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A novel algorithm for fast representation of a Pareto front
with adaptive resolution: application to multi-objective

optimization of a chemical reactor

I. Hashema, D. Telena, P. Nimmegeersa, F. Logista, J. Van Impea

aKU Leuven, Chemical Engineering Department, BioTeC & OPTEC,
Gebroeders De Smetstraat 1, 9000 Ghent, Belgium

Abstract

Solving a multi-objective optimization problem yields an infinite set of points in
which no objective can be improved without worsening at least another objective.
This set is called the Pareto front. A Pareto front with adaptive resolution is
a representation where the number of points at any segment of the Pareto front
is directly proportional to the curvature of this segment. Such representations are
attractive since steep segments, i.e., knees, are more significant to the decision maker
as they have high trade-off level compared to the more flat segments of the solution
curve. A simple way to obtain such representation is the a posteriori analysis
of a dense Pareto front by a smart filter to keep only the points with significant
trade-offs among them. However, this method suffers from the production of a
large overhead of insignificant points as well as the absence of a clear criterion for
determining the required density of the initial dense representation of the Pareto
front. This paper’s contribution is a novel algorithm for obtaining a Pareto front
with adaptive resolution. The algorithm overcomes the pitfalls of the smart filter
strategy by obtaining the Pareto points recursively while calculating the trade-off
level between the obtained points before moving to a deeper recursive call. By using
this approach, once a segment of trade-offs insignificant to the decision maker’s
needs is identified, the algorithm stops exploring it further. The improved speed of
the proposed algorithm along with its intuitively simple solution process make it a
more attractive route to solve multi-objective optimization problems in a way that
better suits the decision maker’s needs.

Keywords: Multi-objective optimization, Pareto front representation, Divide and
conquer strategy, Dynamic optimization

1. Introduction

Biochemical processes are usually dynamic systems that are described by a set of
differential equations. The optimization of such processes is carried out using control
variables to achieve either one objective, yielding a Single Objective Optimization
Problem (SOOP) or multiple objectives, yielding a Multi-Objective Optimization
Problem (MOOP). Finding the optimal control trajectories as a function of time is
a situation that is frequently encountered in chemical engineering applications, e.g.,
finding the time optimal feed rate for a fed-batch reactor. The problem is typically
solved by discretizing the continous control variable into a large number of discrete
variables over the time/space interval making it a relatively computationally expen-
sive problem to solve. This makes a multi-objective setting particularly challenging
as the control problem has to be repeatedly solved during the solution process.
For MOOPs, a set of mathematically equivalent optimal points exists, called the
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Pareto front. There are two classes of techniques to obtain an approximation of the
Pareto set: vectorization and scalarization methods. Vectorization methods ([13])
are stochastic techniques that tackle the multi-objective optimization problem di-
rectly. However, their time consuming nature and the difficulty of incorporating
state constraints make them less attractive to be applied in optimal control prob-
lems ([19]). On the other hand, scalarization methods ([24]) have been frequently
implemented to solve Multi-Objective Optimal Control Problems (MOOCPs). They
work by parameterizing the original MOOP into a series of SOOPs. Solving each
SOOP yields a point on the Pareto front such that a Pareto front representation
can be obtained for the Decision Maker (DM) to examine. It is natural to assume
that not all segments of the Pareto front are equally important to a potential DM
([22], [2]). Examples of techniques for the a posteriori analysis of obtained solu-
tions are the order of efficiency filter ([2]), which ranks solutions according to how
balanced their overall performance is, and the smart filter ([22]). The motivation
for using a smart filter is to emphasize the segments more attractive to the DM in
the final representation at the expense of the less significant segments of the curve.
The steeper segments, the ”knees” of the representation, have higher trade-off level
than the more flat ”plateau” segments. For a prespecified trade-off level, the filter
removes the solutions deemed insignificant to the DM, keeping only solutions which
have significant trade-offs between each other. However, the main disadvantage of
this approach is the need to produce a dense representation with excess of insignif-
icant solutions for the filter to act on. Considering the large computational cost for
solving an instance of a MOOCP, this hinders applying the smart filter strategy to
this class of computationally intensive problems. In this paper, an alternative ap-
proach is introduced to obtain a Pareto front with adaptive resolution. The novel
algorithm utilizes a recursive paradigm in exploring the Pareto front. This way,
once a segment of insignificant trade-off level to the decision maker is identified,
the algorithm stops generating more solutions within this segment. The paper is
structured as follows: in Section 2, the mathematical formulations for solving a
MOOCP are introduced. The algorithm’s concept of operation is developed in Sec-
tion 3. Several numerical problems as well as a dynamic benchmark example are
presented in Section 4 while the obtained simulation results are discussed in Section
5. Finally, Section 6 summarizes the paper’s conclusions.

2. Mathematical formulations

This section is structured as follows: first, the general formulation of multi-
objective optimal control problems is discussed. Then, an overview of multi-objective
solution algorithms is presented as well as the formulation of a smart filter for the a
posteriori analysis of the Pareto front. Finally, Pomodoro, an in-house library used
in this paper for solving dynamic optimization problems is introduced.

2.1. Multi-objective optimization formulation

A multi-objective optimal control problem (MOOCP) can be formulated as a
minimization problem as follows ([18]):

min
u(ε),x(ε),p,εf

{J1, J2, ..., Jm} (1)
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subject to:

dx

dε
=F (x(ε), u(ε), p, εf) ε ∈ [0, εf ] (2)

0 =bi(x(0), p) (3)

0 =bt(x(εf), p) (4)

0 ≥cp(x(ε), u(ε), p, ε) (5)

0 ≥ct(x(εf), p, εf) (6)

where m is the number of objectives, ε is the independent variable, usually time
and typically ranging from 0 to εf , x are the state variables, u represents the control
variables and p the time-invariant parameters of the process. The (nonlinear) model
equations are denoted by F . The vectors bi and bt represent the initial and termi-
nal conditions, respectively. The vectors cp and ct denote the path and terminal
inequality constraints. In this work, an individual objective function Ji is generally
formulated as follows:

Ji = Mi(x(εf), p, εf) +

∫ εf

0

Li(x(ε), u(ε), p, ε)dε (7)

with Mi(x(εf), p, εf) the Mayer term, which represents the terminal cost, e.g.,
the final conversion at the end of the process and

∫ εf
0
Li(x(ε), u(ε), p, ε)dε the La-

grange term, representing the integral cost over the interval [0, εf ], e.g., total fuel
consumption during the process.

Finally, for conciseness, a vector of the optimization variables is defined as y =
[x(·)>, u(·)>, p>, εf ]>. The individual objective functions are grouped in a vector as
J(y) = [J1(y), J2(y), ..., Jm(y)]> and the set of feasible solutions S is defined as all
vectors y that satisfy the imposed constraints (2)-(6) ([18]).

