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• We present asingle-shooting algorithm for optimal control of UV flash processes. 

• The algorithm uses an adjoint method to compute gradients. 

• We formulate the optimal control problem as a bilevel optimization problem. 

• A simultaneous approach for UV flash simulation is faster than a nested approach. 

• We compare optimization software, linear algebra software, and compilers. 
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An algorithm for gradient-based dynamic optimization of UV flash processes

Tobias K. S. Ritschel, Andrea Capolei, Jozsef Gaspar, John Bagterp Jørgensen∗

Department of Applied Mathematics and Computer Science & Center for Energy Resources Engineering (CERE),
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

This paper presents a novel single-shooting algorithm for gradient-based solution of optimal control problems with vapor-liquid
equilibrium constraints. Such optimal control problems are important in several engineering applications, for instance in control
of distillation columns, in certain two-phase flow problems, and in operation of oil reservoirs. The single-shooting algorithm uses
an adjoint method for the computation of gradients. Furthermore, the algorithm uses either a simultaneous or a nested approach
for the numerical solution of the dynamic vapor-liquid equilibrium model equations. Two numerical examples illustrate that the
simultaneous approach is faster than the nested approach and that the efficiency of the underlying thermodynamic computations
is important for the overall performance of the single-shooting algorithm. We compare the performance of different optimization
software as well as the performance of different compilers in a Linux operating system. These tests indicate that real-time nonlinear
model predictive control of UV flash processes is computationally feasible.

Keywords: Dynamic optimization, Optimal control, Adjoint algorithm, Single-shooting, UV flash, Vapor-liquid equilibrium

1. Introduction

Dynamic optimization, also called optimal control, is con-
cerned with computing an open-loop control strategy that ma-
nipulates a dynamical system in such a way that it optimizes
some performance measure, e.g expected profit or deviation
of a product quality from a target (Betts, 2001; Binder et al.,
2001; Bryson, Jr., 1999; Diehl et al., 2009; Zavala and Biegler,
2009). Systems modeled by mass and energy balances and sub-
ject to vapor-liquid equilibrium constraints occur in a number
of important process engineering applications, e.g. distillation
(Biegler, 2010; Bisgaard et al., 2015, 2017; Diehl et al., 2002;
Luyben, 1992; Stichlmair and Fair, 1998), cryogenic distillation
(Laiglecia et al., 2012), and two-phase flow in pipelines (Ham-
mer and Morin, 2014; Qiu et al., 2014). Vapor-liquid equilib-
rium constrained mass and energy conservation models also oc-
cur for a number of subsurface flow processes related to CO2
sequestration (Stauffer et al., 2009), magmatic hydrothermal
flow (Ingebritsen et al., 2010), and production of oil from an
oil reservoir (Li and Johns, 2006; Lucia et al., 2012; Zaydullin
et al., 2014). The UV flash is a single stage vapor-liquid equi-
librium process and is thus a key component in rigorous model-
ing of fluid vessels and flash drums (Arendsen and Versteeg,
2009; Castier, 2010; Lima et al., 2008), distillation columns
(Flatby et al., 1994), two-phase computational fluid dynami-
cal problems (Qiu et al., 2014), and thermal and compositional
oil reservoir flow (Zaydullin et al., 2014). While advanced al-
gorithms for robust simulation of the UV flash problem exist

∗Corresponding author.
Email addresses: tobk@dtu.dk (Tobias K. S. Ritschel), acap@dtu.dk

(Andrea Capolei), joca@dtu.dk (Jozsef Gaspar), jbjo@dtu.dk (John
Bagterp Jørgensen)

(Castier, 2009; Saha and Carroll, 1997), no algorithm for dy-
namic optimization of UV flash processes seems to exist in the
open literature. Dynamic optimization of UV flash processes
was first explained by Ritschel et al. (2017a,b). The UV flash
problem is also known as the isoenergetic-isochoric flash prob-
lem or the UVn flash problem. UVn refers to specification of
the internal energy, U, the total volume, V , and the total ma-
terial amount (moles), n. The second law of thermodynamics,
i.e. the entropy of a closed system is maximal, is used to de-
termine the equilibrium composition with U, V , and n specified
(Michelsen, 1999). The UV flash problem is different from the
more common PT flash problem that occurs in steady-state op-
timization problems. However, it can be demonstrated that the
PT flash problem with additional constraints on the internal en-
ergy, U, and the volume, V , is equivalent to the UV flash prob-
lem. Algorithmic oriented approaches to dynamic optimization
of vapor-liquid equilibrium processes use a nested method in
which PT flash problems are solved in the inner loop, and outer
loops converge the internal energy, U, and volume, V , to their
specified values.

In this paper, we develop a single-shooting algorithm for
solution of dynamic optimization problems with vapor-liquid
equilibrium constraints, i.e. an algorithm for dynamic opti-
mization of the UV flash problem. The key novelties of our
algorithm are that an adjoint method is used for the compu-
tation of gradients (Jørgensen, 2007) and that the problem is
formulated as a bilevel optimization problem. The numerical
integration of the semi-explicit index-1 differential algebraic
(DAE) system is the key computational operation in the single-
shooting method. The DAE systems can be solved numerically
with either a simultaneous approach or with a nested approach.
The discretized differential equations and the equilibrium con-

Preprint submitted to Computers and Chemical Engineering August 31, 2017
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ditions are solved simultaneously in the simultaneous approach.
In the nested approach, the equilibrium conditions are solved in
an inner loop for each evaluation of the discretized differential
equations. The key potential advantage of a nested approch is
that well established algorithms for the PT-flash may be used in
the inner loop. We report numerical results as well as the com-
putational performance for implementations in C and Matlab
using different optimization software, different linear algebra
software, and different compilers. The computations confirm
previous results in which the simultaneous approach is faster
than a nested approach (Wilhelmsen et al., 2013). Hence, the
performance of the single-shooting algorithm depends on the
efficiency of the thermodynamic function evaluations and the
numerical linear algebra, but also on whether the equilibrium
equations are solved simultaneously with the differential equa-
tions or in a loop nested to the differential equations.

