
A Graph Partitioning Algorithm for Leak Detection in

Water Distribution Networks

Aravind Rajeswaran, Sridharakumar Narasimhan, Shankar Narasimhan

Systems & Control Group

Indian Institute of Technology Madras

aravindr@smail.iitm.ac.in, { sridharkrn, naras }@iitm.ac.in

Abstract

Leak detection in urban water distribution networks (WDNs) is challenging given their scale,

complexity, and limited instrumentation. We present a technique for leak detection in WDNs,

which involves making additional flow measurements on-demand, and repeated use of water

balance. Graph partitioning is used to determine the location of flow measurements, with

the objective to minimize the measurement cost. We follow a multi-stage divide and conquer

approach. In every stage, a section of the WDN identified to contain the leak is partitioned

into two or more sub-networks, and water balance is used to trace the leak to one of these

sub-networks. This process is recursively continued until the desired resolution is achieved.

We investigate different methods for solving the arising graph partitioning problem like integer

linear programming (ILP) and spectral bisection. The proposed methods are tested on large

scale benchmark networks, and our results indicate that on average, less than 3% of the pipes

need to be measured for finding the leak in large networks.

1 Introduction

The problem of leak detection in Water Distribution Networks (WDNs) is of significant importance

for effective management and water quality control [1, 2]. Leaky distribution systems are inefficient

due to water loss, energy wastage, and unreliable water quality: especially in case of underground

leaks. These effects are even more pronounced in urban centers of developing countries where the

networks are poorly instrumented and maintained.

In case of WDNs, leaks or losses are quantified using unaccounted-for water (UFW). High levels

of UFW are detrimental to financial viability of the system. Losses in WDNs are a combined effect

of real losses like leaks in pipes or joints, as well as other means like water thefts and unauthorized

consumption [3]. Given the growing concern towards uncertainty in quality water supplies, the

problem of leak detection and control has grown in importance. Various techniques based on

acoustic methods and magnetic flux leakage [4, 5, 6] are available to determine the location of

1

ar
X

iv
:1

60
6.

01
75

4v
1

 [
cs

.D
S]

 3
 J

un
 2

01
6

defect (either small defect like corrosion, or large leaks) in a single pipe. However, these methods

could be time consuming, expensive, or disruptive in nature. Thus, it is beneficial to use these

techniques after narrowing down the leak to a small part of the network.

One approach to leak detection involves the use of hydraulic models and simulators. Available

measurements are used to estimate the location of a leak which match the sensor measurements

closely. This method is generally called inverse analysis [7] and requires solving a large optimization

problem. In order to use this approach, measurements of flow rates and pressures at a large number

of intermediate locations are required, in addition to source pressure and demand flows. In well

instrumented networks, some flow and pressure sensors are installed for the purpose of District

Metered Area (DMA) sectorization, but these are few in number. A more severe limitation of

pressure-reading based methods is that predictions depend on precise estimates of model parameters

like pipe friction factors, which are difficult to obtain. Practical applicability of this method to large

scale networks have proven to be a hard task, as reported by some researchers [8, 9].

In order to overcome the above difficulties, and to explore a new line of research, we propose

a method for leak detection which uses only flow measurements that are repeatedly performed

on-demand in field campaigns. We call this process of obtaining flow measurement in a pipe (on-

demand) as querying the pipe for flow. Further, since the only property of leak we exploit is loss

of material (water), the method is equally applicable to any form of loss including thefts - which

is not the case for hydraulic model based methods. Even though we show results of our method

on WDNs, the method itself is much more general and pertains to any distribution system obeying

conservation laws.

(a) Network with a leaky node
(b) Querying a set of pipes

Figure 1: Illustration of querying the edges for flows and identifying the leaky part of the network.

2

To briefly illustrate the idea, consider the network shown in Fig. 1(a). Let us say that some

node in this network is leaky, and our objective is to find it. By querying the edges in red in

Fig. 1(b), we can trace the leak to either of the two parts of the network (shown in blue and green).

This is possible by exploiting water balance (or conservation laws in general) as will be shown in

subsequent sections. By performing this operation repeatedly, we can arrive at a small part of the

network which contains the leak.

Querying a pipe requires access to it, which may be buried underground at a depth of about

two meters. Hence, there is a non-negligible cost associated with every query. Therefore, it is

important to minimize queries (or query cost), which requires a strategic field campaign. An ideal

field campaign should possess the following characteristics: (i) it should be systematic and arise

out of a clear objective; (ii) it should scale to large sectors or the whole network in absence of

DMAs; (iii) must be capable of assimilating information from other sources (like existing sensors);

(iv) should be optimal, requiring only few queries. An algorithmic solution to development of such

a field campaign is the subject of this paper.

2 Review of Algebraic Graph Theory

Before the formal problem setup, we briefly review the basics of algebraic graph theory relevant to

this work. Specifically, we review the representation of WDNs as graphs and matrices, and survey

relevant properties. See chapter 7 of [10] for further discussion.

Definition 2.1 A graph (G) is a tuple G(N,E) comprising the set of vertices N and edges E

which are 2-element subsets of N. The number of vertices and edges in the graph are n and m

respectively. The graph could be directed or undirected. We use the following terms interchangably

to suit the particular context: graph and network; vertices and nodes; edges, links, and pipes.

The nodes of the network can be classified as source nodes where water is fed into the network,

demand nodes or sink nodes where water is removed from the network for supplying to the con-

sumers, and transmission nodes which aid in redistributing the flows. The edges of the network

represent the pipes of the WDN. We choose an undirected graph representation for the network.

However, we associate a sign convention with each edge to help identify the direction of flow. Flow

will be negative if it is in the opposite direction to the chosen sign.