In multi-objective optimization no single optimal solution exists so the notion of
Pareto optimality is adopted. As formulated in, [24], a vector y∗ is said to be Pareto
optimal if there exists no other y ∈ S such that Ji(y) ≤ Ji(y∗) for i = 1, 2, ...,m and
Ji(y) < Ji(y

∗) for at least one Ji. A Pareto point is said to be not dominated by any
other point in the objective space. This means that y∗ is a Pareto optimal point iff
there exists no other feasible point that would improve a certain objective without
causing a simultaneous increase in another objective. Unless all the objectives are
not conflicting, an infinite set of solutions will exist. The complete set of Pareto
solutions is called the Pareto front, ([24, 18]).

2.2. Multi-objective optimization solution algorithms

According to a review by [21], two major classes of methods exist to obtain
a Pareto front: vectorization methods and scalarization methods. Vectorization
methods ([13]) work by solving the multi-objective optimization problem directly
using stochastic algorithms. The drawbacks of these methods, as explained in [18]
are their inability to handle complex constraints, being time consuming and being
limited to low dimensional search spaces. On the other hand, scalarization meth-
ods ([24]) are deterministic and can handle a large number of decision variables
and constraints. However, they are prone to converging to local optima. In this
class of methods, the multi-objective optimization problem is converted to a series of
parametrized single objective optimization problems. This set is typically generated
by varying a parameters/weights vector. This way, solving each sub-problem gives
a point on the Pareto front. Since, dynamic optimization problems usually involve
a high number of constraints, scalarization methods are more suited to solve them,
several successful applications can be found in [10, 28, 25]. Three of the most widely
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used scalarization methods are discussed in this section: weighted sum method, nor-
mal boundary intersection and (enhanced) normalized normal constraint.

2.2.1. Weighted sum method (WS)

The (convex) weighted sum method is one of the most widely applied scalariza-
tion techniques in practice, mainly due to its simplicity. It is based on combining
the multiple objectives into a single convex function composed of their weighted
sums as follows, [18]:

min
y

m∑
i=1

wiJi(y) = w>J(y) (8)

where the weights wi can be grouped in w. Furthermore, wi ≥ 0 with i = 1, 2, ...,m
and

∑m
i=1 wi = 1. The solution of this minimization problem is obtained at y∗.

Since the obtained point is a Pareto optimal solution, it lies on the Pareto front of
the feasible objectives space. The procedure of the weighted sum method is solving
the minimization problem repeatedly using different combinations of w to obtain
multiple points on the Pareto front. However, despite its simplicity, the weighted
sum method suffers from two major flaws, as explained in [8]:

• An even spread of weights does not produce an even spread of points on the
Pareto front.

• It is impossible to detect the non-convex parts of the Pareto front. The
algorithm will not produce a complete representation of Pareto fronts that
contain non-convex regions, since it is geometrically impossible to find a weight
combination that can produce a point in these regions ([8]).

So, despite its simplicity, there is no way to circumvent the drawbacks of the
weighted sum method. Therefore, the following alternative techniques have been
proposed that do not suffer from these drawbacks.

2.2.2. Normal boundary intersection (NBI)

Figure 1: A geometrical illustration of the normal boundary intersection method, after [19].

This method was first proposed by [9] to overcome the drawbacks associated
with the weighted sum method. It is based on reformulating the multi-objective
optimization problem into a series of parametric optimization problems where an
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even distribution of parameters/weights will produce an even distribution of points
on the Pareto front. The following concepts are required for explaining the tech-
nique. The utopia point J∗ is defined as a vector whose components are all the
individual minima J∗i of the different objectives. It is an unattainable point which
is impossible to produce for any problem with conflicting objectives ([9]). The
convex hull of individual minima (CHIM) is a hyperplane in the objective space
that includes all the individual minima of different objectives. The NBI starts with
rescaling the objectives by shifting the Utopia point to the origin. The method
proceeds by constructing a set of quasi-normal lines to the CHIM. The distance
between the CHIM and the utopia point is sought to be maximized along these
lines. The furthest distance from a point on the CHIM towards the utopia point
J∗ in the feasible objectives space is a Pareto optimal point. Therefore, a uniform
distribution of the quasi-normal lines should provide a uniform distribution of the
Pareto points on the front ([9]). A major drawback of the NBI technique is its
inability to vary the resolution of the Pareto front according to the trade-off con-
tent in the segment. Thus, representing areas with insignificant trade-offs with the
same point’s density as areas with significant trade-offs ([22]). Another reported
disadvantage is the production of non-Pareto optimal points in some cases, hence
the need of invoking a Pareto filter a posteriori to remove these points ([23]).

2.2.3. (Enhanced) normalized normal constraint ((E)NNC)

Figure 2: A geometrical illustration of normalized normal constraint method, after [19].

Another method that is capable of providing a uniform representation of the
Pareto front is the (enhanced) normalized normal constraint method. Similar to the
NBI, it starts with rescaling the objectives so that the utopia point is relocated to
the origin. A hyperplane, here named the utopia plane, is defined that connects the
individual minima points of each objective, analogous to the CHIM. The distinctive
feature of the (E)NNC is that it proceeds by minimizing one objective function while
the rest of the objective functions are incorporated to the problem as inequality
constraints thus reducing the feasible objective space ([23]). The technique starts
by normalizing all objectives. In the NNC the normalization is performed by shifting
and scaling of all the individual objectives. However, this strategy suffered from
limitations when handling problems with more than two objectives as it has not
been able to produce a uniform distribution of points on the Pareto front. This has
been addressed by [26], the resulting ENNC is an extension of NNC method where
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adapted normalization strategies are used such that uniform Pareto Fronts can be
obtained even at three or more objectives problems.