Previously, Kourounis et al. (2014) developed an adjoint
method for gradient-based optimization of compositional reser-
voir flow. Their model included isothermal and isobaric (con-
stant temperature and pressure) vapor-liquid equilibrium pro-
cesses, but not the isoenergetic-isochoric situation considered
in this paper. Alternatives to the single-shooting method exist.
They are the multiple-shooting method (Bock and Plitt, 1984;
Capolei and Jørgensen, 2012) and the simultaneous method
(Biegler, 2007). Both methods have been applied to opti-
mal control problems with vapor-liquid equilibrium constraints
(Raghunathan et al., 2004; Schäfer et al., 2007). The key in-
sight in our formulation of the vapor-liquid equilibrium is that
it may be formulated as an equality constrained optimization
problem (Michelsen, 1999), which in the UV-flash case is a
natural and intuitive representation of the second law of ther-
modynamics; i.e. the entropy is maximal of a closed system
with fixed energy, volume and mass. Accordingly, optimal con-
trol problems with vapor-liquid equilibrium constraints belong
to a class of bilevel optimization problems (Colson et al., 2007)
and also to the closely related class of mathematical programs
with equilibrium constraints (Luo et al., 1996; Outrata et al.,
2013). This structure is exploited in the efficient computation
of the resulting index-1 differential-algebraic system and its ad-
joints. However, it should be noted that we only consider the
situation with both phases (vapor and liquid) present, but not
the more complicated situation in which phases can appear and
disappear (Biegler, 2010; Sahlodin et al., 2016; Watson et al.,
2017).

This paper is organized as follows. Section 2 presents the op-
timal control problem in consideration. Section 3 presents the
single-shooting algorithm based on both the simultaneous ap-
proach and the nested approach. Section 4 describes a dynami-
cal UV flash model, and Section 5 demonstrates the equivalence
between the UV flash problem and a PT flash problem with ad-
ditional constraints on the internal energy and the volume. Sec-
tion 6 discusses the implementation of the single-shooting algo-
rithm. Section 7 presents numerical solutions to a tracking-type
control problem and an economical control problem. Section 8
presents a numerical performance study. Conclusions are given
in Section 9.

2. Optimal control problem

We consider the following optimal control problem (OCP)

min
[x(t);y(t);z(t)]

t f
t0
,{uk}k∈N

φ = φ
(
[y(t); u(t); d(t)]t f

t0

)
(1a)

subject to

x(t0) = x̂0, (1b)
G(x(t), y(t), z(t)) = 0, t ∈ T , (1c)
ẋ(t) = F(y(t), u(t), d(t)), t ∈ T , (1d)
u(t) = uk, t ∈ [tk, tk+1[, k ∈ N , (1e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈ N , (1f)
{uk}k∈N ∈ U, (1g)

where the objective function, φ, is in Lagrange form

φ =

∫ t f

t0
Φ(y(t), u(t), d(t))dt. (2)

x(t) is the state vector, y(t) is a vector of algebraic variables, and
z(t) is a vector of adjoint algebraic variables. The estimated ini-
tial state, x̂0, and the predicted disturbances, {d̂k}k∈N , are param-
eters in the optimization problem. [x(t); y(t); z(t)]t f

t0 is a vector
of dependent decision variables, and {uk}k∈N are independent
decision variables. The time horizon is T = [t0, t f ], and the
indices of the control intervals are N = {0, 1, . . . ,N − 1}.

The OCP (1) includes algebraic constraints (1c) and differ-
ential equations (1d). The equilibrium conditions for an equi-
librium process can be formulated as the Karush-Kuhn-Tucker
(KKT) conditions of an optimization problem. The algebraic
constraints (1c) are formulated such that they can represent such
KKT conditions. The differential equations (1d) are obtained
from conservation principles, and the states, x(t), represent the
conserved quantities. The right-hand side in (1d) depends on
the algebraic variables, y(t), which are implicit functions of the
states through the algebraic constraints (1c), i.e. y(t) = y(x(t)).
We assume that it is possible to solve G(x(t), y(t), z(t)) = 0 for
y(t) = y(x(t)) and z(t) = z(x(t)) when x(t) is given. This is
true for the vapor-liquid equilibrium processes considered in
this work. We define the objective function, ψ, as

ψ = ψ({uk}k∈N ; x̂0, {d̂k}k∈N ) =

{
φ : (1b)-(1f)

}
. (3)

Given {uk}k∈N , x̂0, and {d̂k}k∈N this defines ψ as the objective
function, φ, obtained from (2) using the solution of (1c)-(1d)
with x(t0) = x̂0, u(t) = uk for t ∈ [tk, tk+1[ and k ∈ N , and
d(t) = d̂k for t ∈ [tk, tk+1[ and k ∈ N , i.e. (1b) and (1e)-(1f). Fig.
1 illustrates the discretization of the inputs and the numerical
computation of the continuous states. This is the principle that
is used to compute ψ in the single-shooting algorithm. With ψ
defined by (3), the OCP (1) with the objective function (2) can
be expressed as the finite-dimensional constrained optimization
problem

min
{uk}k∈N

ψ = ψ
(
{uk}k∈N ; x̂0, {d̂k}k∈N

)
(4a)

s.t. {uk}k∈N ∈ U. (4b)

2
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Figure 1: Sketch of the principle in the single-shooting method. The controls,
u(t), are discretized in time and the continuous states, x(t), are considered func-
tions of the controls. The objective function is evaluated by solving the dynamic
equations for a given set of controls.

The set U is often a polyhedron such that the constraints (4b)
can be expressed as umin ≤ u ≤ umax and bl ≤ Au ≤ bu

where u = [u0; u1; . . . ; uN−1]. Gradient-based optimization al-
gorithms for solving the nonlinear program (4), and thus the
optimal control problem (1), require evaluation of the objec-
tive function, ψ, and the gradients, {∇ukψ}k∈N . This involves the
numerical solution of the differential-algebraic equations (1c)-
(1d) and the computation of the integral (2).

2.1. Equilibrium constraints

The equilibrium processes that we consider can be described
as the solution to the following parametric optimization prob-
lem

min
y

f (y) (5a)

s.t. g(y) = x, (5b)
h(y) = 0. (5c)

The Langrange function associated with the equilibrium opti-
mization problem (5) is

L(y, η, µ; x) = f (y) − ηT (g(y) − x) − µT h(y), (6)

where η and µ are Lagrange multipliers associated with (5b) and
(5c), respectively. The KKT conditions (first order optimality
conditions) for a minimizer (y = y(x), η = η(x), µ = µ(x)) are

∇yL(y, η, µ; x) = ∇ f (y) − ∇g(y)η − ∇h(y)µ = 0, (7a)
∇ηL(y, η, µ; x) = −(g(y) − x) = 0, (7b)
∇µL(y, η, µ; x) = −h(y) = 0. (7c)

By introducing the vector z = [η; µ], we can rewrite the system
(7) as

G(x, y, z) = 0, (8)

which is equivalent to the algebraic constraints (1c).