Definition 2.2 The adjacency matrix is defined by the relationship: Aij = 1 if nodes i and j are

connected by a pipe and 0 otherwise.

Definition 2.3 The directed incidence matrix J is defined by the relationship:

Jik =


+1 if edge k connects nodes i and j, and i < j

−1 if edge k connects nodes i and j, and i > j

0 if edge k is not incident on node i

The sign convention for J can in fact be chosen arbitrarily and the above assignment is only one

particular choice.

3

Definition 2.4 The degree of node i, is the number of edges incident on the node and denoted

by deg(i). The degree matrix D is a diagonal matrix containing the degree of each node along the

diagonal entries, i.e., Dii = deg(i) and Dij = 0, i 6= j.

Definition 2.5 The Laplacian (L) of a graph is defined by the relationship L = D−A, where D

and A are the degree and adjacency matrices, respectively.

The adjacency and incidence matrices characterize the network completely. The other matrices

can be computed with their knowledge. We also review some useful properties of these matrices.

Property 2.1 The Laplacian matrix is positive semi-definite.

Property 2.2 The smallest eigenvalue of the Laplacian matrix is 0. The vector v = [1, 1, . . . , 1]T

(or simply v = 1) satisfies Lv = 0 and hence is an eigenvector correpsonding to the 0 eigenvalue

and belongs to the nullspace of L.

Property 2.3 The number of times 0 appears as an eigenvalue of the Laplacian (both algebraic

and geometric multiplicity) is the number of connected components in the graph.

Proposition The Laplacian matrix is identically equal to the positive semi-definite matrix JJT

Proof

Define Z = JJT − L with eigenvalues λ1, . . . , λn and corresponding eigenvectors v1, . . . ,vn. From

direct verification, xTJJTx =
∑

(i,j)∈E(xi − xj)2 = xTLx ∀x. Hence, xTZx = 0 ∀x and in partic-

ular holds true for the eigenvectors, i.e., vT
i Zvi = λiv

T
i vi = 0. This implies that all eigenvalues λi

are 0 and hence Z = 0 implying JJT = L

Definition 2.6 A subgraph S(NS,ES) is formed from a graph G(N,E) such that NS ⊆ N and

ES contains all the edges with both endpoints in NS.

Definition 2.7 A partition of G(N,E) consists of two subgraphs S and S̄ such that NS̄ = N \NS

Definition 2.8 The cut-set of partition (S, S̄) is the set of all edges having one endpoint in NS

and the other in NS̄. Formally, cut(S, S̄) = E \ (ES ∪ES̄)

Definition 2.9 If each edge is associated with a cost, then the cut-cost of partition (S, S̄) is the

sum of costs of each edge present in the cut-set. We denote this with R(S, S̄)

Definition 2.10 Graph partitioning problem: Find a partition that minimizes R(S, S̄), while

satisfying certain constraints (typically cardinality constraints on NS). A partition is said to be

balanced if the number of nodes in the partitions are approximately equal.

3 Problem Formulation

In this section, we first present the problem statement in the most general form. Next, present

a protocol which describes our formulation and solution procedure. Finally, we also present an

example to illustrate both the problem and the protocol.

4

The general objective of leak detection is to locate the (or all) leaky unit (pipe or junction)

using the information that is available about the network. Invariably, additional information in the

form of some flow or pressure readings; and system parameters like effective dimension and friction

factor of pipes would be required. Hence, most leak detection procedures address in some form, the

trade-off between accuracy or confidence of identified leak and collection of additional information.

Due to difficulties in obtaining some of these parameters (like friction factor) and other reasons

specified in Section I, we explore a procedure which requires the use of only flow measurements

which are queried on demand. We first present the assumptions made in the formulation.

1. The WDN is in steady state condition.

2. The topology of the WDN (ie the graph representation) is known.

3. We possess portable flow meters which can detect the flow rate as well as direction. One

example is ultrasonic flow meters which use time of flight principle.

Additionally, we make the following assumptions to simplify and aid the presentation. We will later

show simple methods to avoid them.

1. All supply (source) and demand (consumption) flow rates are measured continuously. No

other permanent sensors are available. We later present techniques to incorporate any addi-

tional sensors that may be available.

2. There is only one leak in the network, and it is present in a node. The algorithm naturally

extends to multiple leaks and leaks along any point of the pipe as well.

3. The sensors measurements are noiseless. If the measurements contain random errors or bias,

we can overcome this by using various statistical techniques for decision making [11, 12].

With these assumptions, we now present the protocol. The goal is to find a partitioning algo-

rithm for the protocol that will minimize the Cost.

Protocol 1: Leak detection procedure

Input: Graph L(N,E) containing leaky node, δ (threshold)

Initialize: G← L; Cost ← 0

while size(G) > δ do
(S, S̄)← partition (G)

G← find leaky partition (S, S̄)

Cost ← Cost + R(S, S̄)

end

Result: Leaky node is in vertex set of G

Each step in the loop will be presented in greater detail in subsequent sections. We devote two

sections (4 and 5) for development of the partitioning algorithm. Section 3.1 provides an example

to illustrate the idea. Section 3.2 outlines the procedure to find the leaky partition using water

balance. Finally, we present some extensions to the protocol in Section 8 and appendix.

5

3.1 Illustrative Example

Consider the WDN shown in Fig. 2(a) where nodes S1, S2 are supply nodes, D1, D2, D3, D4 are

demand nodes, and T1 is a transmission node. The demand and supply rates are measured and the

values are presented next to the respective nodes (with signs). The different figures represent the

information that is uncovered about the network through the querying process. From Fig. 2(a),

we can see that a total of 30 flow units are supplied (at S1 and S2), whereas only 29 units are

consumed at the demand nodes (D1 to D4). Since the network is in steady state, this is possible

only when 1 unit of flow is removed from the system in the form of a leak. Thus, a water balance

reveals the presence of a leak, and our objective is to find the location.