2.3. Posterior Pareto front analysis

As both NBI and ENNC can produce non-Pareto optimal points under cer-
tain conditions, there is a need for applying a Pareto filter to the generated set
of solutions. This filter should remove all points that are dominated by other
points in the computed set. A reduced set is produced containing only global
Pareto optimal solutions ([23]). Before introducing the global Pareto filter algo-
rithm, the concepts of a global Pareto point and local Pareto point are explained
introduced ([23]): a solution point P ∗ is a global Pareto point if there are no other
point P in the feasible design space such that Pj ≤ P ∗j ,∀ j ∈ {1, 2, ...,m}and ∃ j ∈
{1, 2, ...,m} : Pj < P ∗j . On the other hand, a solution point, P ∗ is a local Pareto
point if there is no other point P in the neighborhood of P ∗ such that Pj ≤ P ∗j ,∀ j ∈
{1, 2, ...,m} and ∃ j ∈ {1, 2, ...,m} : Pj < P ∗j ([23]). A global Pareto filter works
by exhaustively comparing every pair of solutions of the initial Pareto set together.
By removing any solution that gets dominated, the algorithm retains only the so-
lutions that never get dominated by any other point in the set, thus, the output of
the algorithm is a set of global Pareto points ([22], [23]). As all retained points are
Pareto optimal, they can be considered as mathematically equivalent in the sense
that no point is dominated by any other one. However, it is still possible to facilitate
the analysis for a decision maker (DM) by reducing the number of the solutions in
the set ([2], [22]). Knowing that the DM is usually interested in a specific significant
trade-off level between the solutions, a smart filter can be used to keep only these
solutions which exhibit significant trade-offs among them. Thus, reducing the size
of the Pareto set by keeping only the points which have practical importance to
the decision maker ([22]). It works by making pairwise comparisons on a set of
globally Pareto optimal points. The goal of these comparisons is to filter out the
solutions that can be deemed less useful by finding if a solution lies in the PIT-
region, i.e., the region of practically insignificant trade-offs, of any other solution.
The PIT-region is defined using two parameters ∆t and ∆r. The first parameter,
∆t, quantifies what the user deems as a significant trade-off. By keeping points
with differences between correposing objectives higher than ∆t, the user controls
the resolution of the Pareto front representation. The lower its value, the higher the
resolution. Optionally, the user can supply a second parameter ∆r, such that for
any two points, the difference between any of the corresponding objectives should
be higher than ∆r. This parameter is used to control the density of points in the flat
regions, as ∆r is increased, the more distant the points in a flat segment from each
other. Based on the PIT-region definition, two sets are obtained, the set of rejected
points, which contains all solutions that are found to be in any PIT-region and the
set of smart Pareto points, solutions with significant trade-offs between every pair of
them ([22]). The advantage of a smart Pareto filter is that it produces a smaller set
of practically interesting solutions to the decision maker. However, the drawback
of this approach is that it is applied a posteriori to a large set of solutions which
means that a lot of computational effort is needed to be invested first in obtaining
insignificant solutions that are later removed ([16]).

2.4. Solution of dynamic optimization problems

The dynamic optimization problems in this paper are tackled by a first dis-
cretizing and then optimizing strategy. An orthogonal collocation ([5]) approach is
followed, in which simulation and optimization problems are solved simultaneously.
Both the control and the states of the problem are discretized. Consequently, the
resulting nonlinear program is solved using an interior point optimization tool ([30]).
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The employed software tool is Pomodoro ([4]) which is a software toolkit for solving
dynamic optimization problems that has been developed at the BioTeC+ division
of KU Leuven. It also contains a collection of algorithms for solving MOOCPs. In
particular, several scalarization multi-objective optimization algorithms like WS,
NBI and ENNC are available ([29]). Though, it should be noted that the calcu-
lation of derivatives involved within the solution process is performed by another
specialized software kit, CasADi ([1]). CasADi is an open source software tool for
automatic differentiation which can efficiently be exploited by dynamic optimiza-
tion problems. It is written in self-contained C++ code with front ends to Python,
Matlab and Octave, giving the users the flexibility to work in the programming
language of their choice ([1]).

3. A novel algorithm for a fast representation of a Pareto front with
adaptive resolution

3.1. Pareto optimality relevance conditions

First, before proceeding to explaining the algorithm’s structure, the conditions
under which a Pareto point can be considered significant with respect to another
point are constructed. It is assumed that a DM is interested in a prespecified trade-
off level t. In this section, the concept of quasi-dominance, first introduced by [15],
is used to quantify the relevance of a given pair of Pareto points Pi and Pk in two
dimensions. The relevance condition will then be expanded to m dimensions. First,
the concept of quasi-dominance is introduced ([15]):

Definition 1. A Pareto point Pi is said to quasi-dominate another Pareto point
Pk if Pi significantly outperforms Pk in at least one objective, i.e. making an im-
provement higher than or equal t, while Pk does not significantly outperform Pi

at any objective. For a minimization problem, this implies that there exists a set
of objectives θ where P Jak − P Jai ≥ t, a ∈ θ, while for the remaining objectives

| P Jbi − P
Jb
k |< t, b ∈ {1, 2, ...,m} \ θ, where m is the number of objectives.

This condition is formulated as follows:

P Jak − P
Ja
i ≥ t, a ∈ θ and | P Jbk − P

Jb
i |< t, b ∈ {1, 2, ...,m} \ θ (9)

Using the quasi-dominance definition, the relevance of a given pair of Pareto
points is formulated in bi-objectives and m-objectives problems.

3.1.1. Considering bi-objectives problems

In two dimensional objective space, two points Pi and Pk are said to not quasi-
dominate each other if point Pi significantly outperforms Pk at one objective while
Pk significantly outperforms Pi at the other objective. This is expressed by the
following equation:

min{(| P J1i − P
J1
k |, | P

J2
i − P

J2
k |} ≥ t (10)

Subsequently, the significance of two Pareto points relative to each other can be
quantified by calculating di,k, defined as following:

di,k = min{(| P J1i − P
J1
k |, | P

J2
i − P

J2
k |} (11)

Now, simply comparing di,k to the prespecified trade-off level t quantifies the
significance of the two points. Two cases can occur:

• If di,k ≥ t the two points do not quasi-dominate each other, both points are
significant.

7
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• If di,k < t one point quasi-dominates the other. The trade-off level is below
what the DM is interested in.

The second case corresponds to the insignificance criterion used in the smart
filter ([22]).

3.1.2. Considering high dimensional problems

Using the quasi-dominance definition, in m-dimensional space, two points Pi and
Pk are said to not quasi-dominate each other if Pi significantly outperforms Pk in
objectives subset θ, while Pk significantly outperforms Pi in objectives subset ω,
where θ, ω ⊂ 1, 2, ...,m and θ, ω 6= φ. This condition can be formulated as follows:

P Jak − P
Ja
i ≥ t and P Jbi − P

Jb
k ≥ t, ∀a ∈ θ, ∀b ∈ ω (12)

Consequently, the two points satisfy the condition of not quasi-dominating one
another when this condition is satisfied:

min{max(R),max(W )} ≥ t (13)

Where R is the set of trade-offs for the θ objectives at which Pi outperforms
Pk and W is the set of trade-offs for the ω objectives at which Pk outperforms Pi,
defined as follows:

R : {P Jak − P
Ja
i , ∀a ∈ θ} (14)

W : {P Jbi − P
Jb
k , ∀b ∈ ω} (15)

Therefore, to establish the relevance of two points Pi and Pk in m-dimensional
space, di,k is calculated as follows:

di,k = min{max(R),max(W )} (16)

Similar to the bi-objectives case, comparing di,k with the prespecified trade-off
level t determines if one point is significant relative to the other or not.