3. Numerical solution

This section describes the numerical algorithms for the com-
putation of the objective function, ψ, defined in (3) as well as

the gradients with respect to the controls, {∇ukψ}k∈N . The evalu-
ation of ψ requires the solution of the semi-explicit differential-
algebraic initial value problem

x(t0) = x̂0, (9a)
G(x(t), y(t), z(t)) = 0, t ∈ T , (9b)
ẋ(t) = F(y(t), u(t), d(t)), t ∈ T . (9c)

When [y(t); u(t); d(t)]t f
t0 is given, ψ = φ is computed by quadra-

ture. An implicit method must be used for efficient numeri-
cal solution of the system (9) because it is stiff. There exists
several implicit methods such as ESDIRK methods (Kristensen
et al., 2004; Völcker et al., 2010) and BDF based methods (Bar-
ton and Lee, 2002; Tolsma and Barton, 2000). In this work,
we use Euler’s implicit method. Furthermore, we describe the
computation of the gradients, {∇ukψ}k∈N , by an adjoint method
(Capolei and Jørgensen, 2012; Capolei et al., 2012; Jørgensen,
2007; Völcker et al., 2011). These gradients (or sensitivities)
may also be computed by a forward method (Kristensen et al.,
2004, 2005).

As described in Section 2, the time horizon, [t0, t f ], is di-
vided into N control intervals. There can be several time
steps in each control interval, but for ease of notation, we as-
sume that there is only one time step for each control interval.
We consider both a simultaneous approach and a nested ap-
proach for the numerical solution of the differential-algebraic
system (9). In the simultaneous approach the discretized dif-
ferential equations, Dk+1 = 0, and the algebraic equations,
G(xk+1, yk+1, zk+1) = 0, are solved simultaneously for the state
variables, xk+1, the algebraic variables, yk+1, and the adjoint al-
gebraic variables, zk+1. In the nested approach, the discretized
differential equations, Dk+1 = 0, are solved by iterating on the
state variables, xk+1, in an outer loop. For each iterate of xk+1
the algebraic variables, yk+1 = y(xk+1), and the adjoint algebraic
variables, zk+1 = z(xk+1), are computed by solving the algebraic
equations, G(xk+1, yk+1, zk+1) = 0, in an inner loop. The two
approaches are briefly described in the following subsections.

3.1. The simultaneous approach
Define w = [x; y; z] and the residual function

Rk+1 = Rk+1(wk+1) = Rk+1(wk+1; xk, uk, d̂k)

= Rk+1(xk+1, yk+1, zk+1; xk, uk, d̂k)

=

[
Dk+1(xk+1, xk, yk+1, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
, k ∈ N ,

(10)

where the function Dk+1 = Dk+1(xk+1, xk, yk+1, uk, d̂k) is

Dk+1 = xk+1 − xk − ∆tkF(yk+1, uk, d̂k). (11)

Euler’s implicit method for the system (9) corresponds to solv-
ing the residual equations

Rk+1 = Rk+1(wk+1) = 0, k ∈ N , (12)

for {wk+1}k∈N by sequentially marching forward when x0 = x̂0,
{uk}k∈N , and {d̂k}k∈N are given. We solve the residual equations

3
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(12) with an inexact Newton method, i.e. by solving the follow-
ing sequence of linear systems

wm+1
k+1 = wm

k+1 −
(
Mm

R
)−1 Rk+1(wm

k+1). (13)

The initial guess for the Newton iterations, w0
k+1, is the states,

the algebraic variables, and the adjoint algebraic variables in the
previous time step, i.e. wk = [xk; yk; zk]. The initial iteration
matrix, M0

R, is the Jacobian of the residual function evaluated at
the initial guess

M0
R =

∂Rk+1

∂wk+1
(w0

k+1). (14)

We update the iteration matrix:

Mm+1
R =

∂Rk+1

∂wk+1
(wm+1

k+1 ), (15)

if the estimate, wm+1
k+1 , does not sufficiently reduce the norm

of the residual function as compared to the previous estimate,
wm

k+1:

‖Rk+1(wm+1
k+1 )‖ > τR‖Rk+1(wm

k+1)‖, (16)

where τR ∈ [0, 1]. The iteration matrix is not updated (and
Mm+1

R = Mm
R ) if (16) is not satisfied. The Newton iterations

(13) are terminated when the norm of the residual function is
smaller than the specified tolerance, εR, i.e.

‖Rk+1(wm+1
k+1 )‖ < εR. (17)

The Jacobian of the residual function is

∂Rk+1

∂wk+1
=

 I −∆tk ∂F
∂y 0

∂G
∂x

∂G
∂y

∂G
∂z

 , (18)

where the Jacobians of the algebraic function, G, are

∂G
∂x

=
∂G
∂x

(wk+1) =
[
0; I; 0

]
, (19a)[

∂G
∂y

∂G
∂z

]
=

[
∂G
∂y (wk+1) ∂G

∂z (wk+1)
]

= K(wk+1). (19b)

The matrix K is the KKT matrix for the equilibrium optimiza-
tion problem (5). With the adjoint algebraic variables defined
as zk+1 = [ηk+1; µk+1], the KKT matrix may be expressed as
K(wk+1) = K(xk+1, yk+1, zk+1) = K(yk+1, ηk+1, µk+1; xk+1), where

K(y, η, µ; x) =

∇
2
yyL(y, η, µ; x) −∇g(y) −∇h(y)
−∇g(y)T 0 0
−∇h(y)T 0 0

 . (20)

The Hessian of the Lagrangian with respect to the algebraic
variables, y, is

∇2
yyL = ∇2

yyL(y, η, µ; x)

= ∇2 f (y) −
∑

i

ηi∇
2gi(y) −

∑
i

µi∇
2hi(y). (21)

The two sums in (21) span over each component of the func-
tions g and h.