It is clearly not possible to identify the leak based on Fig. 2(a), but only ascertain that there is

one. We make a query of measurement (M1) as shown, which produces the two partitions shown

in Fig. 2(b1) and Fig. 2(b2). A similar balance indicates that the leak is present in the sub-graph

comprised of the nodes {S1, T1, D1, D2}. Note that we must add the additional source term of M1

to the subgraph in order to account for the external flows to or from this subgraph. We proceed

further by querying additional edges for flows as shown in Fig. 2(d1) and Fig. 2(d2). This approach

can be mathematically formalized and presented as an optimization problem with the objective to

minimize the query cost in the protocol presented earlier.

D1

T1

D2

S1 S2

D3

D4

D1

T1

D2

S1 S2

D3

D4

D1

T1

D2

S1

D1

T1

D2

S1

-9

-10

+15 +15

-5

-5

-9

-10

+15

-5

-5

55 +15

M1

M1 M1

M1

M2

M3

M2

M3

M2

M3

-9

-10

7

13

7

13

5

(a) (b1) (b2)

(c) (d1) (d2)

+15

M1

Figure 2: Illustrative example on a simple flow network: Si, Di, Ti represent source, demand, and

transmission nodes respectively. Production and consumption rates are also shown.

6

3.2 Water balance for identifying leaks

Water balance is a special case of mass conservation. When considering a generic envelope encom-

passing a set of nodes and edges, it is possible to perform a water balance around this envelope given

knowledge of source and sink terms within the envelope (assumed known) and flow rates in the

pipes crossing the envelope boundary (which are to be measured/queried). This idea is illustrated

in Fig. 3. The generalized balance equation under steady state condition takes the form:

in + production = out + consumption

Hence knowledge of flow direction is required to correctly apply the balance equation, for which

we need appropriate instrumentation. If such instrumentation is not available, alternate methods

to ascertain flow direction must be used. One approach could be to use nominal case hydraulic

simulations, and assume the flow directions do not change in presence of leak. This is likely valid

only if the magnitude of leak is small. In general, we assume that either appropriate instrumentation

or alternate methods to find flow directions are available. For the envelope shown in Fig. 3, we see

that in=30, production=20, out=10, and consumption=35. Hence the balance is violated, and 5

units of flow are unaccounted for. Thus, the leak can be traced to this small part of a larger WDN.

0 -5

20

-10 -5

-10

-5

15

15

5

5

Figure 3: Envelope around a sub-network of source, sink, and transmission nodes

7

4 Graph Partitioning - ILP formulation

In this section we motivate the graph partitioning procedure and provide various Integer Linear

Programming (ILP) formulations for the same. As per Protocol 1, we require a partitioning al-

gorithm that will minimize the Cost. In practice, finding a partitioning algorithm or policy for

minimizing the cumulative Cost is difficult. This is because for any partition, we will not know

which subgraph contains the leak till the partition is actually made and the corresponding cost

incurred. Thus, the number of possibilities which we need to search over is exponentially large.

To overcome this, we provide an approximate approach or heuristic where at each iteration in the

protocol loop, we minimize only R(S, S̄) subject to some constraints which indirectly take into

account costs incurred in subsequent iterations.

We define an indicator variable x ∈ {0, 1}n that indicates the partition to which a node belongs.

Formally, xi is defined as follows: xi = 1 implies node i ∈ S and xi = 0 implies node i ∈ S̄. We

restrict our attention to the non-trivial case of a connected graph. Consider the kth element of

JTx, where edge k connects nodes i and j.

l=n∑
l=1

Jlk xl = Jikxi + Jjkxj

This is because only two rows of the kth column of J are non zero (by construction). Further,

assuming without loss of generality that i < j,

Jikxi + Jjkxj = xi − xj

We now make the following observations:

l=n∑
l=1

Jlkxl = xi − xj =


0 xi = 1, xj = 1 or xi = 0, xj = 0

1 xi = 1 & xj = 0

−1 xi = 0 & xj = 1

The cut-size is the number of non-zero entries in the vector JTx. This is related to R(S, S̄) as:

R(S, S̄) =
k=m∑
k=1

wk

∣∣∣∣∣
l=n∑
l=1

Jlk xl

∣∣∣∣∣ (1)

Where the cost of querying edge k is wk. When presenting the results, we set wk = 1∀k, but it is

clear that the method naturally extends to arbitrary values. As a proxy for minimizing the Cost,

we propose to minimize R(S, S̄) while ensuring that the partitions are balanced. This constraint is

important to avoid partitions that myopically reduce R(S, S̄) to provide lopsided partitions which

may endure large cut-costs in subsequent iterations. Parallels can be drawn with binary search,

except that in our problem cost for different splits are different. The two objectives of minimizing

R(S, S̄) and keeping the partition balanced are likely to be conflicting. Thus it is natural to pose

8

the problem generally as a multi-objective optimization problem.

min.
x

∣∣∣∣∣n− 2×
i=n∑
i=1

xi

∣∣∣∣∣ and

k=m∑
k=1

wk

∣∣∣∣∣
l=n∑
l=1

Jlk xl

∣∣∣∣∣
s.t. x ∈ {0, 1}n

(2)

We first propose to remove the absolute expressions so that we can formulate the problem as a

standard ILP. Consider the constraint:

2×
i=n∑
i=1

xi ≤ n

This serves dual purposes. Firstly, it removes the absolute value expression in the first objective.