3.2. A divide and conquer algorithm formulation

As mentioned previously, a smart Pareto filter aims at finding the interesting
regions in the Pareto front through post analysis of the produced optimal solutions.
Pareto points are compared and if a point is found to be in the vicinity of another
point, it is removed. The result is a higher points density in interesting knee re-
gions, in which points have significant trade-offs compared to each other and lower
points density in flat regions. Thus, a Pareto front with adaptive resolution can be
produced. However, this method suffers from two major drawbacks. The first one
is the large overhead of insignificant points. This means that computational time
is wasted to produce a large amount of points that eventually gets rejected by the
filter. Another major disadvantage is the absence of a clear criterion to select the
number of points to be produced by the MOO algorithm. A user interested in a
specific significant trade-off level has no way to determine a priori the representation
resolution to be produced by the MOO algorithm to be successfully filtered. Thus,
more computational power could be wasted to filter overly dense representations
of the Pareto front. As it can be observed in Figure 3, using excessive number of
points provides similar results with the additional cost of removing a larger number
of points that are insignificant to the decision maker. A possible way to overcome
these drawbacks is by analyzing the solutions obtained during the solution process to
direct the optimization algorithm towards more interesting regions. In this regard,

8
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(a) A Pareto front representation gen-
erated using NBI, 50 points.

(b) The representation after being fil-
tered using a smart filter with a a spec-
ification of 0.05.

(c) A Pareto front representation gen-
erated using NBI, 100 points.

(d) The representation after being fil-
tered using a smart filter with a a spec-
ification of 0.05.

Figure 3: In the left, Pareto fronts generated by the normal boundary intersection method using
50 and 100 points. The corresponding graphs in the right are the smart filtered sets of 13 points
under same specification, 0.05.

we follow a similar direction to the work of [6] in which they introduced an algo-
rithm combining sandwiching and hyperboxing schemes to approximate the Pareto
front using a predefined criterion. In this section, a novel algorithm is described
to produce a Pareto front with adaptive resolution. Also, strategies to generalize
the algorithm to higher dimensions are discussed. First, an efficient Divide and
Conquer (D&C) algorithm to tackle multi-objective optimization problems should
consist of the following two components:

• A scheme for a recursive weight distribution: this scheme should ensure that
a uniform distribution of weights that covers the whole weights plane in the
objective space is produced at every recursive call. This way, a uniform and
complete exploration of the whole Pareto front is guaranteed.

• A stopping criterion: the algorithm needs to stop adding points when the
new points become insignificant relative to previous results. Or, equivalently,
when the amount of information yielded by the new points can be considered
insignificant. Hence, segments with low trade-off level can be identified and
excluded from the solution process.

3.3. A two dimensional divide and conquer algorithm

A two dimensional algorithm which exploits a divide and conquer approach is
discussed first. Instead of obtaining the whole Pareto front and then filtering it,
the aim is to reduce the amount of calculations by analyzing the Pareto points
after each solution to the optimization problem using a divide and conquer (D&C)
approach. A two dimensional D&C algorithm is coupled with a MOO algorithm,
e.g., the NBI, to identify and explore the more interesting regions of the Pareto
front. The algorithm’s working principle is illustrated using Figure 4. It works as

9
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Figure 4: Illustration of the D&C algorithm. The CHIM is divided recursively. For each weight, an
optimization sub-problem of maximizing the quasi-normal line is solved to obtain the corresponding
Pareto point, the most right recursive branch is shown.

follows: first, the Pareto front is divided into two segments by finding a Pareto point
using a set of weights that divided the CHIM line. Then, it continues by recursively
dividing each segment to smaller ones. The algorithm stops when a midpoint is
produced that is deemed irrelevant to its neighbors using the significance condition
defined in Equation 10, based on a significant trade-off value t provided by the user.
This way, the solution process is terminated at the segments with a low trade-off
level, saving computational effort compared to the posterior use of a smart filter.
Moreover, the algorithm does not work by specifying a priori an arbitrary number of
points. Instead, the DM enters the filter specification, the t value, i.e., the minimum
improvement in an objective to consider a new point relevant. Finally, it should be
noted that the recursive algorithm comes at negligible computational cost compared
to the process of finding the solutions. An overview of the algorithm structure is
provided in Algorithm 1.

3.4. A three dimensional extension: triangular approach

(a) Recursive call: 0 (b) Recursive call: 1 (c) Recursive call: 2

Figure 5: A recursive triangular weight distribution scheme: a triangular weights plane connecting
the anchors of the Pareto front is divided recursively to four symmetric equilateral triangles.

In three dimensions, connecting the normalized anchor points of the Pareto front
produces a weights plane that resembles a two dimensional equilateral triangle. The
recursive weight distribution for the 3D case needs to ensure a uniform distribution
of weights that covers the weights triangle in every recursive call. The proposed
scheme is inspired by a popular recursive fractal algorithm called the Sierpinski
triangle. Fractals are patterns that repeat themselves at different scales. One of the
most famous examples of fractals is the Sierpinski triangle which is an equilateral
triangle that is subdivided recursively to smaller equilateral triangles ([3]). To
obtain a uniform distribution of weights that can be used recursively, a modified
version of the Sierpinski triangle is used. In this version, as shown in Figure 5,

10
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Algorithm 1 A 2D divide and conquer algorithm

Input: Significant trade-off level t.

Output: Pareto set with adaptive resolution S
Step 1: Initialization of solution set S = {}.
Step 2: Construction of anchors weight cell Cin:

Cin =

[
1 0
0 1

]

where each row in Cin represents a set of objective weights.
Step 3: Initialization of weight cell Cw: Cw = Cin.
Step 4: Using weights in Cin, solve two NBI sub-problem to find the anchor points
Pin1, Pin2 and add them to S. Points Pi, Pj are initialized such that Pi = Pin1, Pj =
Pin2.
Step 5: Start the recursive function using weight cell Cw and Pareto points Pi,
Pj as inputs. Solve the quasi-normal line maximization problem with the weight
(Cw[0] +Cw[1])/2, the average of the first and the second row of Cw, to obtain the
Pareto point Pm. Then the following condition is checked:
if Pi, Pm and Pm, Pj satisfy significance condition do

1. Add Pm to S.

2. Divide: two sets of daughter weight cells Cd1 and Cd2 are constructed as
follows:

Cd1 =
[
Cw[0] Cw[0]+Cw[1]

2

]>
Cd2 =

[
Cw[0]+Cw[1]

2 Cw[1]
]>

3. Call the recursive function twice by updating inputs to step 5 such that:
Cw = Cd1, Pi = Pi, Pj = Pm and Cw = Cd2, Pi = Pm, Pj = Pj.

else Conquer : exit, stop exploring current segment.
Step 6: When all recursive calls are exited, produce S.

all triangles are recursively divided to four symmetrical equilateral triangles. This
results in a uniform distribution of points at each and every recursive depth. The
second necessity of an efficient divide and conquer algorithm is a stopping criterion.
In the two dimensional case, the stopping criterion is straightforward: if the new
point is found to be insignificant relative to its two neighbor points, the algorithm
stops adding points in this region. On the other hand, if the point is found to
be significant, it is added and the solution process continues. In three dimensions
however, the only way to assess the significance of a new point is to compare it
within some metric (e.g., Euclidean distance) of points surrounding it, which is
clearly impractical. Therefore, a number of possible alternative stopping criteria
are considered:

1. Direct comparison criterion
This can be considered as a simple extension of the two dimensional case,
all new points are compared to their parent points by using the significance
condition defined in Equation 13. If a new point has been found to be in-
significant compared to an existing point, the new point is not added to the
final representation and the algorithm stops creating a more refined division.