3.1.1. The adjoint method for the simultaneous approach
We substitute the residual equations (12) into the objective

function, ψ, in (3):

ψ = ψ({uk}k∈N ; x̂0, {d̂k}k∈N ) (22a)

=

{
φ =

∑
k∈N

Φk(yk+1, uk, d̂k) : (22b)

x0 = x̂0, (22c)

Rk+1(wk+1; xk, uk, d̂k) = 0, k ∈ N , (22d)

[xk+1; yk+1; zk+1] = wk+1, k ∈ N
}
. (22e)

The sum in (22b) approximates the integral in (2). Φk approx-
imates the integral of Φ over [tk, tk+1] using the rectangle rule
with yk+1 (instead of yk):

Φk = Φk(yk+1, uk, d̂k) = ∆tkΦ(yk+1, uk, d̂k). (23)

The integral may be approximated more accurately with other
quadrature methods. However, the rectangle rule is used be-
cause of its simplicity and because it is consistent with the im-
plicit Euler method used for integration of the differential equa-
tions. The gradients of ψ with respect to the inputs, {∇ukψ}k∈N ,
are computed by solving the following equation for the adjoints,
λN , (

∂RN

∂wN

)T

λN = −∇wN ΦN−1, (24)

and inserting into the following expression for the gradients

∇ukψ = ∇uk Φk +

(
∂Rk+1

∂uk

)T

λk+1, k ∈ N . (25)

Each subsequent set of adjoints, λk, is computed by marching
backwards in the equations(
∂Rk

∂wk

)T

λk = −

(
∂Rk+1

∂wk

)T

λk+1 − ∇wk Φk−1, k = N − 1, . . . , 1.

(26)

The Jacobian of the residual function, ∂Rk
∂wk

, is given in (18) and
the Jacobian of the residual function with respect to the state
variables, the algebraic variables, and the adjoint algebraic vari-
ables in the previous time step is

∂Rk+1

∂wk
(wk+1; xk, uk, d̂k) =

[
−I 0 0
0 0 0

]
, (27)

for k = 1, . . . ,N − 1. The gradient of Φk is

∇wk+1Φk =
[
0; ∆tk∇yΦ(yk+1, uk, d̂k); 0

]
, k ∈ N . (28)

3.2. The nested approach

We solve the algebraic equations (9b) for the algebraic vari-
ables, ym

k+1, and the adjoint algebraic variables, zm
k+1, for each

4
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estimate of the states, xm
k+1. The algebraic equations are solved

with an inexact Newton method:[
yl+1

k+1; zl+1
k+1

]
=

[
yl

k+1; zl
k+1

]
−

(
Ml

G

)−1
G(xm

k+1, y
l
k+1, z

l
k+1).

(29)

If m = 0, the initial guess for the Newton iterations, [y0
k+1; z0

k+1],
is the algebraic variables and the adjoint algebraic variables in
the previous time step, [yk; zk]. Otherwise, the initial guess
is the variables from the previous outer Newton iteration,
[ym−1

k+1 ; zm−1
k+1 ]. The initial iteration matrix, M0

G, is the KKT matrix
(20) evaluated at the initial guess

M0
G = K(xm

k+1, y
0
k+1, z

0
k+1). (30)

The iteration matrix,

Ml+1
G = K(xm

k+1, y
l+1
k+1, z

l+1
k+1), (31)

is updated if the estimates, yl+1
k+1 and zl+1

k+1, do not sufficiently
reduce the norm of the algebraic function, G, as compared to
the previous estimates, yl

k+1 and zl
k+1. This condition can be

expressed as

‖G(xm
k+1, y

l+1
k+1, z

l+1
k+1)‖ > τG‖G(xm

k+1, y
l
k+1, z

l
k+1)‖, (32)

where τG ∈ [0, 1]. The iteration matrix is not updated (and
Ml+1

G = Ml
G) if (32) is not satisfied. The Newton iterations (29)

are terminated when the norm of the algebraic function, G, is
smaller than a specified tolerance, εG:

‖G(xm
k+1, y

l+1
k+1, z

l+1
k+1)‖ < εG. (33)

ym
k+1 and zm

k+1 denote the estimates that satisfy the stopping crite-
ria (33). The outer Newton iterations are terminated if xm

k+1 and
ym

k+1 furthermore satisfies the discretized differential equations
within a tolerance of εD:

‖Dk+1(xm
k+1, xk, ym

k+1, uk, d̂k)‖ < εD. (34)

If the stopping criteria (34) is not satisfied, the next estimate of
the states, xm+1

k+1 , is computed:

xm+1
k+1 = xm

k+1 −
(
Mm

D
)−1 Dk+1(xm

k+1, xk, ym
k+1, uk, d̂k). (35)

The initial guess for the outer Newton iterations, x0
k+1, is the

states in the previous time step, xk. The initial iteration matrix,
M0

D, is the Jacobian of Dk+1 evaluated at the initial guess

M0
D =

∂Dk+1

∂xk+1
(x0

k+1, xk, y0
k+1, uk, d̂k). (36)

y0
k+1 is the solution to the algebraic equations, with x0

k+1 as pa-
rameter, which is found with the inner Newton iterations (29).
Once the outer Newton step (35) has been computed, the inner
Newton iterations (29) are repeated in order to update the esti-
mate for the algebraic variables, ym+1

k+1 , and the adjoint algebraic
variables, zm+1

k+1 . The iteration matrix,

Mm+1
D =

∂Dk+1

∂xk+1
(xm+1

k+1 , xk, ym+1
k+1 , uk, d̂k), (37)

is updated if the estimates, xm+1
k+1 and ym+1

k+1 , do not sufficiently re-
duce the norm of the function Dk+1 as compared to the previous
estimates, xm

k+1 and ym
k+1. This is expressed as the condition

‖Dk+1(xm+1
k+1 , xk, ym+1

k+1 , uk, d̂k)‖ > τD‖Dk+1(xm
k+1, xk, ym

k+1, uk, d̂k)‖,
(38)

where τD ∈ [0, 1]. The iteration matrix is not updated (and
Mm+1

D = Mm
D) if (38) is not satisfied. The inner and outer New-

ton iterations are terminated when an estimate has been reached
that satisfies both the discretized differential equations and the
algebraic equations, i.e. that satisfies both (33) and (34). The
Jacobian of the function Dk+1 is

∂Dk+1

∂xk+1
= I − ∆tk

∂F
∂y

(yk+1, uk, d̂k)
∂yk+1

∂xk+1
. (39)

The sensitivities of the algebraic variables and the adjoint alge-
braic variables are[

∂yk+1
∂xk+1

; ∂zk+1
∂xk+1

]
= −K(wk+1)−1 ∂G

∂x
(wk+1). (40)

3.2.1. The adjoint method for the nested approach
The discretized differential equations, Dk+1 = 0, are substi-

tuted into the objective function, ψ, in (3):

ψ = ψ({uk}k∈N ; x̂0, {d̂k}k∈N ) (41a)

=

{
φ =

∑
k∈N

Φk(yk+1, uk, d̂k) : (41b)

x0 = x̂0, (41c)

Dk+1(xk+1, xk, yk+1, uk, d̂k) = 0, k ∈ N , (41d)

