addoweesh, 2014; Kaabeche and Ibtiouen, 2014). Some of the works consider reliability as a constraint23

in systems design and sizing (Tina and Gagliano, 2008; Yang et al., 2009; Al-Shamma'a and Addoweesh,24

2014), while others treat reliability as one of the objectives in multi-criteria problems, generating Pareto-25

optimal solution sets. Chauhan and Saini (2014) present a review of literature on the design of stand-alone26

renewables-based power systems. Of particular interest are the works which consider cost-reliability multi-27

objective design with reliability as one of the objectives.28

The multi-objective design of a hybrid PV-wind-battery system for cost and reliability was considered by29

Yang et al. (2008). The cost was modelled as an annualized cost of system (ACS), while the reliability30

was represented as a loss of power probability (LPSP). Diaf et al. (2008) considered the sizing of a similar31

standalone hybrid system for Corsica Island, with the cost model based on the levelized cost of electricity32

(LCOE). The work by Ould Bilal et al. (2010) considered the e�ect of the load demand pro�le on the design33

of hybrid PV-wind-battery systems. The ACS and LPSP were considered as objectives, with the bi-criteria34

problem solved using a genetic algorithm. The triple multi-objective design of an isolated hybrid system35

integrating PV-wind-diesel generation with hydrogen and battery storage was investigated by Dufo-Lopez36

and Bernal-Agustin (2008). The work considered the minimization of the net present cost (NPC) of the37

energy system, CO2 emissions and the unmet load (kWh/year), and presented 2D and 3D representations of38

the Pareto fronts. Abbes et al. (2014) also considered the triple multi-objective design of a PV-wind-battery39

system for cost, reliability and environmental impact using a genetic algorithm. The cost was represented40

by a life cycle cost (LCC), while the LPSP was considered as the reliability measure.41

A survey of the literature reveals that most of the work done so far involving storage has been geared towards42

the design of electricity-based renewables generation systems (PV/wind) and are based on �xed renewable43

input conditions. The reliability objectives implemented in these works represent the performance of the44

energy system within a �xed time period (typically one year, 8760 h). In reality, renewables are variable:45

no two years have exactly the same amount of wind or solar radiation. While probabilistic approaches to46

reliability evaluation have been developed by some researchers to account for renewables variability in the47

sizing of PV-wind systems (Tina et al., 2006; Khatod et al., 2010), the approaches do not extend to the sizing48

of systems involving storage (Chauhan and Saini, 2014). We have previously shown (Amusat et al., 2016)49

that variability can have a signi�cant e�ect on the cost and performance of energy systems incorporating50

storage and therefore must be accounted for at the design stage.51

Here, we address the variability challenge inherent in the sizing of complex renewables-based energy systems52

by developing a methodology which accounts for inter-year variability at the design stage in the form of53

a reliability objective in a bi-criteria design problem. It extends our previous work (Amusat et al., 2016)54

in which a two-step approach was adopted in evaluating the e�ect of variability: �optimal� designs were55

�rst generated under deterministic input conditions and then stochastically analysed under a number of56

potential renewable input scenarios to obtain a measure of performance. The cost and reliability objectives57

were thus treated sequentially rather than simultaneously. While this sequential approach enabled us to58

gain an understanding of the impact of inter-year variability on design sizing and performance, it has the59

potential to generate too few points and miss solutions of interest along the Pareto frontier for high variability60

systems. This, combined with the tractability challenges encountered in applying the methodology to full-61

year problems (only consecutive winter days were considered in the original work), make the approach62

unsuitable for decison making. This work seeks to overcome these shortcomings by developing a framework63

which allows the full Pareto front to be identi�ed based on a full year of simulation, thereby providing insight64

on system performance based on which sizing decisions can be made.65

2. Energy System Description66

Consider an integrated energy system for an remotely-located mining operation with two generation and67

three storage options, as shown in Figure 1.68
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Figure 1: Proposed integrated energy system for mining operation. The solid black lines lines show the possible electricity
network while the broken red lines represent heat.

The photovoltaic system consists of solar modules coupled with inverters. The solar modules convert energy69

from the sun into direct current, while the power-point tracking inverters convert from direct to alternating70

current. Concentrated solar power (also called power towers, PT) generate heat from the direct portion of71

solar radiation. The power tower consists of two major components: sun-tracking heliostats and an absorber.72

The heliostats re�ect energy from the sun onto the absorber, where the energy is collected as heat. The73

thermal energy generated by the tower is transferred to molten salts, with the hot salt used for electricity74

generation through heating of steam for a turbine. Excess energy generated by either storage option is stored75

for use in times of insu�cient generation.76

Two technically mature options are available for the large scale storage of excess electricity and with large-77

scale deliverability (greater than 10 MWe): pumped hydraulic energy storage (PHES) and advanced adiabatic78

compressed air energy storage (AA-CAES). Molten salt tank storage (MTS) is employed for the storage of79

any excess thermal generation. The methodology can be extended to include new storage technologies which80

may become available subsequently.81

The plant must meet both thermal and electrical demands. The integrated energy system allows for the82

electrical demands of the process to be met directly from the PV system or from any of the storage options,83

while the thermal demands of the plant can be met from only the AA-CAES or molten salt systems.84

For the system described above, the aim is to identify the trade-o�s between cost and reliability for energy85

system designs which are required to meet thermal and electrical demands while taking into account possible86

inter-year variability in renewables availability at the location. The �rst stage of the problem is therefore to87

develop a reliability measure suitable for this purpose.88

3. Accounting for Inter-year Variability: Modi�ed loss of power supply probability, LPSPm89

Power reliability analysis is an important step in any system design process involving renewables genera-90

tion due to the variable nature of the resources. It provides information on generation-demand balancing91