11
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2. Centroid criterion
Before creating a division, the algorithm calculates the solution at the cen-
troid of the existing cell. If this solution does not satisfy the significance
condition with any of the parent points, the algorithm does not create new
weights. Using a triangular weight approach, the Pareto point correspond-
ing to the centroid of a triangle Pcentroid can be calculated by solving a
NBI sub-problem using the set of weights Wcentroid. For the weight cell
Cw{A,B,C} = [WA ,WB ,WC]>, Wcentroid is obtained from the following re-
lation:

Wcentroid =
WA +WB +WC

3
(17)

After that, Pcentroid is compared with the solutions in the Parent cell, CP =
[PA , PB , PC]>, if the stopping condition is satisfied, the algorithm stops ex-
ploring CP.

3. Information criterion
For a set of new points, the variances of each objective are calculated. These
variances reflect the trade-off level/information with respect to every objective
for the new points. Therefore, using prespecified conditions by the user, the
algorithm stops exploring the cell if it is deemed to have sufficient amount
of information. The formulation of such an information criterion is discussed
hereafter in detail.

Consider a solution cell consisting of N Pareto points, CP = [P1 , ..., Pi, ... , PN]>,
each point consists of m components, Pi = [P J1i , P J2i , P Jki .... , P Jmi ]>, where m is
the number of objectives. The set of values for a specific objective k across all cell
points is defined as SJk

= {P Jki , i = 1, 2, ..., N}, N ≥ 2. The information criterion
IC can be defined as a vector whose components are the normalized individual
variances σ2

SJ1
, σ2

SJ2
, ..., σ2

SJm
for the sets SJ1 , SJ2 , ..., SJm :

IC = [σ2
SJ1
, σ2

SJ2
, ..., σ2

SJm
]> (18)

σ2
SJk

=
1

N

N∑
i=1

(
P Jki −

1

N

N∑
i=1

P Jki

)2
(19)

IC can be used as a criterion to terminate the recursive algorithm. When trade-
off level with respect to all objectives of a certain cell, expressed by the calculated
variances, meet the user’s prespecified conditions, the cell keeps its last size and the
algorithm stops exploring this region. One possible set of conditions to characterize
trade-offs using this criterion is that the user enters a minimum trade-off variance
σ2
low and a maximum trade-off variance σ2

high. For a given solution cell, if min IC <

σ2
low and max IC < σ2

high, the stopping criterion is satisfied. The two parameters

σ2
low and σ2

high control the points density of the curve and the representation of
the plateaus in 3D respectively. The information criterion is applied on a 3D case
study in order to visually demonstrate the influence of varying the two parameters
in Section 5. Finally, an overview of the triangular based algorithm is presented in
Algorithm 2.

3.5. A three dimensional extension: square based approach

While a triangular weight distribution scheme could work for 3D problems, it
cannot be generalized to higher dimensions. In m objectives problems, the weights
hyperplane is a regular simplex. Recursively dividing a simplex it into smaller

12
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(a) Recursive call: 0 (b) Recursive call: 1 (c) Recursive call: 2

Figure 6: Recursive division of a 3-simplex, a tetrahedron, using Sierpinski scheme. The space
between the four daughter cells can not be filled by a tetrahedron and it will continue to grow
with each additional recursive call.

(a) Triangular weight cell (b) Square based weight cell

Figure 7: Weight distribution in case of triangular versus square based weight cells.

simplexes is flawed theoretically. As shown in Figure 6, while a triangle can be filled
by smaller symmetric triangles, a simplex cannot be filled by smaller symmetric
simplexes ([27]). This means that the algorithm is ”blind” to some spaces/gaps
between the smaller simplexes. The weight distribution scheme is flawed, complete
exploration of space is not possible and no uniform distribution of points on the
Pareto front is attainable through this scheme. Therefore, the need arises for an
alternative weight distribution scheme that can be generalized to higher dimensions.

A square based D&C algorithm is proposed for three dimensional problems.
The algorithm starts by creating a square weight cell that encloses the triangular
CHIM, a possible configuration is shown in Figure 8. The initial cell then gets
divided recursively into four daughter cells. For every weight cell, if a weight lies
in the CHIM, it is used to obtain a Pareto point by solving an NBI sub-problem.
A stopping criterion is used to evaluate the trade-off level of the Pareto points
corresponding to the weight cell. The process continues recursively till one of the
following conditions occur:

• A weight cell is created that lies completely outside the triangular CHIM.

• The stopping criterion is activated indicating that the trade-off level at the
Pareto segment associated with a certain weight cell has reached the desired
resolution.

An overview of the square based algorithm is presented in Algorithm 3.
The main advantage of a square based algorithm is that it can be easily gen-

eralized to m dimensions by using a hypercube based approach. In m dimensions,
the CHIM is a simplex and the initial weight cell in the algorithm is a hypercube
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Figure 8: An illustration of the initial square weight cell which encloses the CHIM of the Pareto
front. Subsequently, the square weight cell is divided recursively; when a weight is found to lie on
the CHIM, a NBI sub-problem is solved using this weight to find the corresponding Pareto point.
The recursive process continues till a stopping criterion is met.

of 2m−1 vertices enclosing the CHIM. The algorithm proceeds similar to the 3D
case by dividing the weight hypercube recursively, solving the NBI sub-problems
and testing the obtained Pareto points using the prespecified stopping criterion. A
general disadvantage of the hypercube based approach is the occurrence of rough
boundaries, i.e., the representation of the Pareto boundaries could have an irregu-
lar point density. A discussion of this drawback is conducted in Section 5.2. An
overview of the general algorithm is presented in Algorithm 4.

4. Case studies

The algorithm is evaluated by applying it to a number of scalar problems as well
as a dynamic optimization problem. This section introduces the formulation of the
case studies tackled within this paper.

4.1. Scalar benchmark problems

Three scalar MOOPs characterized with large variations in the slope of their
Pareto fronts are discussed.