G(xk+1, yk+1, zk+1) = 0, k ∈ N
}
, (41e)

where Φk is defined in (23). The gradients of ψ in (41) with
respect to the inputs, {∇ukψ}k∈N , are computed by solving for
the adjoints, λN ,(

∂DN

∂xN

)T

λN = −

(
∂yN

∂xN

)T

∇yN ΦN−1. (42)

and inserting into the following expression for the gradients

∇ukψ = ∇uk Φk +

(
∂Dk+1

∂uk

)T

λk+1, k ∈ N . (43)

Each subsequent set of adjoints, λk, satisfies(
∂Dk

∂xk

)T

λk = −

(
∂Dk+1

∂xk

)T

λk+1 −

(
∂yk

∂xk

)T

∇yk Φk−1 (44)

for k = N − 1, . . . , 1. The Jacobian of the function Dk, ∂Dk
∂xk

, is
defined in (39), and the Jacobian with respect to the states in the
previous time step is

∂Dk+1

∂xk
(xk+1, xk, yk+1, uk, d̂k) = − I, k = 1, . . . ,N − 1. (45)

This concludes the description of the numerical methods for the
computation of the objective function, ψ, defined in (3) as well
as the gradients with respect to the inputs, {∇ukψ}k∈N .
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Vapor,
T , P, nv

Liquid,
T , P, nl

Feed stream,
TF , PF , f v

F , f l
F

Vapor stream,
T , P, v

Vapor flow rate, FV

Liquid stream,
T , P, l

Liquid flow rate, FL

Heat input, Q

Figure 2: Sketch of a flash unit. The unit is supplied by a vapor-liquid feed
stream. A vapor stream and a liquid stream extract mass from the vapor phase
and the liquid phase of the mixture in the unit. The mixture is furthermore
subject to external heating or cooling.

4. The dynamic UV flash model

This section describes the dynamic UV flash model, i.e. the
differential-algebraic constraints (1c)-(1d) in the optimal con-
trol problem (1). Fig. 2 illustrates the flash unit. The mixture in
the unit contains NC components. We assume that two phases
(vapor and liquid) always exist and that they are in chemical,
thermal and mechanical equilibrium. The flash unit is contin-
uously supplied by a feed stream at a given temperature, pres-
sure, and composition. The mixture in the flash unit is extracted
continuously through a vapor stream and a liquid stream. The
total flow rate of the vapor stream, FV , and the total flow rate of
the liquid stream, FL, are manipulated. The mixture in the unit
is subject to either heating or cooling with heat flux, Q. The
heat flux is also manipulated.

The following subsections describe the properties of the mix-
ture in the unit, the feed stream, the vapor stream, and the liquid
stream. We furthermore formulate the conservation equations
and the equilibrium conditions. We illustrate how all needed
thermodynamic properties can be computed by evaluation of
the enthalpy, H = H(T, P, n), the entropy, S = S (T, P, n), and
the volume, V = V(T, P, n), as function of temperature, T , pres-
sure, P, and composition (mole numbers), n.

4.1. The mixture in the flash unit

The flash unit contains a mixture in thermal, mechanical,
and chemical vapor-liquid equilibrium. The thermal equilib-
rium implies that the temperature of the vapor phase, T v, and
the liquid phase, T l, are identical, i.e. T = T v = T l. The
mechanical equilibrium implies that the pressure in the vapor
phase, Pv, is identical to the pressure in the liquid phase, Pl, i.e.
P = Pv = Pl. The vapor holdup is nv and the liquid holdup is nl.
The total composition (in moles) of the mixture is ni = nv

i + nl
i

for i = 1, 2, . . . ,NC . The properties of the mixture in the flash

unit are

Nv =

NC∑
i=1

nv
i , N l =

NC∑
i=1

nl
i, N =

NC∑
i=1

ni,

yi =
nv

i

Nv , xi =
nl

i

N l , zi =
ni

N
.

The vapor fraction is β = Nv/N. The specification of (T, P, nv)
and (T, P, nl) also allows for the computation of the enthalpy,
entropy, and volume:

Hv = Hv(T, P, nv),Hl = Hl(T, P, nl),H = Hv + Hl,

S v = S v(T, P, nv), S l = S l(T, P, nl), S = S v + S l,

Vv = Vv(T, P, nv), V l = V l(T, P, nl), V = Vv + V l.

Given (H, S ,V) all other thermodynamic state functions may be
computed: the internal energy is U = H−PV , Gibbs free energy
is G = H − TS , and Helmholtz free energy is A = U − TS .

4.2. The feed

The feed is a vapor-liquid mixture at temperature TF and
pressure PF . f v

F,i and f l
F,i denote the molar vapor and liquid

feed flow rates of component i. The total feed flow rate of the
i’th component is fF,i = f v

F,i + f l
F,i for i = 1, 2, . . . ,NC , and the

total flow rate is FF = Fv
F + F l

F . Fv
F and F l

F are the total flow
rates of the vapor and liquid phases of the feed. The properties
of the feed stream are

Fv
F =

NC∑
i=1

f v
F,i, F l

F =

NC∑
i=1

f l
F,i, FF =

NC∑
i=1

fF,i,

yF,i =
f v
F,i

Fv
F
, xF,i =

f l
F,i

F l
F

, zF,i =
fF,i

FF
.

The fraction of vapor in the feed is βF = Fv
F/FF . The specifi-

cation of (TF , PF , f v
F , f l

F) also allows for the computation of the
enthalpy, entropy, and volume of the feed stream:

Hv
F = Hv(TF , PF , f v

F),Hl
F = Hl(TF , PF , f l

F),HF = Hv
F + Hl

F ,

S v
F = S v(TF , PF , f v

F), S l
F = S l(TF , PF , f l

F), S F = S v
F + S l

F ,

Vv
F = Vv(TF , PF , f v

F), V l
F = V l(TF , PF , f l

F), VF = Vv
F + V l

F .

The feed is completely specified by (TF , PF , f v, f l) as other
thermodynamic functions concerned with the feed may be com-
puted using (HF , S F ,VF).

4.3. The vapor stream

The vapor outlet stream has the same temperature, T , the
same pressure, P, and the same composition, y, as the vapor
phase in the unit. The total flow rate of the vapor stream is FV .
This implies that the compositional flow rates are vi = yiFV for
i = 1, 2, . . . ,NC . Let hv denote the molar enthalpy, sv denote
the molar entropy, and vv denote the molar volume of the vapor
phase in the flash unit. Then the total properties of the vapor
stream are HV = FVhv, S V = FV sv, and VV = FVvv.