(Chauhan and Saini, 2014). Several alternative measures for representing the reliability of energy systems92

exist, such as the energy index of reliability (EIR), the loss of power supply probability (LPSP) (Al-Shamma'a93

and Addoweesh, 2014; Yang et al., 2009), and the expected energy not supplied (EENS) (Tina et al., 2006;94

Chauhan and Saini, 2014). However, none of these measures can be used directly to account for variability95

between years. An enhanced reliability measure is required to include inter-year variability in the assessment96

of alternative designs.97

The new measure is based on the conventional loss of power supply probability. The loss of power supply98

probability is de�ned as the probability that insu�cient energy supply occurs when a hybrid energy system99
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is unable to satisfy the load demand (Yang et al., 2003). It is a measure of the frequency of power system100

failure and has been used extensively (Al-Shamma'a and Addoweesh, 2014; Yang et al., 2009). The higher101

the value of the LPSP, the more likely it is for a design to fail.102

Conventionally, (Al-Shamma'a and Addoweesh, 2014)103

LPSP =

∑T
t=0 PFT

T
(1)

where T is the number of hours of the study and PFT , power failure time [h], is the total time that the104

energy system is unable to satisfy demand. For the discrete system,105

LPSP =

∑nt

τ=0 PFT
′

nt
(2)

where PFT ′ refers to the number of discretized time intervals in which the energy system is unable to satisfy106

demand. Equation 2 gives the frequency of failure within a given time period. This de�nition takes into107

account only one time period of evaluation (usually one year = 8760 h). In order to account for inter-year108

variability, the formula must be modi�ed to account for multiple time periods.109

We propose a new measure in which the reliability between years is measured in terms of the probability of110

satisfying a preset primary (within-year) reliability constraint. Consider N years of renewable input data for111

a given location. Each of the N years is considered as a potential input scenario for which the performance112

of the energy system is evaluated. A design is said to have failed in a given scenario if the reliability within113

the scenario is worse than an allowable threshold R′. Based on this, the modi�ed version of the loss of power114

supply probability, LPSPm, is:115

LPSPm =
Number of scenarios in which design fails (Ri < R′)

Total number of scenarios
=
N |Ri<R′

N
(3)

where Ri < R′ is the preset reliability condition (or internal constraint) which determines whether the116

performance in a given scenario is acceptable or not. Equation 3 incorporates two reliability measures: the117

primary reliability measure Ri, which forms part of the internal constraint and represents the expected level118

of performance within the year, and a secondary reliability measure LPSPm which represents expected119

performance between years.120

The modi�ed LPSP measure is the frequency with which the set internal reliability constraint is violated by121

the design. The performance of the energy system in each input scenario is binary; it either fails or succeeds.122

As such, the output is probabilistic irrespective of the type of internal constraint implemented. The internal123

constraint sets the threshold performance for the designs to be generated as each design with LPSPm < 1124

will have satis�ed the constraint at least once.125

The design reliability is a function of the threshold R′: as the constraint is tightened by increasing R′, the126

value assigned to the reliability of a given design will decrease. However, the modi�ed LPSP does not account127

for the degree of failure: a design which fails by 1% in a scenario is no di�erent from a design which fails by128

20%, for example. The internal (intra-year) reliability constraint may be based on any of the conventional129

reliability measures.130

The measure provides information about design performance between (rather than within) scenarios. For131

example, a value of LPSPm = 0.1 for the reliability measure132

LPSPm =
N |EIR<80%

N

indicates that the design evaluated will only fail to meet at least 80% of the demands in 10% of input scenarios.133

Thus, both the internal and secondary reliability measures (which represent the system performance within134

and between scenarios) can be modi�ed at the design stage, making the measure attractive. When considered135

as an objective in a bi-criteria problem, the resulting designs will have di�erent probabilities of satisfying136

the constraint Ri < R′.137

The conventional loss of power supply probability (Equation 2) is considered as an internal constraint; it138

is the most frequently used measure of reliability within years (Chauhan and Saini, 2014). Given that the139
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aim is to achieve full demand satisfaction for the mine from local generation, the designs generated must be140

capable of operation without external energy support (LPSP = 0). Thus, Equation 3 may be rewritten as141

LPSPm =
N |LPSP>0

N
(4)

This is the measure that will be used in this work, which allows us to examine how frequently a given design142

will meet the required yearly performance given the potential variability in renewable energy generation at143

the location. To evaluate the measure however, two things are required: a way to generate multiple solar144

input scenarios which re�ect the degree of variability at the location of the plant, and an energy system145

model to evaluate system performance for the whole year for any given input condition. These will be the146

focus of the next three sections.147

4. Solar radiation modelling and synthetic data generation148

The accuracy of the results obtained with the reliability measure described above will depend on the number149

of input scenarios considered. Large amounts of chronological data may be required to produce accurate150

and consistent results. In some cases, all the required data may be available in the form of historical151

measurements. However the historical data available are often insu�cient or incomplete, and part (or all)152

of the input data must be obtained by some other means. For such cases, we need to be able to generate153

synthetic data with properties similar to what would be observed at the mine location. One way to do this154

is to base the synthetic data on the properties of the available historical data.155

Photovoltaics require global horizontal irradiance (GHI) for power generation. Most meteorological stations156

collect instantaneous GHI data, typically hourly or half-hourly. For the location of interest, the available157