4.1.1. A numerical bi-objective problem

The first benchmark problem that is used in this paper is the bi-objective prob-
lem utilized by [22] to illustrate the performance of the smart filter. The Pareto
front of this problem is characterized by a sharp knee and long plateaus. The
problem is formulated as follows ([22]):

min
x
{x1, x2} (21)

subject to: (
x1 − 10

10

)8

+

(
x2 − 5

5

)8

− 1 ≤ 0 (22)

− 10 ≤ x1 ≤ 10 (23)

− 10 ≤ x2 ≤ 10 (24)

4.1.2. DO2DK problem

This problem is formulated by [7] based on the DLTZ functions previously in-
troduced in [12] and [14]. A notable characteristic of this example is the ability
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to control the shape of the resulting Pareto front by manipulating the problem’s
parameters. The DO2DK problem is formulated as follows ([7]):

min
x
{J1, J2} (25)

where:

J1(x) = g(x)r(x1)(sin(π ∗ x1/2s+1 + (1 +
2s − 1

2s+2
∗ π) + 1) (26)

J2(x) = g(x)r(x1)(cos(π ∗ x1/2 + π) + 1) (27)

subject to:

g(x) = 1 +
9

n− 1

n∑
i=2

xi (28)

r(x1) = 5 + 10(x1 − 0.5)2 +
1

k
cos(2kπx1)2s/2 (29)

0 ≤ xi ≤ 1, i = 1, 2, ..., n (30)

Where n is the number of variables, s is a parameter that controls the skewness
of the front and k is a parameter that controls the number of knees in the Pareto
front. The ability to generate a Pareto front with multiple knees can be used to
test the capability of a MOO algorithm to locate these segments ([7]).

4.1.3. A numerical 3 objectives problem

The last scalar benchmark problem is a three objectives problem that has been
used in [11]. It is described by the following equations ([11]):

min
x
{J1, J2, J3} (31)

subject to:

Ji = xi, i = 1, 2, 3 (32)

x1 ≥ x−12 + x−13 (33)

x2 ≥ x−11 + x−13 (34)

x3 ≥ x−11 + x−12 (35)

0.2 ≤ xi ≤ 10, i = 1, 2, 3 (36)

4.2. Dynamic case study: William-Otto reactor

The fourth case study is the multi-objective optimization of the William-Otto
fed-batch reactor ([31]). The following reactions take place within the reactor:

A+B → C (37)

C +B → P + E (38)

P + C → G (39)

where A is a reactant that is initially present in the reactor, B is fed continuously
to the reactor during operation, P and E are the products of the process and C is
an intermediate that can react with P to form side product G.
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These reactions are highly exothermic, therefore, generated heat is removed via
a cooling jacket. The formulation of the MOOCP discussed in this Section is based
on the work of [19] and [17].

The objectives of the process is to maximize the production of P and E by
controlling the feeding rate of B and the cooling jacket temperature. They are
formulated as follows ([19]):

min
u
{J1, J2} (40)

J1 = −xP(tf)V (tf) (41)

J2 = −xE(tf)V (tf) (42)

The dynamics of the reactor are described by the following set of equations,
([19]):

dxA
dt

=
xAu1

1000VR
− k1η1xAxB (43)

dxB
dt

=
(1− xB)u1

1000VR
+ k1η1xAxB − k2η2xBxC (44)

dxC
dt

=
−xCu1
1000VR

+ k7η1xAxB − k3η2xBxC − k6η3xCxP (45)

dxP
dt

=
−xPu1
1000VR

+ k2η2xBxC − k4η3xCxP (46)

dxE
dt

=
−xEu1
1000VR

+ k3η2xBxC (47)

dxG
dt

=
(TF − T )u1

1000VR
+ k5η3xCxP (48)

dT

dt
=

xAu1
1000VR

+ k8η1xAxB + k9η2xBxC + k10η3xCxP − l1(T − 1000u2) (49)

dVR
dt

=
u1

1000
(50)

where xi, i ∈ {A,B,C, P,E,G}, is the dimensionless concentration of the reagent,
T is the reactor temperature, VR is the reactor volume, u1 is the feeding rate of B, u2
is the temperature of the cooling jacket, kj, j ∈ {1, 2, ..., 10} is the pre-exponential
reaction constant and η1, η2, η3 are the Arrhenius terms for the three reactions
respectively which depend on the temperature.

Finally, the system is subject to the following operational constraints, [19]:

60 ≤ T (t) ≤ 90 (51)

0 ≤ u1(t) ≤ 5.784 (52)

0.02 ≤ u2(t) ≤ 0.1 (53)

VR(tf) ≤ 5 (54)

5. Simulation results

In this section the numerical results illustrating the presented algorithm are
presented. First, the D&C algorithm is compared to the smart filter approach
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in bi-objectives problems. Subsequently its performance in three dimensions is
discussed.

5.1. Bi-objectives problems

(a) Pareto front representa-
tion generated using NBI,
2000 points.

(b) A smart Pareto set of 254
points produced by filtering a
dense representation using a
smart filter with a normalized
specification of 0.0005.

(c) A smart Pareto set of
232 points produced directly
using a D&C algorithm of
normalized specification of
0.0005.

Figure 9: Comparing normalized Pareto front representations produced by the smart filter and
the D&C algorithm for the numerical bi-objective problem.

First, the D&C algorithm is compared to the a posteriori use of the smart filter
using the numerical bi-objective problem that has been originally used to illustrate
the concept of operation of the smart filter algorithm in [22]. The Pareto front
of this problem is characterized by a sharp, high trade-off region, knee and two
long, low trade-off regions, plateaus. The aim is to obtain a representation with
”adaptive” resolution in which the number of points is proportional to the trade-off
level/information content of the Pareto segment.

As shown in Figures 9(a) and 9(b), a smart filter with a specification of 0.0005
is used to filter a 2000 points dense normalized Pareto front that has been obtained
using the NBI method. This is the least dense representation for the filter to be
fully functional. For every two neighboring smart points in the filtered set, at least
one point in the original set has been removed between them. In Figure 9(c), a
similar representation is obtained using the D&C algorithm with the same speci-
fication. However, as illustrated in Figure 12(a), the number of overhead points,
points that are removed from the filtered representation, is much lower in the D&C
algorithm compared to the smart filter. In case of filtering a 2000 points dense
Pareto front, the smart filter removed 1746 points to produce a representation of
254 points. This means that only 12.7% of the calculated solutions are deemed sig-
nificant for the DM. This percentage also decreases in case of using higher guesses
for the number of points to be produced in the initial dense representation. On the
other hand, using the D&C algorithm, the percentage of the significant points is
always 50% of the calculated solutions. Due to the lower overhead, the D&C al-
gorithms has consistently higher speed than the smart filter strategy, around 431%
higher speed in case of 2000 points dense initial representation. The reduced over-
head is explained by the recursive nature of the D&C algorithm where the search
for additional points is halted once a Pareto segment is found to be low informative.

The D&C algorithm is subsequently tested on the DO2DK problem while fixing
the number of knees parameter to be k = 4 . As shown in Figure 10, the algo-
rithm has been able to successfully represent all the four non-convex knees of the
Pareto front with an overhead of 36 points compared to at least an overhead of
151 points when using smart filtering of a densely represented normalized Pareto
front, corresponding to a 271% improvement in computational effort. A more de-
tailed comparison of the insignificant solutions overhead using both approaches is
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(a) Pareto front representa-
tion generated using NBI, 198
points.

(b) A smart Pareto set of 47
points produced by filtering a
dense representation using a
smart filter with a normalized
specification of 0.005.