Additionally, it helps in pruning the search space by removing symmetries. For any feasible solution

x the solution 1− x is equally valid and would produce the same value for the objective function.

By introducing the above constraint, this symmetry is broken. In order to remove the absolute

value expression in the second objective, we introduce two new m-vectors (t1 and t2) as decision

variables such that:

t1 − t2 = JT x

t1 + t2 ≤ 1

t1 ∈ [0, 1]m t2 ∈ [0, 1]m

Minimizing the second objective is now equivalent to minimizing
∑m

k=1 t1(k) + t2(k), since an

element of the vectors, t1(k) or t2(k) take the value 1 only when xi − xj = ±1, and are forced to 0

(minimization) whenever xi − xj = 0. Hence the optimization problem can now be written as:

min.
x,t1,t2

Size Disparity︷ ︸︸ ︷(
−2× 1Tx

)
and

Cut−Cost︷ ︸︸ ︷(
wTt1 + wTt2

)
s.t. t1 − t2 = JT x

t1 + t2 ≤ 1

1Tx ≤ 0.5n

x ∈ {0, 1}n t1 ∈ [0, 1]m t2 ∈ [0, 1]m

(3)

Since the problem formulation is that of a multi objective optimization problem, there are many

different ways to solve it. Each method is based on some notion of the relative importance of the

different objective terms. One simple method is to scalarize the objective function by assigning

relative weights to the different objective terms. In this case however, there is no obvious metric

to trade off one for the other. One suggested method in literature is normalized cuts [13], which

proposes a ratio measure. However, in our problem, the end goal is to minimize Cost, for which the

n-cut scalarization doesn’t have a clear physical interpretation. We study two different paradigms

which provide better physical insight for this application.

9

4.1 Lexicographic solution

The first method is that of a lexicographic optimization where the idea is that one objective is

infinitely more important than the other. Lexicographic solutions to multi objective optimization

has been extensively researched [14] and also successfully applied to sensor placement problems [15,

16]. Here the first objective is given precedence and is minimized first and among multiple solutions

which can achieve this, the one which minimizes the second objective is picked, and so on. In this

problem, we give more importance to the balanced partitioning objective, and admit only those

solutions which produce perfectly balanced partitions. Conceptually, among the
(
n
n/2

)
possible

solutions for obtaining balanced partitions, that solution which minimizes the cut-cost is chosen.

However, we do not explicitly enumerate all these possibilities, but instead solve the following ILP.

min.
x,t1,t2

wTt1 + wTt2

s.t. t1 − t2 = JT x

t1 + t2 ≤ 1

i=n∑
i=1

xi = bn
2
c

x ∈ {0, 1}n t1 ∈ [0, 1]m t2 ∈ [0, 1]m

(4)

4.2 Goal programming

The second method is goal programming, where we set a nominal goal for one objective. For

example, this can be introduced in the form of a constraint, so that the search space is confined

to those situations which meet this goal. We use this idea for our problem to get a good handle

over the partition sizes. By deviating a little from exact bisection, we may be able to reduce the

cut-size significantly. In such cases goal programming can be very effective. We assign a goal on

the partition size to take the form
∑n

i=1 xi ≥ (0.5− γ)n which guarantees a minimum size for both

partitions. γ is a parameter which defines the level of goal. Based on our simulations, a good choice

is γ = 0.1, so that partitions have a minimum size of 0.4n.

In (5), we have added an additional term to the objective function, ε
n1Tx. By choosing ε

appropriately, we can have ε
n1Tx < min(w) and hence less than the minimum possible change

in (wTt1 + wTt2). Thus, addition of this term cannot alter the optimal value of cut-cost. The

purpose of this term is to ensure that if there are multiple minimum cut-cost solutions which meet

the partition size goal, we would obtain the most balanced partition.

10

min.
x,t1,t2

wTt1 + wTt2 +
(
− ε
n

1Tx
)

s.t. t1 − t2 = JT x

t1 + t2 ≤ 1

i=n∑
i=1

xi ≤ b
n

2
c

i=n∑
i=1

xi ≥ d(
1

2
− γ)ne

x ∈ {0, 1}n t1 ∈ [0, 1]m t2 ∈ [0, 1]m

(5)

5 Graph Partitioning - Approximation

The general problem of graph partitioning with partition size or cardinality constraints are NP

hard [17]. Hence, the ILP models formulated in previous sections must be solved directly to obtain

the optimal solutions. For large problems, this may not be feasible, and hence we discus some

approximate solution methods.

The idea of approximation algorithms for ILPs involve two steps: relaxing some constraints

to solve a simpler problem, and a rounding-off step where solutions consistent with the actual

constraints are recovered from the relaxed solutions. Graph partitioning has many approximation

algorithms in literature which have been successfully used in different domains. For our application,

approximation algorithms have two uses: it can be used to find quick and reliable estimates of upper-

bound associated with the field campaign, thereby help make informed policy calls regarding the

feasibility of the field campaign. Additionally, it can also be used for the first few levels of very

large networks, where ILPs become computationally expensive. For the subsequent levels, when

network size has reduced greatly, the ILP algorithm can be used.

The relaxation step is both problem and application specific. For example, if one clearly knows

the sizes of the partition - a scenario common in circuit design where number of components to be

placed on a chip is known, a popular method of choice is the Kernighan and Lin algorithm [18]. This

method is not applicable to our problem since cut-cost is directly tied to our overall objective, and

partition sizes cannot be accurately predicted. Under such circumstances, methods from spectral

graph theory are more appropriate. Our approach in spirit follows from the goal programming

ILP formulation, and we ultimately arrive at a result which is similar to the spectral bisection

method [19] but with subtle differences and alternative interpretations.