GHI data is collected and grouped into monthly data. For each month, the statistical properties of the data158

(mean, variance, skewness and kurtosis) at each time step are determined. Grouping into months allows us159

to have a su�cient number of data points to develop an adequate stochastic representation of variability at160

the location. It also minimizes the e�ect of errors and outliers as the dataset is larger.161

4.1. Generation of yearly GHI pro�les162

An in-built MATLAB function pearsrnd, which determines the most appropriate distribution type and163

generates random data based on input statistical properties, was used in the generation of of yearly solar164

radiation data. The function is based on the Pearson family of distributions (Pearson, 1916) which consists165

of seven distribution types that cover the entire kurtosis-skewness region (Lahcene, 2013). While the mean166

and standard deviation provide information about the spread of the data, the skewness and kurtosis provide167

information about the shape of the required probability distribution.168

Since the statistical properties of the historical data are evaluated on a monthly basis, a decision must be169

made on how the yearly data is generated. Two possible alternatives are:170

1. Prediction of one solar pro�le for each month. With this technique, all days of the month are modelled171

to have exactly the same solar pro�le. The method assumes that all days of the month are similar to172

each other: the �rst day of January is similar to the thirty-�rst day, for example. For any given month173

with d days, the instantaneous GHI may be represented mathematically as174

.

G
tot

d,υ = f (gυ) d = 1; υ = 1, 2 . . . , ns
175

.

G
tot

d,υ =
.

G
tot

1,υ d = 2 . . . , ndays; υ = 1, 2 . . . , ns

where υ = 1, 2 . . . , ns are the discrete time periods for the statistical data, g is the vector of statistical176

inputs for the month, and ndays represents the number of days in the month.177

2. Prediction of di�erent daily solar pro�les. With this method, a di�erent solar pro�le is generated178

from the distribution for each day. This method assumes that the days of the month are completely179

independent of each other; availability on consecutive days of the month are not linked in any way (no180

trend). Mathematically,181

.

G
tot

d,υ = f (gυ) d = 1; 2 . . . , ndays; υ = 1, 2 . . . , ns
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Figure 2: Comparison of monthly values obtained from sim-
ulation to historical data. The rectangles show the monthly
means of the data obtained by simulation while broken line
connects the monthly means of the historical data. The error
bars show the range of values obtained from the model while
the grey area represents the range of the historical data.

Figure 3: Comparison of simulated to historical total yearly
solar radiation for Canada. The red and blue lines represent
the minimum and maximum totals obtained for 500 simulated
years. The black circles show the actual totals between 2005
and 2012. The range covered by the simulated data covers all
but one year.

In reality, while no two days are ever exactly the same, weather data typically exhibits a trend-like compo-
nent (consecutive cloudy days or an extremely sunny month, for example). As such, we consider a linear
combination of data generated from the two approaches in this work:

.

G
tot

1,υ = f (gυ) υ = 1, 2 . . . , ns
.

G
tot

d,υ = ωd ·
.

G
tot

1,υ + (1− ωd) · f (gυ) ωdε[0, 1]; d = 2 . . . , ndays; υ = 1, 2 . . . , ns

(5)

where wd is a weighting factor which determines how much trend is expected in the data. A value of wd = 0182

indicates that no trend is expected. A value of wd = 0.5 was selected for the generation of the synthetic183

radiation pro�les in this work, meaning that both the daily and monthly approaches contribute equally to184

the �nal pro�le. Thus, for each year to be simulated, two sets of data need to be generated (one with each185

method) and the corresponding values combined. One dataset provides individuality to all the days of the186

month. The other dataset provides a trend-like component, ensuring that days within the same month have187

some degree of similarity. This increases the chances of having events such as consecutive cloudy or sunny188

days. With this technique, we are able to retain the best properties of both schemes. However, no other189

steps were taken to explicitly account for extreme solar conditions in this work.190

The approach assumes that the solar radiation available in consecutive hours are independent:
.

G
tot

d,υ is not191

in�uenced by
.

G
tot

d,υ−1. Other more complex approaches which account for trends in consecutive hours and/or192

days could also be developed. The methodology is general and allows for other types of trends and properties193

to be added to the solar pro�les. Discretion was used in the choice of wd in this work. However, it can194

be chosen to re�ect the type of climate typically observed at the site of interest. For example, high values195

of wd (0.5 < wd < 1) could be selected for locations where the weather changes slowly and poor (or good)196

conditions typically last for a number of days or weeks. On the other hand, lower values of wd (0 < wd < 0.5)197

would be required for locations where poor weather conditions simply pass through and clear up rapidly.198

Figures 2 and 3 compare the properties of 500 sample simulated pro�les to historical data for Canada, a199

location with high variability in solar resource. The results indicate that the predictions obtained from the200

yearly simulations agree well with the historical data available both on the monthly and yearly basis. The201

methodology also gives good results for other locations such as Chile, where the maximum and minimum202

values obtained for the yearly solar radiation were within ±2% of those obtained from the historical data.203
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4.2. Generation of yearly DNI pro�les204

Direct Normal Irradiance (DNI) data are required to calculate the instantaneous output of the power tower.205

However, the DNI available at any time is related to the GHI and cannot be modelled independently. As206

such, models linking both types of solar radiation must be used. The Louche model was used in calculating207

the beam irradiation from the GHI (Amusat et al., 2016). The beam radiation is related to the DNI through208

the solar zenith angle (Du�e and Beckman, 2013).209

The GHI and DNI pro�les generated by this methodology form the input into an energy system model210