6
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4.4. The liquid stream

The liquid outlet stream has the same temperature, T , the
same pressure, P, and the same composition, x, as the liquid
phase in the flash unit. FL denotes the total flow rate of the
liquid stream, and the compositional flow rates are li = xiFL

for i = 1, 2, . . . ,NC . Let hl denote the molar enthalpy, sl denote
the molar entropy, and vl denote the molar volume of the liquid
phase in the flash unit. The total properties of the liquid stream
are then given by HL = FLhl, S L = FLsl, and VL = FLvl.

4.5. The thermodynamic model and database

The total thermodynamic properties of the mixture, the feed,
the vapor stream, and the liquid stream are computed from
molar thermodynamic properties. The molar thermodynamic
properties (hv, sv, vv) of a vapor phase mixture are the functions
hv = hv(T, P, y), sv = sv(T, P, y), and vv = vv(T, P, y). The cor-
responding total properties of the vapor phase are Hv = Nvhv,
S v = Nvsv, and Vv = Nvvv. Similarly, the molar thermody-
namic properties (hl, sl, vl) of a liquid phase mixture are the
functions hl = hl(T, P, x), sl = sl(T, P, x), and vl = vl(T, P, x).
The corresponding total properties of the liquid phase are Hl =

N lhl, S l = N lsl, and V l = N lvl. We compute the molar vapor-
liquid properties (hv, sv, vv) and (hl, sl, vl) with a recently devel-
oped thermodynamic library, ThermoLib (Ritschel et al., 2016,
2017c). ThermoLib uses data and correlations from the DIPPR
database (Thomson, 1996) together with either the SRK EOS
or the PR EOS. It is implemented in both Matlab and C, and it
is distributed as open-source software at www.psetools.org.
It provides routines for evaluation of enthalpy, entropy, and vol-
ume. The routines furthermore provide first and second order
derivatives with respect to temperature, pressure, and composi-
tion (in moles).

4.6. The equilibrium constraint - vapor-liquid equilibrium

Vapor-liquid equilibrium processes may be formulated as
optimization problems (Michelsen, 1999). When the internal
energy, U, and the volume, V , are specified, the optimiza-
tion problem determining the equilibrium temperature, pres-
sure, and vapor-liquid compositions is called the UV flash prob-
lem. The UV flash optimization problem is

max
T,P,nv,nl

S = S v(T, P, nv) + S l(T, P, nl) (48a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (48b)

Vv(T, P, nv) + V l(T, P, nl) = V, (48c)

nv
i + nl

i = ni, i = 1, . . . ,NC . (48d)

U is the specified internal energy, and V is the total fixed vol-
ume of the flash unit. ni is the specified total amount (in moles)
of component i in the flash unit. The optimization problem (48)
is a mathematical statement of the second law of thermodynam-
ics which states that the entropy of a closed system at equilib-
rium is maximal. The UV flash optimization problem (48) is in

the form of the optimization problem (5) where

f (y) = f (T, P, nv, nl)

= −
(
S v(T, P, nv) + S l(T, P, nl)

)
, (49a)

g(y) = g(T, P, nv, nl)

=

[
Uv(T, P, nv) + U l(T, P, nl)

nv + nl

]
, (49b)

h(y) = h(T, P, nv, nl)

= Vv(T, P, nv) + V l(T, P, nl) − V. (49c)

The state variables, x, the algebraic variables, y, and the adjoint
algebraic variables, z, are

x = [U; n] ∈ R1+NC , (50a)

y =
[
T ; P; nv; nl

]
∈ R2+2NC , (50b)

z =
[
µ; η

]
∈ R2+NC . (50c)

The UV flash problem is sometimes referred to as the UVn
flash problem to indicate that U, V , and n are specified. It is
also known as the isoenergetic-isochoric flash (constant energy
– constant volume).

4.7. The differential equations - conservation equations
The mass and energy conservation equations that describe the

temporal evolution of the internal energy and the total holdup
are

U̇(t) = Hv
F(t) + Hl

F(t) − HV (t) − HL(t) + Q(t), (51a)

ṅi(t) = f v
F,i(t) + f l

F,i(t) − vi(t) − li(t), i = 1, ..,NC . (51b)

U is the internal energy, and ni is the total holdup of component
i. HV and HL are the enthalpies of the vapor and liquid streams,
respectively. Hv

F and Hl
F are the vapor and liquid enthalpies

of the feed. f v
F,i and f l

F,i are the molar vapor and liquid feed
flow rates. vi and li are the molar vapor and liquid stream flow
rates. The conservation equations (51) are in the form of the
differential equations (1d) where

F(y(t), u(t), d(t)) =[
Hv

F(t) + Hl
F(t) − HV (t) − HL(t) + Q(t)

f v
F(t) + f l

F(t) − v(t) − l(t)

]
. (52)

The algebraic variables, y, are defined in (50), and the controls
(manipulated variables), u, and the disturbance variables, d, are

u = [Q; FV ; FL] ∈ R3, (53a)

d =
[
TF ; PF ; f v

F ; f l
F

]
∈ R2+2NC . (53b)

5. The relation between the UV flash and the PT flash

In this section, we demonstrate that the solution of the UV
flash is identical to the solution of a PT flash with constraints
on the internal energy, U, and the volume, V . The solution to
the PT flash problem is the vapor-liquid composition that min-
imizes Gibbs energy at a given temperature and pressure while
satisfying a mass balance constraint. The PT flash is the most
common type of flash because it can be formulated as an uncon-
strained minimization problem and therefore solved efficiently.
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5.1. The UV flash

The UV flash maximization problem (48) is equivalent to the
following minimization problem

min
T,P,nv,nl

− S = −
(
S v(T, P, nv) + S l(T, P, nl)

)
, (54a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (54b)

Vv(T, P, nv) + V l(T, P, nl) = V, (54c)

nv
i + nl

i = ni, i = 1, . . . ,NC . (54d)

The solution to the UV flash problem is the temperature, pres-
sure, and vapor-liquid composition of a closed system at equi-
librium, (T, P, nv, nl), with a given internal energy, volume, and
total composition. The Lagrange function of the UV flash prob-
lem (54) is

L = −
(
S v(T, P, nv) + S l(T, P, nl)

)
− κ

(
Uv(T, P, nv) + U l(T, P, nl) − U

)
− λ

(
Vv(T, P, nv) + V l(T, P, nl) − V

)
−

NC∑
i=1

µ̄i

(
nv

i + nl
i − ni

)
.