Consider an assignment variable for nodes to different partitions chosen as z ∈ {−1, 1}n which

is equivalent to the earlier choice of x ∈ {0, 1}n through the transformation z = (2x−1). We again

wish to arrive at an assignment that minimizes cut-cost subject to partition size constraints.

R(S, S̄) =
1

2
‖JTz‖1 =

1

4
‖JTz‖22

11

where ‖.‖1 and ‖.‖2 represent the 1-norm and 2-norm respectively. For cases where edges have

different costs, we can use the simple modification: {Jik = wk, Jjk = −wk}∀k such that edge k

connects nodes i and j. In the previous section, the objective was formulated using the 1-norm.

We now choose to minimize the 2-norm to obtain an approximate analytical solution. Assigning

some relative cost µ (unknown) to the two objectives, the problem can be posed as:

min.
z

(
zTJJTz

)︸ ︷︷ ︸
Cut−Cost

+ µ
(
1Tz

)2︸ ︷︷ ︸
Size Disparity

s.t. z ∈ {−1, 1}n
(6)

The goal programming size constraint will be imposed explicitly at a later stage. We relax the

integral constraint on z, viz., z ∈ {−1, 1}n to z ∈ Rn and zTz = n. Next we express z using

the orthonormal set of eigenvectors of JJT. Let λ1, λ2, . . . , λn be the eigenvalues of JJT sorted

in ascending order with eigenvectors u1,u2, . . . ,un respectively. Defining U = [u1,u2, . . . ,un]

we can write z = Uα where α is the vector of projections onto u1,u2, . . . ,un. From Property

3.2, we have λ1 = 0, u1 = 1√
n

and λi > 0, i = 2, . . . , n. The constraint zTz = n is equivalent to

α2
1+α2

2+ ...+α2
n = n With this change of variables, the optimization problem in (6) after relaxation

becomes:

min.
α

α2
2λ2 + α2

3λ3...+ α2
nλn + nµα2

1

s.t. α2
1 + α2

2 + ...+ α2
n = n (7)

with λ2 ≤ λ3... ≤ λn. The above problem can be solved analytically as follows:

1. If nµ ≤ λ2, then α2
1 = n and αi = 0 ∀i 6= 1

2. If nµ > λ2, then α2
2 = n and αi = 0 ∀i 6= 2

The first solution indicates that if cut-cost is significantly more than cost associated with size

disparity in partitions, the obvious solution is to not partition at all. This solution is trivial and

is discarded. The second solution indicates that if cost associated with disparity is more than a

certain threshold, then the solution is to partition such that α2
2 = n. This suggests the assignment

choice as z =
√
nu2 where u2 is the eigenvector corresponding to the second smallest eigenvalue,

also known as the Fiedler vector. Since u2 6= 0 is orthogonal to u1 = 1√
n

, u2 is non-trivial. In

order to obtain an integer solution, we employ a simple round off procedure to obtain the solution

z that is consistent with problem specifications, and also maximizes α2
2. The final solution is:

z = sgn(u2)

Note that the above solution maximizes α2
2 which is only an approximation of the original problem.

In order to minimize the true problem (6), we need to consider the relative magnitudes of the dif-

ferent eigenvalues which is possible only in a combinatorial setting. In fact, it is this approximation

that enables us to arrive at a computationally tractable solution.

12

Partitioning based on entries of Fiedler vector is known by the name of spectral bisection [19]

and is known to produce skewed partitions [13]. This problem can be tackled by explicitly imposing

a goal programming constraint as shown in Figure 4. We sort the entries of u2 in ascending order,

and normally assign partitions based on sign of the entry corresponding to each node. If we get

skewed partitions, we can cut-off the partitions at the threshold defined by the minimum partition

sizes. This is shown schematically in Fig.4. This assignment ensures that α2
2 is maximized when

adhering to the partition size constraints. This is because there is a fixed number of sign mismatches

that would occur between zi and u2(i) which reduces the value of α2 from its maximum possible

value. By sorting and assigning nodes to partitions such that sign mismatches always occur with

u2(i) of least magnitude, the maximum possible value of α2 is achieved in presence of the partition

size constraint.

Remark: While we have presented two methods here (ILP and approximation scheme) which

work well for the target application as seen through case studies, researchers have attempted other

approximation algorithms, and the field of graph partitioning is very rich in literature. Some of

these methods employ the use of semi-definite programming and randomized algorithms [20, 17].

We do not present the results of these algorithms since the size of benchmark networks considered

in this paper were not large enough to render ILPs computationally infeasible, and the spectral

bisection method provides adequate performance. However, if necessary, it is trivial to incorporate

other approximate partitioning methods into Protocol 1.

Sorted Node Index

0 n

Partition 1
Partition 2
(0.5−γ)n
(0.5+γ)n
y=0

0 n 0 n

Figure 4: Incorporating size restriction to approximation algorithm.

13

6 Results and Discussion

To test the proposed methods, we have chosen representative water distribution networks used

frequently in literature. These include the EXNET, Richmond, DTown, and Colorado Springs

networks. Researchers [21] have studied the topology of these networks, with emphasis on analyzing

properties like link density, clustering coefficient, betweenness centrality etc.