(described in the next section) for the evaluation of system performance.211

5. Energy system model212

Consider the energy superstructure shown in Figure 1. Any design of the energy system will be de�ned by213

the sizes of the di�erent generation and storage technologies within the superstructure. The sizes of the214

generation technologies i are de�ned in terms of their nominal capacities Cgeni [MW], whether electrical or215

thermal. For the storage technologies j, two components need to be considered: the amount of energy that216

the system can store, and the amount of power that the system can deliver. Electricity supply from storage217

requires the installation of mechanical equipment such as turbines for energy conversion, and these units218

have an impact on the cost of the energy system. The storage capacities Csj [MWh] and rated electrical219

discharge capacities Coutj [MW] of the technologies must therefore be sized separately in the optimization220

problem. From this, we see that any energy system design must be de�ned by three types of capacities,221

x =
{
Cgeni , Csj , C

out
j

}
∀i, j

The components must be sized to meet both the peak electrical and thermal demands of the plant. The energy222

used to meet thermal load demand from storage is available in thermal form, so no additional equipment223

needs to be sized. No additional design variables are required for the thermal load. The cost of supplying224

heat only needs to be accounted for in the sizing of the generation and storage capacities. The peak electrical225

demands however require the sizing of generation, storage and discharge units.226

Dynamic models describe the state evolution of the energy generation and storage sub-systems. The models227

rely on direct normal irradiance (
.

G
DNI

(t)) and global horizontal irradiance (
.

G
tot

(t)), which are generated as228

described in the previous section. Detailed information about the energy system models has been presented229

in previous works (Amusat et al., 2015, 2016).230

5.1. Model Implementation for yearly performance evaluation231

The di�erential-algebraic system of equations are discretised using Euler's forward di�erencing technique232

with a uniform time step ∆t. The di�erential equation system is not sti�, so an Euler discretisation is233

su�cient. The result of the Euler discretization is a system of algebraic equations, for with nt intervals,234

t ∈ [0, tfinal], and nt =
tfinal

∆t . τ = 0, . . . , nt is the subscript used to represent the time dependent variables235

in the discrete time domain.236

The discretized model for the hybrid energy system has been implemented in MATLAB 8.3 (MATLAB,237

2014).238

The model was implemented in a step-wise manner. For each input scenario, evaluation of system model239

comprises of the repeating following steps at each time interval τ :240

1. The outputs of the generation units
.

E
gen

i,τ are calculated. The portion of the thermal and electrical loads241

that could be satis�ed directly from the generation, as well as the excess generation, are determined.242

If shortfalls exist, go to step 2. If all demands have been satis�ed, go to step 4.243

2. The thermal and electrical outputs of the storage units are determined. Due to the number of storage244

options and energy routes available in the superstructure, the problem of the order in which the options245

are operated (charged and discharged) within the system must be addressed.246

Ideally, the order is determined at each time step to obtain the best overall performance of the system.247

In order to achieve this however, separate design variables for the charge and discharge phases would248
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be required for each time step. For example, a year of data with hourly discretization would require249

8,760 variables for the discharge phase, with each variable able to take up at least 6 possible values (3!250

combinations). The combinatorics involved would make such a problem intractable. To address this251

problem, an overall operating scheme (Algorithm 1) was developed for discharge phase.252

The implemented scheme prioritizes the satisfaction of thermal demands of the plant. This decision253

was made because of the fewer number of heat supply alternatives (PHES systems cannot supply heat)254

and the smaller heat requirements and the plant.255

Algorithm 1 Pseudocode for operating scheme implemented in energy system.

Given: Design speci�cations x =
{
Cgeni , Csj , C

out
j , OP

}
; demand requirements from storage

{
.

Q
th

τ ,
.

E
el

τ

}
.

Output: Storage outputs

{
.

Q
heating

j,τ ,
.

E
out

j,τ

}
; Power shortfalls

{
.

S
th

τ ,
.

S
el

τ

}
procedure Discharge sub-model

(a) Satisfy thermal demands

� Meet shortfall from MTS system
.

Q
heating

1,τ .

� Evaluate heating requirement shortfall
.

S
th

τ . If shortfall exists, try to meet from AA-CAES system
.

Q
heating

2,τ .

� Re-evaluate heating requirement shortfall
.

S
th

τ =
.

Q
th

τ −
.

Q
heating

1,τ −
.

Q
heating

2,τ .

(b) Satisfy electrical demands

� Evaluate storage outputs
.

E
out

j,τ as speci�ed by the operating scheme selected:

� If OP = 1, discharge storage in the order: AA-CAES - PHES - MTS.
� If OP = 2, discharge storage in the order: AA-CAES - MTS - PHES.
� If OP = 3, discharge storage in the order: MTS - AA-CAES - PHES.

� Evaluate electrical requirement shortfall
.

S
el

τ =
.

E
el

τ −
3∑
j=1

.