(55)

κ is the Lagrange multiplier associated with the internal energy
constraint (54b), λ is the Lagrange multiplier associated with
the volume constraint (54c), and {µ̄i}

NC
i=1 are the Lagrange mul-

tipliers associated with the mole balances (54d). In this sec-
tion, we use the notation S vl = S v + S l, Uvl = Uv + U l, and
Vvl = Vv + V l to distinguish these properties from the specified
values U and V . The first order optimality conditions for the
UV flash minimization problem (54) are

∂L

∂T
= −

∂S vl

∂T
− κ

∂Uvl

∂T
− λ

∂Vvl

∂T
= 0, (56a)

∂L

∂P
= −

∂S vl

∂P
− κ

∂Uvl

∂P
− λ

∂Vvl

∂P
= 0, (56b)

∂L

∂nv
i

= −
∂S v

∂nv
i
− κ

∂Uv

∂nv
i
− λ

∂Vv

∂nv
i
− µ̄i = 0, i = 1, . . . ,NC , (56c)

∂L

∂nl
i

= −
∂S l

∂nl
i

− κ
∂U l

∂nl
i

− λ
∂V l

∂nl
i

− µ̄i = 0, i = 1, . . . ,NC , (56d)

Uvl(T, P, nv, nl) = Uv(T, P, nv) + U l(T, P, nl) = U, (56e)

Vvl(T, P, nv, nl) = Vv(T, P, nv) + V l(T, P, nl) = V, (56f)

nv
i + nl

i = ni, i = 1, . . . ,NC . (56g)

(56a)-(56b) are the stationarity conditions associated with the
temperature and pressure gradients. (56c)-(56d) are the station-
arity conditions associated with the component derivatives, and
(56e)-(56g) are the feasibility conditions. The first order opti-
mality conditions (56) of the equality constrained optimization
problem (54) are necessary conditions for a minimizer of (54).

5.2. The UV constrained PT flash
The solution to the PT flash problem, (nv, nl), minimizes

Gibbs free energy, G, subject to a mass balance constraint

min
nv,nl

G = Gv(T, P, nv) + Gl(T, P, nl) (57a)

s.t. nv
i + nl

i = ni, i = 1, . . . ,NC . (57b)

The Lagrange function of the PT flash problem (57) is

L =
(
Gv(T, P, nv) + Gl(T, P, nl)

)
−

NC∑
i=1

µi(nv
i + nl

i − ni), (58)

where {µi}
NC
i=1 denote the Lagrange multipliers associated with

the mole balances (57b). The first order optimality conditions
for the PT flash are

∂L

∂nv
i

=
∂Gv

∂nv
i
− µi = 0, i = 1, . . . ,NC , (59a)

∂L

∂nl
i

=
∂Gl

∂nl
i

− µi = 0, i = 1, . . . ,NC , (59b)

nv
i + nl

i = ni, i = 1, . . . ,NC . (59c)

(59a)-(59b) are the stationarity conditions, and (59c) are the
feasibility conditions. The first order optimality conditions (59)
are necessary conditions for a minimizer of the PT flash (57).
The PT flash provides the equilibrium composition of the vapor
phase, nv, and the liquid phase, nl, at given temperature, T , and
pressure, P. We combine the PT flash problem (57) with the
following constraints on the internal energy, U, and the volume,
V ,

Uvl(T, P, nv, nl) = Uv(T, P, nv) + U l(T, P, nl) = U, (60a)

Vvl(T, P, nv, nl) = Vv(T, P, nv) + V l(T, P, nl) = V. (60b)

The constraints (60) are identical to the constraints (54b)-(54c)
in the UV optimization problem. A point (T, P, nv, nl) satisfying
the PT flash (57) and the UV constraints (60) must satisfy the
conditions (59) and (60).

5.3. Equivalence of the UV flash and the UV-constrained PT
flash

We show that the first order optimality conditions (56) of the
UV flash (54) are equivalent to the first order optimality con-
ditions (59) of the PT flash (57) in combination with the UV
constraints (60). This shows that the solution of the UV flash
problem (54) is equivalent to the solution of the PT flash prob-
lem (57) combined with the specification of internal energy, U,
and volume, V , in (60). The feasibility conditions (56e)-(56g)
for the UV flash (54) are equivalent to the feasibility conditions
(59c) for the PT flash (57) and the UV constraints (60). The
thermodynamic relations G = H − TS and H = U + PV imply
that G = U + PV − TS such that

∂Gv

∂nv
i

=
∂Uv

∂nv
i

+ P
∂Vv

∂nv
i
− T

∂S v

∂nv
i
, i = 1, . . . ,NC , (61a)

∂Gl

∂nl
i

=
∂U l

∂nl
i

+ P
∂V l

∂nl
i

− T
∂S l

∂nl
i

, i = 1, . . . ,NC . (61b)
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Therefore, the stationarity conditions (59a)-(59b) of the PT
flash (57) may be reformulated using (61):

µi

T
= −

∂S v

∂nv
i
−

(
−

1
T

)
∂Uv

∂nv
i
−

(
−

P
T

)
∂Vv

∂nv
i
, i = 1, . . . ,NC ,

(62a)

µi

T
= −

∂S l

∂nl
i

−

(
−

1
T

)
∂U l

∂nl
i

−

(
−

P
T

)
∂V l

∂nl
i

, i = 1, . . . ,NC .

(62b)

The stationarity conditions (62) for the PT flash (57) are equiv-
alent to the stationarity conditions (56c)-(56d) for the UV flash
(54) provided that the Lagrange multipliers (κ, λ, {µ̄i}

NC
i=1) are

κ = −1/T, (63a)
λ = −P/T, (63b)
µ̄i = µi/T, i = 1, . . . ,NC . (63c)

The fundamental thermodynamic relations (Smith et al., 2005,
Chap. 6)

∂S
∂T

=
CP

T
, (64a)

∂U
∂T

= CP − P
∂V
∂T

, (64b)

may be used to demonstrate that (56a) is satisfied when κ =

−1/T and λ = −P/T . Similarly, the fundamental thermody-
namic relations (Smith et al., 2005, Chap. 6)

∂S
∂P

= −
∂V
∂T

, (65a)

∂U
∂P

= −T
∂V
∂T
− P

∂V
∂P

, (65b)

may be used to demonstrate that (56b) is satisfied when κ =

−1/T and λ = −P/T . Alternatively, the relations (64)-(65) may
be substituted into (56a)-(56b) and the resulting 2 × 2 linear
system of equations may be solved for κ and λ to obtain κ =

−1/T and λ = −P/T .