We have chosen these networks due to the wide spectrum of size, formation, and organizational

patterns; and hence representative of most WDNs [21]. The EXNET network is a large realistic

benchmark problem used for multi-objective optimization of water systems. The Colorado Springs

network is an example with multiple water supply sources, while the Richmond network is a sub-

network of the Yorkshire Water system in the UK with a single reservoir. The DTown network

was used in the Battle of the Water Network II (BWN-II) as a design problem. In addition, we

have also tested the algorithm on one sector of the Bangalore water distribution network, which is

smaller in size compared to the other “full” networks, to study how the methods perform at smaller

scales. Some important properties of these networks are summarized in Table 1. The layouts of

these networks are illustrated in Fig. 5

Table 1: Properties of the networks studied. (n and m are the number of nodes and edges respec-

tively; q is the link density (2m
n(n−1)); < k > and kmax are the mean and maximum node degrees)

Network n m q < k > kmax

Exnet 1893 2418 1.35e-3 2.55 10

CO. Springs 1786 1992 1.25e-3 2.23 4

Richmond 872 957 2.52e-3 2.20 4

Dtown 401 459 5.72e-3 2.29 5

Bangalore 150 155 1.43e-2 2.07 5

14

(a) Exnet network

(b) Colorado Springs

(c) DTown network

(d) Bangalore network

Figure 5: Layouts of the different networks considered in this paper. Network structure and layout

was obtained from the website of The Centre for Water Systems at the University of Exeter.

6.1 Case Study 1 - Leak in nodes

In the first case study, we assume that leaks are always present in nodes. This is a continuation of

the assumptions made in the problem formulation. We choose to apply the algorithm repeatedly

till we find the leaky node (this corresponds to δ = 1 in Protocol 1). We simulate the leak in every

node, and apply the protocol repeatedly till we find it, and record the number of queries required.

This corresponds to a full enumerative study since we iterate over every possible leak scenario. The

summary statistics are tabulated in Tables 2 and 3.

15

For the goal programming formulation, a nominal goal of γ = 0.1 was chosen. This corresponds

to requirement that both partitions have at least 0.4n nodes. As expected, the number of queries

required are minimal when solving the goal programming ILP. It is also observed that the approx-

imation algorithm performs reasonably well, with the number of queries much smaller than the

size of network (both nodes and edges). As an example, when using the goal programming ILP

formulation, for the largest network Exnet, the maximum number of queries required is only 1.7%

of the number of edges. For the Bangalore network, which is the smallest considered, about 8.4%

of the edges need to be queried in the worst case. This is expected since in small networks or

sub-networks, modular features are less prominent. Similar trends are observed when using the

approximation algorithm as well. Under worst case scenario, the fraction of queries (against edges)

required when using the approximation method is 2.9% for Exnet and 8.4% for Bangalore.

Table 2: Results of ILP using Goal-Programming method

Network Number of measurements

mean median mode max std

Exnet 29.74 31 34 42 5.88

CO. Springs 23.78 22 22 38 4.92

Richmond 11.80 11 10 20 2.23

Dtown 11.10 11 10 16 1.60

Bangalore 10.44 10 10 13 1.10

Table 3: Results of approximation algorithm

Network Number of measurements

mean median mode max std

Exnet 54.58 53 50 71 6.40

CO. Springs 35.90 33 31 51 6.81

Richmond 13.56 13 13 23 3.38

Dtown 12.26 12 12 18 1.78

Bangalore 10.31 10 9 13 1.37

6.2 Case Study 2 - Leak in edges/pipes

In most practical cases, it is unlikely that leaks can be present only in nodes. In general, we would

not know upfront the nature of leak (whether it is at a node or on a pipe). In the appendix, we

discuss a simple modification of the method to enable leak detection in pipes as well.

For this case study, we again run the protocol till we find the leaky pipe, though it can be

stopped prematurely if required. As an illustration consider the situation shown in Fig. 6(a) which

contains a leaky pipe shown in red. We query different edges in sequence as shown in Fig. 6(b,c,d)

16

where the thick black lines indicate pipes that are queried. The process is continued till we converge

to the leaky pipe. We again perform a full enumerative study to generate the results presented in

Tables 4 and 5.

For goal programming, we set γ = 0.1. Similar trends to Case Study 1 are observed where the

ILP GP formulation performs well and requires only a small fraction of queries. For the largest

network, only 2.3% of edges are queried, and for the smallest network, about 11% of the edges are

queried, in the worst case when using the goal programming ILP formulation.

Table 4: Results of ILP using Goal-Programming method

Network Number of measurements

mean median mode max std

Exnet 34.00 35 34 55 6.73

CO. Springs 26.20 25 24 45 5.11

Richmond 14.00 13 12 25 2.85

Dtown 13.13 13 12 22 2.31

Bangalore 12.10 12 12 17 1.28

Table 5: Results of approximation algorithm

Network Number of measurements

mean median mode max std

Exnet 48.37 50 59 85 13.32

CO. Springs 39.52 38 31 59 7.93

Richmond 15.50 15 14 35 3.95

Dtown 15.35 15 14 29 3.18

Bangalore 12.00 12 11 18 1.65

17

(a) network with leaky pipe

(b) first set of queries

(c) second set of queries

(d) third set of queries

Figure 6: Sequence of pipes that are queried to identify the leak shown in (a) in red.

7 Conclusion

An effective graph partitioning based protocol to locate leaky units in water distribution networks is

proposed. The protocol involves solving a multi-objective optimization problem that approximately

models hierarchical graph partitioning. It was observed that a goal programming formulation han-

dles the multiple objectives in an effective manner, producing high quality solutions. An approx-

imate partitioning algorithm inspired by spectral clustering was also presented, and the results

discussed. The performance of the protocol and various formulations was elucidated through case

studies on standard water distribution networks. It was observed that only a very small fraction of

pipes need to be queried for flow measurements, in order to find the leak location.

18

8 Extensions and Future Work

In this section, we propose possible methods to avoid some assumptions made earlier. We also

propose possible extensions and future work.

8.1 Leaks in pipes

As outlined earlier, extending the proposed protocol to include leak in pipes requires introducing

more notations and modifying the protocol. For sake of brevity, we have presented this extension

in the appendix.