E
out

j,τ .

end procedure

Two factors were considered in determining the order in which the storage options are charged or256

discharged:257

� the form in which the energy is stored, and258

� the type of losses associated with the storage.259

For heat supply, the MTS system takes precedence over the AA-CAES system.260

For electricity storage, the discharge order of the PHES and AA-CAES systems is �xed based on261

the nature of the losses from the two systems. The PHES system only incurs losses (mechanical)262

when the system is being used. The AA-CAES system incurs losses whether the system is in use263

(mechanical losses) or not (thermal losses). Thus, when energy is available from both storage systems264

we have arbitrarily chosen to discharge the AA-CAES system �rst in order to minimize its thermal265

losses, irrespective of the mechanical e�ciencies of the two systems. It should be noted that this does266

not in�uence the selection of technologies: the two storage types can still be selected individually or267

together. The constraint only dictates the order of operation when both technologies are available.268

However, this decision will have an impact on the solution space of the problem, as will be discussed269

later.270

Three possible operating schemes for power supply from storage emerge once the order of discharge of271

the AA-CAES/PHES systems is constrained as described above. The alternative schemes are imple-272

mented in the model and an extra design variable
(
OP
)
is used to select the scheme to use. Thus, the273

design vector is extended to contain an extra element to select the operating scheme:274

x =
{
Cgeni , Csj , C

out
j , OP

}
∀i, j
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The implementation of the operating scheme reduces the complexity of the problem signi�cantly as275

only one extra design variable needs to be optimized. However, it also introduces some limitations to276

the problem, as will be discussed later.277

The electrical power output of any storage system over interval τ is dependent the unmet electrical load278

.

S
el

τ , the current storage state E
s
j,τ , and the dispatch capacity of the storage system Coutj .The unmet279

load is re-evaluated after the dispatch each storage option to determine what is required from the next280

storage option. This procedure continues until either all of the storage options have been dispatched281

or all of the demand has been satis�ed.282

3. Evaluate total energy shortfall. Any shortfall (thermal or electrical) left after the dispatch of the283

all storage options will need to be supplied externally. External energy Eextτ =

[
.

S
el

τ +
.

S
th

τ

]
· ∆t is284

only required if energy from local generation and storage is insu�cient to satisfy demand, thermal or285

electrical.286

4. Evaluate storage end state. The PHES system is charged before the AA-CAES system due to the287

use-dependent nature of its losses. The storage level at the end of the time step τ forms the start state288

at the next time step τ + 1.289

5. When storage options become full, dump excess generation.290

The steps are repeated for all nt intervals. This sequential approach mimics how plants are operated in291

reality: only the previous and current states of generation, storage level and demand are taken into account292

in decision making at each time step. Decision making requires no knowlege of future demand or renewable293

generation levels. At the end of the process, the LPSP of the system in the scenario is calculated with294

Equation 2. The model implemented here provides information about the performance within a given295

scenario and provides the required input information for the reliability between scenarios LPSPm.296

Implications of operating scheme297

The operating scheme speci�es the order in which the technologies are operated. The introduction of the298

operating scheme does not exclude any possible technology and size combinations. However, it requires that299

some decisions are made a priori. As is usually the case, this has some implications on the problem and the300

solution space. Two potential impacts will be highlighted here.301

The �rst impact has been mentioned previously: the order of discharge of the AA-CAES and PHES tech-302

nologies has been �xed. This eliminates a portion of the solution space of the problem. The reduced solution303

space does not contain solutions in which the PHES system is discharged before the AA-CAES system.304

The selection of an operating scheme also �xes the order of charging and discharging of the storage systems305

for the entire year. Together with the fact that generation is to be used to satisfy demands before storage is306

considered, some potential �exibility is removed from the system. For instance, the possibility of switching307

schemes within the year to improve performance is not available. This will have an impact on the results308

that will be obtained.309

One speci�c impact of the �xed decisions is that peak shaving will not be possible. Consider one of the310

energy system con�gurations obtained in the previous work (Amusat et al., 2016) as shown in Figure 4.311

The PT/MTS system was used as a base system for power supply while the PV/PHES systems were used312

at peak hours. This reduced the system cost because a smaller steam turbine was required for the MTS313

system. O�-peak periods refer to time intervals in which the MTS steam turbine capacity exceeded the314

electrical demand of the plant. During such periods, the demands of the plant were met by the PT/MTS315

system while all PV generation was used to charge the PHES system. On the other hand, peak periods are316

time periods in which the capacity from the MTS steam turbine was too small to meet the load demand. At317

such times, the de�cit was covered by the PV during the day and by the PHES at night. This is an example318

of peak-shaving. Such a system was possible because the model allowed for the operating scheme to be319

changed at every time step. With the operating scheme introduced in this paper, the operating strategy of320

the generation and storage technologies is �xed for the entire year. This loss of freedom in decision-making321

prevents peak shaving from happening.322

Despite the loss of �exibility described here, �xing some parts of the operating scheme allows us to be able323

to consider full years of operation which was not possible previously because of computational tractability324
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Figure 4: Sample energy system con�guration with peak shaving (Source: Amusat et al. (2016))

challenges encountered with the full problem. This is a signi�cant step forward because it means we are able325

to consider the impact of both inter-year and intra-year variability in renewable resources.326

To summarize, in order to evaluate the reliability of a given design, a set of possible renewable input conditions327

is generated using the pearsrnd function and the Louche model (Section 4). The performance of the design328

within each input scenario is then evaluated with the energy system model (Sections 5 and 5.1), based on329

which the reliability between scenarios can be calculated as decribed in Section 3.330

6. Full Design Problem331

Having developed a suitable reliability measure to account for inter-year variability as well as a system model332

to evaluate performance under di�erent input conditions, the system sizing problem can now be addressed.333

The problem can be stated as follows:334

Given:335

� historical information on the solar radiation for the location,336

� the thermal and electrical energy requirements of the plant,337

� the unit cost data for the generation and storage alternatives (Ugeni , Usj , U
out
j ), and338

� e�ciencies of all mechanical units (pumps, turbines, compressors, motors, generators),339

determine a non-dominated Pareto-optimal set of designs X̄ = {x̄1, x̄2 . . . x̄n} which trade-o� the minimi-340

sation of the capital cost CC (x̄) of the energy system with the minimisation of the probability of failure341