(c) A smart Pareto set of 37
points produced directly us-
ing a D&C algorithm of nor-
malized specification of 0.005.

Figure 10: Comparing normalized Pareto front representations produced by the smart filter and
the D&C algorithm for DO2DK problem.

provided in Figure 11(b). This example shows that the D&C algorithm can operate
successfully on Pareto fronts with non-convex regions provided that no non-global
Pareto optimal points exist on the frontier.

(a) Pareto front representa-
tion generated using NBI, 51
points.

(b) A smart Pareto set of 22
points produced by filtering a
dense representation using a
smart filter with a normalized
specification of 0.02.

(c) A smart Pareto set of 23
points produced directly us-
ing a D&C algorithm of nor-
malized specification of 0.02.

Figure 11: Comparing normalized Pareto front representations produced by the smart filter and
the D&C algorithm for William - Otto problem.

The last example is the dynamic multi-objective optimization of the William-
Otto reactor where the objectives are selected to be maximizing P and E. The
Pareto front of this problem is characterized by high curvature in the middle of the
curve. In Figure 11, the smart filter and the D&C algorithm are used to obtain
normalized Pareto fronts with adaptive resolutions using a specification of 0.02. For
representations with similar quality, the D&C algorithm produced less overhead
points than the a posteriori use of a smart filter, a comparison of the overhead
points produced using each technique is provided in Figure 12(c).

Figure 13 shows the D&C algorithm’s speed compared to the smart filter strat-
egy. The gain in speed is a direct result of the less overhead of insignificant points
and it depends on two factors. The first is the number of points in the initial rep-
resentation. As the number of points in the initial representation increase, the gain
in speed using the D&C algorithm compared to filtering increases. This is a result
of the more computational effort that is invested in obtaining solutions that will
get subsequently filtered. The second factor is the Pareto front shape. The gain in
speed is greater in Pareto fronts where large variations in slope exist. The segments
with low slope are characterized by high density of insignificant solutions that are
produced in the initial representation. On the other hand, the D&C algorithm pro-
duces a limited number of insignificant solutions as it stops exploring low trade-off
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Figure 12: Number of overhead points versus representation points when using a smart filter
compared to the D&C algorithm for different examples.

segments once identified.
In summation, for a DM interested in practical significant trade-offs between

P and E production, instead of guessing a dense resolution for an initial represen-
tation to be filtered, he/she can enter directly the t value of interest to the D&C
algorithm. Subsequently, this leads to reducing the computational time invested in
non significant solutions, in addition to the more simple intuitive solution procedure
compared to the smart filter strategy.
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Figure 13: D&C algorithm’s speed as a percentage of the a posteriori analysis of a dense Pareto
front by a smart filter for different dense raw presentations.

(a) Direct comparison crite-
rion with specification t =
0.05.

(b) Centroid criterion with
specification t = 0.01.

(c) Information crite-
rion with specifica-
tions min IC < 0.005,
max IC < 0.2.

Figure 14: Using D&C algorithm for the numerical three objectives problem: triangular approach.

5.2. Three objectives problem

An extension of the D&C algorithm in three dimensions has been tested on the
numerical three objective problem. First, the three stopping criteria are used while
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Figure 15: Using D&C algorithm for the numerical three objectives problem: square based ap-
proach

applying a triangular scheme. As shown in Figure 14, similar representations are
produced where the points density is highest in the curved region at the center of
the Pareto front. However, this is achieved at different specifications as the three
criteria have different concepts of operation. In the direct comparison criterion, the
three points corresponding to a triangular weight cell are compared together to test
for significance. On the other hand, when using the centroid criterion, an additional
point is created corresponding to the center of the weight cell for the significance
test. This means that a lower value for t is used to produce representations with
similar density as the direct comparison criterion. Also, the centroid points are
not produced at the final representation. Finally, the information citerion uses two
specifications min IC and max IC which can be used to fine-tune the density of the
final representation according to the user’s preferences.
The square based approach is tested on the same example using the information
criterion. The terminating conditions have been chosen to be min IC < 0.0005
and max IC < 0.02. In Figure 15, the points density is significantly higher at the
curved region of the Pareto front than its flat areas. Comparing the representation
produced by the square based approach in Figure 15 with its counterpart in Figure
14(c) yields two main observations. First, representations produced by the square
based approach has higher points density, 179 points compared to 132 points when
using the triangular approach. The second observation is the irregularities in the
points density near the boundaries of the Pareto front when using the square based
method. This is a result of the simple, center of mass, cutting strategy used in this
approach. A square that has one vertex lying in the CHIM will keep getting divided
till it gets another vertex in the CHIM to undergo the stopping criterion, resulting in
two points that are close to each other in the final representation at the boundaries
of the Pareto front. However, while the triangular scheme is more natural in the
three objectives problems, only the square based scheme can be generalized to
higher dimensions. In Figure 16, the influence of min IC and max IC is interpreted
graphically. Since plateaus in 3D are segments characterized by absence of trade-
offs with respect to one objective, min IC in such segments is always close to zero.
And using a high max IC value, 0.2 in Figure 16(a), leads to low points density
in the plateaus corresponding to high trade-offs between the points with respect to
one of the other two objectives. On the other hand, in curved regions, trade-offs
exist with respect to all objectives. Therefore, increasing min IC in Figure 16(b)
leads a to lower points density in the curved segment at the center of the Pareto
front.

Finally, the use of the D&C algorithm is limited to the cases when solving a NBI
sub-problem always yields a globally optimal Pareto points. In extreme cases, where
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(a) min IC < 0.0005, max IC < 0.2. (b) min IC < 0.005, max IC < 0.2.

Figure 16: The effects of varying min IC and max IC on the representations produced by the D&C
algorithm for the numerical three objectives problem. max IC controls the points density in the
plateaus while min IC controls the points density in the curved regions of the front.

MOO algorithms can yield locally optimal Pareto points, the performance of the
D&C algorithm will deteriorate considerably. In Figure 17, the D&C algorithm has
been applied to such case from [23]. Points obtained in the midsection of the front
are non globally optimal Pareto points. The recursive approach of the algorithm
leads to a high points density in curved segments, convex or non-convex, however,
it does not differentiate between segments of global and local Pareto optimality.

(a) NBI (b) D&C

Figure 17: Using the D&C algorithm for extreme Pareto fronts where non globally optimal Pareto
points exist

6. Conclusion

In multi-objective optimization, a DM is provided with a set of points to make
a decision by considering the trade-offs between different solutions. In order to
facilitate the decision making process, a smart filter is used to reduce the solution
set by keeping only the solutions with significant trade-offs among them. However,
this strategy suffers from the necessity of producing a large number of insignificant
solutions in the initial presentation for the filter to work on. This can be compu-
tationally very expensive when handling complex optimization problems such as
multi-objective optimal control of chemical processes.