8.2 Using existing sensors

In the original problem formulation and protocol in Section 3, we assumed that pre-installed sensors

are not available. Whenever a measurement was required, a query or act of measurement must be

performed to obtain the flow rate. However, for well designed WDNs, some pipes would already

be fitted with permanent sensors. This could be for DMA sectorization, or other monitoring

requirements. In addition to sensors, we can also make use of valves by completely closing the

valve through which we indirectly know that the flow rate in that pipe is zero. If such a disruptive

method is not desirable, then the use of valves can be avoided. One method to incorporate these

factors is to simply assign a very low querying cost to those pipes which have valves or sensors

installed on them so that partitions containing them are favored over others. An extreme case of

this is to simply remove those edges which have sensors on them from the network before running

the partitioning algorithm and then use the appropriate flow rates when performing the water

balance.

8.3 Multiple leaks

The proposed algorithm can be very naturally extended to cases where there are multiple leaks.

In such a scenario, more than one sub-network would show an imbalance at some stage of the

hierarchical partitioning exercise. After this point, we apply the same method to each of these

sub-networks with imbalances. The only binding assumption in such a case is the absence of any

material ingress - i.e. all the leaks are material losses out of the network, and water cannot enter

the network through pipe ruptures.

19

Protocol 2: Leak Detection Protocol
Data: Graph G(N,E) containing leaky node, δ (threshold)

Initialize: Cost ← 0; LeakySet ← {}
Procedure: (LeakySet, Cost) ← FindLeak(G, Cost, δ, LeakySet)

Result: Leaky node(s) in LeakySet

Function FindLeak(G, RunningCost, δ, LeakySet)

if size(G) > δ then
(S, S̄)← partition (G)

Cost ← RunningCost + R(S, S̄)

if Leaky(S) then
(LeakySet, Cost) ← FindLeak(S, Cost, δ, LeakySet)

end

if Leaky(S̄) then
(LeakySet, Cost) ← FindLeak(S̄, Cost, δ, LeakySet)

end

end

else
LeakySet ← LeakySet + NG

Cost ← RunningCost
end

Return: (LeakySet, Cost)

8.4 Different partitioning criteria

In our work, we have tried to obtain partitions that are balanced in size of the sub-networks

(measured in number of nodes). There are possibly alternate criteria for balanced partitions that

take into account domain specific knowledge. For instance, if a probability distribution for leak

occurrences in various nodes are available, we might want to obtain partitions that are balanced in

this probability. This information could be obtained for instance through historical data or models

utilizing network properties like pipe lengths, roughness factors etc. For instance, total length of

pipe in a partition could be related to the probability of leak occurrence within the partition. It is

easy to observe that node properties (like leak probability) can be easily incorporated into the ILP

and Approximate algorithms. However, it is not trivial to partition based on edge attributes (like

pipe length) which is a line of work we plan to pursue in the future.

Acknowledgments

This work was partially supported by the Department of Science and Technology, India under

the Water Technology Initiative (DST/TM/WTI/2K13/144) and the IIT Madras Interdisciplinary

laboratory for data sciences (CSE/14-15/831/RFTP/BRAV).

20

References

[1] A. Colombo and B. Karney, “Energy and costs of leaky pipes: Toward comprehensive picture,”

Journal of Water Resources Planning and Management, vol. 128, no. 6, pp. 441–450, 2002.

[2] R. Puust, Z. Kapelan, D. A. Savic, and T. Koppel, “A review of methods for leakage manage-

ment in pipe networks,” Urban Water Journal, vol. 7, no. 1, pp. 25–45, 2010.

[3] F. Gonzalez-Gomez, M. A. Garca-Rubio, and J. Guardiola, “Why is non-revenue water so

high in so many cities?,” International Journal of Water Resources Development, vol. 27,

no. 2, pp. 345–360, 2011.

[4] W. Mpesha, S. Gassman, and M. Chaudhry, “Leak detection in pipes by frequency response

method,” Journal of Hydraulic Engineering, vol. 127, no. 2, pp. 134–147, 2001.

[5] Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F. Akyildiz,

“Mise-pipe: Magnetic induction-based wireless sensor networks for underground pipeline mon-

itoring,” Ad Hoc Networks, vol. 9, no. 3, pp. 218 – 227, 2011.

[6] A. F. Colombo, P. Lee, and B. W. Karney, “A selective literature review of transient-based

leak detection methods,” Journal of Hydro-environment Research, vol. 2, no. 4, pp. 212 – 227,

2009.

[7] J. Liggett and L. Chen, “Inverse transient analysis in pipe networks,” Journal of Hydraulic

Engineering, vol. 120, no. 8, pp. 934–955, 1994.

[8] M. Stephens, M. Lambert, A. Simpson, J. Vitkovsky, and J. Nixon, Field Tests for Leak-

age, Air Pocket, and Discrete Blockage Detection Using Inverse Transient Analysis in Water

Distribution Pipes, ch. 471, pp. 1–10. 2004.

[9] M. Stephens, A. Simpson, M. Lambert, and J. Vtkovsk, Field Measurements of Unsteady

Friction Effects in a Trunk Transmission Pipeline, ch. 18, pp. 1–12. 2005.

[10] N. Deo, Graph theory with applications to engineering and computer science. Prentice-Hall,

Inc., 1974.

[11] S. Narasimhan and N. Bhatt, “Deconstructing principal component analysis using a data

reconciliation perspective,” Computers & Chemical Engineering, vol. 77, pp. 74 – 84, 2015.