LPSPm (x̄):342

min
x̄∈X̄

z = (F1, F2)

{
F1 (x̄) = CC (x̄)

F2 (x̄) = LPSPm (x̄)
(6)

subject to generation, storage and operational constraints.343

The capital cost of a design is the sum of the costs of the installed capacities of the generation and storage344

technologies,345

CC =

ng∑
i=1

Ugeni Ageni +

ns∑
j=1

(UsjC
s
j + Uoutj Coutj ) (7)

where ng and ns are the number of generation and storage options, and Ugeni , Usj and Uoutj are the unit346

costs of the generation, storage and discharge units respectively.347

The total electrical load at any time will be a sum of two components: the electrical power demand of the348

mine, and the electrical heating requirement for the molten salt storage tanks (Amusat et al., 2016). The349

second term is the electrical heating required to maintain the storage tanks at their required temperatures,350

counteracting the impact of thermal losses. It is proportional to the size of the MTS storage system. The351

thermal load consists of only the thermal demands of the plant.352
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Table 1: NSGA-II parameters for case studies

Population size Npop = 100
Selection Binary tournament selection
Crossover Intermediate crossover, Crossover fraction = 0.1
Mutation Gaussian mutation, mutation fraction = 0.1
Stopping criteria Maximum number of generations, Ng = 300

7. Solution strategy353

The bi-criteria problem to generate the non-dominated set of designs is solved using NSGA-II (Deb et al.,354

2002), a non-dominated sorting-based multiobjective evolutionary algorithm (MOEA) as implemented by355

Song (2011). Figure 5 shows the �owchart for the process.356

The use of a genetic algorithm for this problem allows us to generate designs and evaluate performance357

based on full years of renewables input data while avoiding the tractability and convexity problems which358

a�ect gradient and branching-based solvers. However, the use of an evolutionary algorithm introduces a359

stochastic element to the solution procedure. Hence, more than one run may be required to give a measure360

of con�dence in the solution.361

8. Case studies362

Two case studies are presented in this work. The cases consider locations with di�erent levels of solar363

availability and variability, allowing the methodology to be stress-tested.364

8.1. Multi-objective design of stand-alone solar-based system for Chile365

For the �rst case study, we consider the design of an energy system for Collahuasi mine (Lat. 22.3o S, Long.366

68.9o W). Jointly owned by Anglo American PLC (44%), Glencore Xstrata PLC (44%) and Japan Collahuasi367

Resources B.V (12%). It is third largest copper mine in the world and is located in the mine-rich Atacama368

region of Chile.369

Historical solar radiation (GHI) data for the site over a period of 10 years (2003-2012) was obtained from the370

Department of Geophysics at the University of Chile (University of Chile, 2012). Electricity consumption371

data for the mine was obtained from the Chilean electricity dispatch authorities (CDEC-SING, 2016), with372

the hourly demand varying between 164 and 178MWh and a total daily demand of 4104.25MWh (Figure 6).373

The thermal demands of the plant were assumed to be 10% of the electrical demands due to lack of data.374

With direct heating accounting for 13% of the mining industry's energy end-use (Pellegrino et al., 2004), the375

assumption was considered reasonable.376

Figure 7 shows the average of the total global radiation available per day [kWh/m2·day]. Solar radiation is377

highest highest between November and January and lowest in June/July.378

300 synthetic solar input scenarios were generated for the optimization process based on the methodology379

decribed previously (Section 4). With the operation starting at midnight, the storage options were initialized380

to be 60% charged at the start of operation in order to meet the plant demands for the �rst morning. The381

NSGA-II parameters used in the study are shown in Table 1. Details about the other parameters and cost382

data used in the work and their sources may be found in Amusat et al. (2016). Hourly time steps were383

considered for the discretization of the entire model.384

The optimization routine takes a long time to compute a solution, requiring up to 87 h with 12-core parallel385

computing on an Intel Xeon(R) processor (CPU E5-2440 @ 2.40 GHz).386

8.1.1. Trade-o� curve387

Figure 8 shows the non-dominated objective function values for 3 attempts. Each data point represents a388

di�erent design. Moving from left to right indicates increasing reliability. A value of LPSPm = 0 means that389

the design was able to meet the yearly demands in all the input years, while a value of LPSPm = 1 means390
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Figure 5: Flowchart for optimal sizing using multi-objective genetic algorithm.
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Figure 6: Daily electricity demand pro�le for the mine. The
same demand pro�le was applied for all days of the year.

Figure 7: Average of total global radiation available per day
[kWh/m2·day] for each month for Chile and for Canada.
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Figure 8: Full Pareto fronts with trivial (LPSPm = 1) solu-
tions
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Figure 9: A magni�ed view of Run 1 after the removal of
trivial solution

that the design was unable to fully satisfy the plant demands in any of the years. There is very little di�erence391

between the results of the three runs, giving a measure of con�dence that set of non-dominated solutions392

have been identi�ed well. The minimum cost solution involves doing nothing
(
LPSPm = 1, CC = 0

)
; the393

Pareto curve can be seen to converge towards this trivial solution on the left part of the Figure 8. However,394

the solution provides no information and will be ignored. The minimum cost design is considered to be the395

next best solution; LPSPm ∈ [0, 1). For analysis of the designs, the Pareto front identi�ed from the �rst396

run is considered.397

Figure 9 shows the approximation to cost-reliability Pareto-optimal front. The capital cost varies by 7.3%398