In this paper, a divide and conquer approach is implemented in order to obtain
a Pareto front with adaptive resolution. By analyzing the Pareto points obtained
during the solution process, the algorithm can identify and stop exploring segments
with low trade-off level. The technique has been tested and compared to the smart
filter strategy on three scalar problems and a benchmark dynamic optimization
problem. The D&C approach is based on the idea that Pareto points obtained
during the solution process have information about the trade-offs in the segment
where they are located. It has been found that using the D&C algorithm has two
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main advantages. First, lower overhead of insignificant solutions which translates to
an improvement in speed over the smart filter strategy. A second, non-quantifiable,
advantage is the more intuitive, trade-off oriented, solution procedure in which the
DM only enters the trade-off level he/she is interested in.

Finally, two disadvantages of the D&C approach have been observed. First,
when dealing with three or more objectives using a square based approach, in-
adequate representation of the Pareto boundaries could occur. Additionally, the
algorithm inherits the inability of differentiating between local and global Pareto
optimality from the NBI technique. In future work, we aim to address these draw-
backs by using an adaptive weight cutting strategy to construct weights near the
Pareto boundaries. The D&C scheme could also be integrated with concepts from
[29] to explore the extreme Pareto boundaries that lie outside the CHIM. Also,
one possible strategy to address the second disadvantage is to use techniques from
[20] which allow to directly filter out non-Pareto optimal points when using NBI or
ENNC.
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[3] Barnsley, M., Hutchinson, J., Stenflo, Ö., 2003. V-variable fractals and superfractals. arXiv
preprint math/0312314, 1–17.

[4] Bhonsale, S., Vallerio, M., Telen, D., Vercammen, D., Logist, F., Van Impe, J., 2016. So-
lace: An open source package for nonlinear model predictive control and state estimation for
(bio)chemical processes. Proceedings of European Symposium on Computer Aided Process
Engineering (ESCAPE), 1971-1976.

[5] Biegler, L., 2010. Nonlinear Programming: Concepts, Algorithms, and Applications to Chem-
ical Processes. MOS-SIAM.

[6] Bortz, M., Burger, J., Asprion, N., Blagov, S., Böttcher, R., Nowak, U., Scheithauer, A.,
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Algorithm 2 A 3D divide and conquer algorithm: triangular approach

Input: Stopping criterion specifications σ2
low, σ2

high

Output: Pareto set with adaptive resolution S
Step 1: Initialization of solution set S = {}.
Step 2: Construction of a weight cell Cin:

Cin =

1 0 0
0 1 0
0 0 1


Step 3: Initialization of weight cell Cw: Cw = Cin.
Step 4: Start the recursive function using weight cell Cw as an input:
for i = 1:3 do

Solve a NBI sub-problem using Cw[i] to obtain corresponding Pareto point Pi

end for
Step 5: Using obtained Pareto points, construct a Pareto cell CP:
CP =

[
P1 P2 P3

]
. Then the following condition is checked:

if Stopping criterion is not activated do

1. Add CP points to S

2. Divide:construct four daughter cells Cd1, Cd2, Cd3, Cd4 (see Figure 7(a))
such that:

Cd1 =
[
Cw[0] Cw[0]+Cw[1]

2
Cw[0]+Cw[2]

2

]>
(20)

Cd2 =
[
Cw[0]+Cw[1]

2 Cw[1] Cw[1]+Cw[2]
2

]>
Cd3 =

[
Cw[0]+Cw[2]

2
Cw[1]+Cw[2]

2 Cw[2]
]>

Cd4 =
[
Cw[1]+Cw[2]

2
Cw[0]+Cw[2]

2
Cw[0]+Cw[1]

2

]>
3. Call the recursive function four times by updating the input to step 4 such

that: Cw = Cd, Cd ∈ {Cd1, Cd2, Cd3, Cd4}.

else Conquer : exit, stop exploring current segment.
Step 6: When all recursive calls are exited, produce S.
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Algorithm 3 A 3D divide and conquer algorithm: square based approach

Input: Stopping criterion specifications σ2
low, σ2

high

Output: Pareto set with adaptive resolution S
Step 1: Initialization of solution set S = {}.
Step 2: Construction of a weight cell Cin =

[
w1 w2 w3 w4

]>
such that Cin is

a square cell enclosing the CHIM.
Step 3: Initialization of weight cell Cw: Cw = Cin.
Step 4: Start the recursive function using weight cell Cw as an input:
for i = 1:4 do

if Cw[i] in CHIM do

Solve a NBI sub-problem using Cw[i] to obtain corresponding Pareto
point Pi

end for
Step 5: Using obtained Pareto points, construct a Pareto cell CP:
CP =

[
P1 ... Pn

]
, n ≤ 4. Then the following condition is checked:

if Stopping criterion is not activated do

1. Add CP points to S

2. Divide: construct four daughter cells Cd1, Cd2, Cd3, Cd4 such that:

Cd1 =
[
Cw[0] Cw[0]+Cw[1]

2

∑
Cw

4
Cw[0]+Cw[3]

2

]>
Cd2 =

[
Cw[0]+Cw[1]

2 Cw[1] Cw[1]+Cw[2]
2

∑
Cw

4

]>
Cd3 =

[∑
Cw

4
Cw[1]+Cw[2]

2 Cw[2] Cw[2]+Cw[3]
2

]>
Cd4 =

[
Cw[0]+Cw[3]

2

∑
Cw

4
Cw[2]+Cw[3]

2 Cw[3]
]>

3. Call the recursive function four times by updating the input to step 4 such
that: Cw = Cd, Cd ∈ {Cd1, Cd2, Cd3, Cd4}.

else Conquer : exit, stop exploring current segment.
Step 6: When all recursive calls are exited, produce S.
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Algorithm 4 A general hypercube based 3D divide and conquer algorithm

Input: Stopping criterion specifications σ2
low, σ2

high

Output: Pareto set with adaptive resolution S
Step 1: Initialization of solution set S = {}.
Step 2: Construction of a weight cell Cin =

[
w1 w2 ... w2m−1

]>
such that

Cin is a hypercube cell of 2m−1 vertices enclosing the simplex shaped CHIM, m is
the number of the objectives of the problem.
Step 3: Initialization of weight cell Cw: Cw = Cin.
Step 4: Start the recursive function using weight cell Cw as an input:
for i = 1:2m−1 do

if Cw[i] in CHIM do

Solve a NBI sub-problem using Cw[i] to obtain corresponding Pareto
point Pi

end for
Step 5: Using obtained Pareto points, construct a Pareto cell CP:
CP =

[
P1 ... Pn

]
, n ≤ 2m−1. Then the following condition is checked:

if Stopping criterion is not activated do

1. Add CP points to S

2. Divide: construct daughter cells Cd1, Cd2, ... , Cd2m−1 .

3. Call the recursive function by updating the input to step 4 such that: Cw =
Cd, Cd ∈ {Cd1, Cd2, ..., Cd2m−1}.

else Conquer : exit, stop exploring current segment.
Step 6: When all recursive calls are exited, produce S.
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