[12] A. Rajeswaran and S. Narasimhan, “Network topology identification using PCA and its graph

theoretic interpretations,” arXiv preprint arXiv:1506.00438v2 [cs.LG], 2015.

[13] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 888–905, 2000.

[14] H. Sherali and A. Soyster, “Preemptive and nonpreemptive multi-objective programming:

Relationship and counterexamples,” Journal of Optimization Theory and Applications, vol. 39,

no. 2, pp. 173–186, 1983.

[15] M. Bhushan and R. Rengaswamy, “Comprehensive design of a sensor network for chemical

21

plants based on various diagnosability and reliability criteria. 1. framework,” Industrial &

Engineering Chemistry Research, vol. 41, no. 7, pp. 1826–1839, 2002.

[16] M. Bhushan, S. Narasimhan, and R. Rengaswamy, “Robust sensor network design for fault

diagnosis,” Computers & Chemical Engineering, vol. 32, no. 45, pp. 1067 – 1084, 2008.

[17] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric embeddings and graph parti-

tioning,” J. ACM, vol. 56, pp. 5:1–5:37, Apr. 2009.

[18] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell

System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[19] A. Pothen, H. Simon, and K. Liou, “Partitioning sparse matrices with eigenvectors of graphs,”

SIAM Journal on Matrix Analysis and Applications, vol. 11, no. 3, pp. 430–452, 1990.

[20] V. Guruswami and A. Sinop, “Lasserre hierarchy, higher eigenvalues, and approximation

schemes for graph partitioning and quadratic integer programming with psd objectives,” in

Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pp. 482–

491, Oct 2011.

[21] A. Yazdani and P. Jeffrey, “Complex network analysis of water distribution systems,” Chaos:

An Interdisciplinary Journal of Nonlinear Science, vol. 21, no. 1, 2011.

22

Appendix

In the main text, we presented the algorithm for finding leaks when they occur in nodes. However,

in some cases, leaks may occur at any point along pipes as well. We now present an extension of

the method for this case. We continue under the following assumptions:

1. The WDN is in steady state condition.

2. The topology of the WDN (ie the graph representation) is known.

3. Flow meters can measure the flow and also detect the direction.

We first present the idea for the simplistic case where there is a single leak and sensors are

noiseless. Cosinder the graph G which contains the leak (either the full network, or network under

consideration in some step of the recursive procedure). We consider a possible partition into S and

S̄ by querying flows in cut(S, S̄). For the above scenario, a straightforward approach to querying a

pipe is to measure the flows at both it’s end points – very close to the node, as shown in Fig. 7). If

the flow at M1 and M2 do not match, it is clear the leak is in the pipe. However, if the flow rates

at M1 and M2 are equal, then the leak is definitely not in this pipe. Following a similar procedure

for all the pipes in cut(S, S̄), we can trace the leak to either S or S̄ exactly . In other words, the

leaky node or pipe is within the partition. We would of course need to account for the flows by

adding source or sink terms to the nodes on which the connecting pipes were incident. For example,

in Fig. 7, we need to add the flow rate in e5 by adding a source or sink term at nodes 4 and 5,

depending on the direction of flow. In this strategy, the cost will be twice the cut-cost.

However, it is possible to reduce the cost with some modifications. When querying a pipe for the

first time, rather than making two measurements, we can measure the flow at a single point close to

the center. In this case however, the leak need not be in the interior of either partition. Since leaks

can occur at any point on a pipe, the half-pipe segments of the crossing pipes (part of cut-set) could

contain the leak. Thus we most modify our definition of partition to include these pipe segments

as well (which are incident on only one node). We do this by introducing an artificial node at the

point of measurement. Thus an edge between an actual node and artificial node represents a pipe

segment. With this modification, the recursive procedure proposed in the main paper can be used.

After many recursion steps, we may come to a stage where we need to query an edge between an

actual node and artificial node. This amounts to measuring a pipe for the second time, where we

1

2

3

4 5

6

7

e1

e2

e3

e5

e6

e7

e8

e4

1

2

3

4

e1

e2

e3

e4

5

6

7

e6

e7

e8

M1 M2

±M1 ±M2

Figure 7: Taking measurements close to nodes

23

already have one measurement for the pipe. In such a case, the second measurement is made close

to the actual node. If this measurement does not match with the flow measurement obtained at the

artificial node, then the pipe segment contains the leak and the process can be stopped. When the

measurements match, we continue with the recursive procedure by eliminating the pipe segment.

In this procedure, only a few pipes will be measured twice and, therefore, the cumulative number

of measurements required will be lower. For illustration, consider the situation shown in Fig. 8.

An artificial node at point of measurement in added and the corresponding incidence matrix is:

J =

e1 e2 e3 e4 eM1


n1 1 0 1 0 0

n2 −1 1 0 0 0

n3 0 −1 0 1 0

n4 0 0 −1 −1 1

M1 0 0 0 0 −1

1

2

3

4 5

6

7

e1

e2

e3

e5

e6

e7

e8

e4

1

2

3

4

e1

e2

e3

e4

M1

eM1

Figure 8: Illustration of an artificial node (M1)

24

	1 Introduction
	2 Review of Algebraic Graph Theory
	3 Problem Formulation
	3.1 Illustrative Example
	3.2 Water balance for identifying leaks

	4 Graph Partitioning - ILP formulation
	4.1 Lexicographic solution
	4.2 Goal programming

	5 Graph Partitioning - Approximation
	6 Results and Discussion
	6.1 Case Study 1 - Leak in nodes
	6.2 Case Study 2 - Leak in edges/pipes

	7 Conclusion
	8 Extensions and Future Work
	8.1 Leaks in pipes
	8.2 Using existing sensors
	8.3 Multiple leaks
	8.4 Different partitioning criteria