(¿ 88M) over the entire reliability range. The small cost variation re�ects the low variability in renewables399

input for the location (Amusat et al., 2016).400

Of particular interest is the behaviour of the cost pro�le at high reliabilities. While the cost pro�le is near-401

linear over most of the reliability range, the gradient of the curve increases rapidly over the �nal 20-30% of402

the range. The �nal 20% of the range accounts for 45% of the cost increase. This indicates that signi�cant403

oversizing is required to meet all demand, all of the time. For the decision maker, this raises the question of404

whether it is essential to attain 100% reliability. In a case where the reliability requirement is �exible (the405

mine owner is willing to shut down the plant or run diesel generators for a short period in some years, for406

example), the designer has less expensive high-performance designs to choose from. For example, the design407
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Table 2: Characteristics of least reliable design for Chile

PT capacity MTS storage capacity Rated MTS discharge capacity LPSP Capital cost
1208 MWth 6358 MWh 178 MWe 0.9967 ¿ 1206.06M
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Figure 10: Daily excess thermal generation
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Figure 11: Percentage of daily demand unmet by design

with 80% reliability would typically only require diesel energy generation for a small number of hours in one408

out of �ve years and yet costs ¿ 40M less.409

8.1.2. Energy system con�guration410

For all the designs, the energy system con�guration involves the installation of a power tower for generation411

and a molten salt two-tank system for thermal energy storage, with photovoltaics eliminated completely.412

Generation from the power tower meets demands during the day while heat and power are supplied through413

the MTS at night.414

This is slightly di�erent from the scheme obtained in the previous work (Amusat et al., 2016) in which PVs415

and PHES were used for peak shaving. Peak shaving is not possible here (see Section 5.1), so the PHES and416

PV technologies are not selected.417

This change in con�guration has an e�ect on the results, with slightly larger generation, storage and discharge418

capacities required to compensate for the energy previously supplied by the eliminated options.419

8.1.3. Performance of least reliable design under worst simulated conditions420

One of the reasons a new methodology was developed in this work was to provide the ability to make421

decisions based on information about the design performace in the entire year, not just one day or season.422

To demonstrate this, we consider the performance of the design with the lowest reliability (summarized in423

Table 2) under the worst of the input conditions generated. Figure 10 shows the fraction of the thermal424

generation dumped daily, while Figure 11 shows the fraction of the daily demand that that is left unsatis�ed425

by the energy system. From the Figures, we see that:426

1. De�cits in energy supply occur in late autumn and winter. For 8 months of the year, the energy system427

is su�cient to satisfy the demands of the mine. The relatively low dumping levels suggest that energy428

generation across the year does not change signi�cantly between seasons.429

2. The energy system fails for 161 h, translating to 1.9% of the year. Thus, the design is able to meet430

demands for over 98% of the year. Analysis of the total external energy requirements showed that only431

0.77% of the annual demand will need to be satis�ed externally.432

The least reliable design generated has the smallest generation and storage capacities of all the designs433

generated, as can be seen in Figure 12. This means that all the other designs will always perform at434
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Figure 12: Variation of installed generation and storage capacities over reliability range. The shaded symbols represent the
capacities for the least reliable design.

least equally as well as the least reliable design irrespective of scenario, as they will always be able to435

generate and/or store more energy. Thus, the performance of the least reliable design in any scenario436

provides a limit on how poorly the other designs will perform under that input scenario. Combining437

this with the information obtained from the worst case scenario, we can conclude that all the designs438

generated will be able to meet demands for over 98% of the year.439

3. On any given day, the design is able to meet more than 90% of the daily demands of the plant. The440

design will always satisfy demand for at least 21 hours a day.441

The same sort of analysis can be carried out for any of the designs generated. The methodology therefore442

provides the designer with necessary information about the designs which are critical to the decision-making443

process. These sorts of information were not available with the previous approach.444

The results from this case study suggest that for locations with low renewables variability, little spread in445

the capital costs of the designs over the entire reliability range should be expected. All the designs perform446

well even under poor input conditions. The decision of the design point is therefore less likely to be based447

on the cost of the designs for such locations.448

It is expected that a location with higher variability in renewables input will reveal a larger spread in capital449

costs over the entire reliability range. This is investigated in the second case study.450

8.2. Canadian case study451

The second case study considers relocating the �ctional Chilean mine to Alberta, Canada (Lat. 51.0o N,452

Long. 114.0o W). The choice of Canada as an alternative site for the mine was in�uenced by its signi�cant453

mining activities, large variability in renewables availability and the availability of historical solar radiation454

data. Testing the methodology at a location with renewables input conditions quantitatively and qualitatively455

di�erent from Chile allows us to demonstrate the methodology more generally.456

Historical solar radiation (GHI) data for the site for 8 years (2005-2012) was obtained from the United457

States national solar radiation database (NREL, (2015)). Again, 300 synthetic solar input scenarios were458

considered. The average of the total global radiation available per day for each month for the location is459

shown in Figure 7. The �gure shows that solar resource availability is signi�cantly lower than in Chile. It460

also shows that the period of lowest resource availability for one location corresponds to the period of highest461

availability for the other.462

The parameters and cost data used remain the same as for the �rst study.463
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Figure 13: Full Pareto fronts with trivial (LPSPm = 1) so-
lutions
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Figure 14: A zoomed in view of Run 1 after the removal of
trivial solution

8.2.1. Trade-o� curve464

Figure 13 shows the non-dominated objective function values for 3 attempts. Again, there is very little465

di�erence between the results of the three runs, giving a measure of con�dence that set of non-dominated466

solutions have been identi�ed well. Again, the trivial solutions are ignored. For analysis of the designs, the467

Pareto front identi�ed from the �rst run is considered.468

Figure 14 shows the approximation to cost-reliability Pareto-optimal front. The capital cost varies by 72.5%469

(¿ 2.36bn) over the entire reliability range. The comparatively high cost variation observed compared to470

the Chile case re�ects the signi�cantly higher variability in renewables input in Canada.471

Again, the behaviour of the curve at the high end of the reliability range is of interest to the designer.472

Increasing the system reliability by 1% from LPSPm = 0.01 (one failure every 100 years) to LPSPm = 0473

accounts for 17% of the total cost increase. These results suggest that signi�cant oversizing is required474

to obtain a fully reliable design and highlights the problem with worst case designs for regions with large475

renewables variability. Given that the average lifetime of a remote mine is typically about 15 to 20 years476

(Paraszczak and Fytas, 2012; Carvalho et al., 2014), such high system reliabilities may not be critical.477

8.2.2. Energy system con�guration478

The energy system con�guration is the same as the one for Chile for all the designs, with only the thermal479

generation and storage options selected. This is the same con�guration obtained for the designs generated480

in the previous work.481

8.2.3. Performance of least reliable design under worst simulated conditions482

The daily performance of the least reliable design (presented in Table 3) under the worst generated solar483

input conditions is shown in Figure 16. The following conclusions can be drawn:484

1. The design is able to meet the demands of the plant for 8 months of the year (February through485

September). During this period, signi�cant energy dumping occurs, with less than half of the energy486

generated in summer actually collected for use in the system (Figure 15). This suggests that the level487

of thermal energy generation varies signi�cantly between seasons.488

2. The design fails for 6.9% (608 h) of the year, meaning the design (and all others generated) will meet489

the load demands for over 93% of the year. Analysis of the total external energy requirements revealed490

that 6.02% of the annual demand will need to be satis�ed externally.491

3. The design performs poorly in months with low renewables availability, with up to 54% of the load492

demand (spread over 14 hours) needing to be satis�ed from outside the integrated energy system.493
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Table 3: Characteristics of least reliable design for Canada

PT capacity MTS storage capacity Rated MTS discharge capacity LPSP Capital cost
3855 MWth 11744 MWh 180 MWe 0.9967 ¿ 3262.12M
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Figure 15: Daily excess thermal generation
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Figure 16: Percentage of daily demand unmet by design

Compared to the Chilean case study, the degree of energy dumping required, the frequency of power failure494

and the extent of power failure are seen to be signi�cantly higher. This highlights the signi�cant role that495

variability can play on energy system performance.496

For locations such as Northern Chile where clusters of mining operations exist, the excess generation available497

for most of the year opens up the possibility of energy trading with neighbouring mines in months with high498

solar availability. This could generate extra income to partly or fully cover the cost of external energy supply499

in the winter months. However, such a scenario would require that the output capacity of the power block500

be increased, thereby incurring additional costs.501

From Table 3, it can be seen that the MTS discharge capacity is higher than that required in the Chilean502

case. This is because the Canadian MTS storage system is larger and thus requires more electric heating.503

9. Conclusion504

The techno-economic analysis of a renewables-based energy system integrating thermal and electrical gen-505

eration with large-scale storage has been investigated. The methodology presented shows how inter-year506

variability can be taken into consideration in the sizing of such systems at the design stage, with an inter-507

year reliability measure developed in the work. The results show that the degree of variability is re�ected508

in the range of the costs of the Pareto-optimal designs. An analysis of the designs reveals that signi�cant509

cost savings are possible for little loss in reliability and performance. The decision-maker's de�nition of510

reliability therefore has a signi�cant impact on the capital cost of the system, with oversizing often required511

to guarantee energy security.512

The methodology presented is applicable to any location, can easily be extended to incorporate other gener-513

ation and storage alternatives, and provides the decision maker with necessary information about a number514

of alternative designs based on which sizing decisions can be made.515
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Nomenclature520

X̄ set of Pareto-optimal designs521

x̄n nth Pareto-optimal design522

LPSPm Modi�ed loss of power probability, unitless523

OP Discharge operating scheme number524

.

E
gen

i,τ Power output of generation option i (thermal or electrical) [MW]525

.

E
out

j,τ Electrical output of storage option j [MW]526

.

Q
heating

j,τ Thermal supply to plant from storage option j [MW]527

.

S
el

τ Unmet electrical load [MW]528

.

S
th

τ Unmet thermal load [MW]529

Ageni Area of generation unit i [m2]530

Cgeni Installed capacity of generation unit i [MW]531

Coutj Nominal output capacity of unit j [MW]532

Csj Installed storage capacity of unit j [MWh]533

CC (x̄) Capital cost of design x̄ [¿]534

Eextτ External energy requirement in time interval τ [MWh]535

Esj Energy stored in option j [MWh]536

i Generation option537

j Storage option538

LPSP Loss of power probability within the year, unitless539

ng Number of generation options540

ns Number of storage options541

Ndesign Number of designs542

PFT Power failure time [h]543

R (x̄) Reliability of design x̄, unitless544

T Total number of hours [h]545

Usj Energy-speci�c cost of storage option j [¿/kWh]546

Ugeni Unit cost of generation option i [¿/m2]547

Uouti Capacity-speci�c cost of storage option j [¿/kWe]548

Ugeni Unit cost of generation option i [¿/m2]549

Uoutj Capacity-speci�c cost of storage option j [¿/kWe]550

Usj Energy-speci�c cost of storage option j [¿/kWh]551
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