5.4. Significance
We have demonstrated that the solution of the PT flash (57)

in combination with the UV constraints (60) is identical to the
solution of the UV flash (54). This implies that existing effi-
cient algorithms for the PT flash may be combined with the UV
constraints to obtain a solution that is identical to the solution of
the UV flash problem (54). Similarly, the Lagrange multipliers
of the UV flash problem may be computed from the UV con-
straints and the PT flash using (63). The KKT matrix (20) of
the UV flash problem (54) can thus be obtained without directly
solving the UV flash problem.

6. Implementation

This section briefly describes the transformations that are
made to the vapor-liquid equilibrium constraints in the imple-
mentation of the single-shooting algorithm. We furthermore
discuss the details of the different software libraries and com-
pilers that are used in the implementation.

6.1. Transformation of the UV flash

In the implementation, the optimality conditions (56) for the
UV flash are replaced by the optimality conditions (59) for the
PT flash combined with the UV constraints (60). We further-
more eliminate variables and scale equations. The resulting al-
gebraic equations are similar to the equations that are solved
in the Newton approach by Michelsen and Mollerup (2007,
Chap. 14). We subtract (59b) from (59a) in order to eliminate
the Lagrange multipliers, {µi}

NC
i=1, from the first order optimal-

ity conditions (59) for the PT flash. Furthermore, we eliminate
the vapor mole numbers, nv, from the linear mass balance con-
straints (57b):

nv
i = nv

i (ni, nl
i) = ni − nl

i, i = 1, . . . ,NC . (66)

The first order optimality conditions (59) are thus transformed
to

∂Gl

∂nl
i

(T, P, nl) −
∂Gv

∂nv
i

(T, P, nv) = 0, i = 1, . . . ,NC , (67)

which can be solved for the liquid mole numbers nl. We rewrite
the internal energy constraint (60a) using the thermodynamic
relations Uv = Hv − PVv and U l = Hl − PV l:

U − Hv(T, P, nv) + PVv(T, P, nv)

− Hl(T, P, nl) + PV l(T, P, nl) = 0. (68)

We furthermore substitute the volume constraint (60b):

U + PV − Hv(T, P, nv) − Hl(T, P, nl) = 0. (69)

The optimality conditions (67) and the internal energy con-
straint (69) are scaled with 1/(RT ). The volume constraint
(60b) is scaled with P/(RT ):

1
RT

∂Gl

∂nl
i

(T, P, nl) −
∂Gv

∂nv
i

(T, P, nv)
 = 0, (70a)

1
RT

(
U + PV − Hl(T, P, nl) − Hv(T, P, nv)

)
= 0, (70b)

P
RT

(
V l(T, P, nl) + Vv(T, P, nv) − V

)
= 0. (70c)

The internal energy, U, and the volume, V , are specified, and
the algebraic equations (70) can be solved for the temperature,
T , the pressure, P, and the liquid mole numbers, nl. The tem-
perature and pressure are, however, large in magnitude as com-
pared to the mole numbers. The implementation therefore uses
logarithmic values of the temperature and pressure as algebraic
variables:

y =
[
ln T ; ln P; nl

]
∈ R2+NC . (71)

The algebraic equations (70) are written compactly

G(x, y) = 0, (72)

where x is defined in (50a).
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6.2. Units of variables and scaling
Large differences in the elements of Jacobian matrices can

lead to ill-conditioned linear systems of equations in the numer-
ical solution schemes. Such ill-conditioning can furthermore
lead to imprecise results. Several quantities are therefore not in
SI-units in the implementation. The unit of time, t, is hr, and the
flow rates, FF , FV , and FL, are given in kmol/hr. The composi-
tional flow rates, f v

F,i, f l
F,i, vi, and li for i = 1, . . . ,NC , are also in

kmol/hr. Mole numbers, i.e. ni, nv
i , and nl

i for i = 1, . . . ,NC , are
given in kmol. The internal energy, U, and the enthalpies are in
MJ, and the heat input, Q, is in MJ/hr.

6.3. Software libraries, compilers, and hardware
The single-shooting algorithm is implemented in Matlab.

The algorithm is implemented with both a simultaneous ap-
proach and a nested approach for the solution of the dynamic
UV flash model equations. The Matlab implementation uses
Matlab routines from ThermoLib as well as Matlab’s func-
tion for constrained nonlinear optimization, fmincon. The
single-shooting algorithm, with a simultaneous approach, is
also implemented in C. The C implementation uses C rou-
tines from ThermoLib as well as either of four solvers for non-
linear constrained optimization: Matlab’s fmincon, the open-
source IPOPT 3.12.4 (Wächter and Biegler, 2006), the com-
mercial NPSOL 5.0, or the commercial KNITRO 10.2. We use
fmincon’s and KNITRO’s interior point (IP) barrier methods.
IPOPT also uses an IP barrier method, and NPSOL uses an ac-
tive set sequential quadratic programming (SQP) method. We
compare the performance obtained with GCC compilers and
with Intel compilers. We use Netlib’s linear algebra libraries
(BLAS and LAPACK) together with the GCC compilers, and
we use Intel’s linear algebra library (Intel MKL) with the Intel
compilers. ThermoLib and IPOPT are compiled with a C com-
piler, and NPSOL is compiled with a Fortran compiler. KNI-
TRO is compiled prior to purchase. The performance study in
Section 8 is carried out on a 64-bit workstation with 15.6 GB
memory and four Intel Core i7 3.60 GHz cores. Each core has
64 kB of level 1 cache and 256 kB of level 2 cache. The work-
station has a shared level 3 cache of 8,192 kB.

7. Optimal control examples

This section presents two optimal control problems. The first
is a tracking-type control problem where an ideal thermody-
namic model is used. This problem has 144 decision variables.
The second is an economical optimal control problem where a
nonideal thermodynamic model is used. This problem has 864
decision variables.

7.1. Optimal tracking example
In this example, we consider a flash unit with a volume of

10 m3. The unit processes a mixture of benzene, toluene, and
diphenyl. We use an ideal thermodynamic model for the com-
putation of thermodynamic properties. This is reasonable be-
cause these three components are very similar and because we
consider high ranges of temperature and low ranges of pressure.

The time horizon is [t0, t f ] = [0 hr, 4 hr]. The initial condition
is a steady state which is described in Appendix A. The feed
rate, FF , increases by 50% at time t = 2 hr. The length of the
control intervals is ∆tk = 5 minutes for k ∈ N . That is a total of
48 control intervals during the 4 hr time horizon. The controls
are: the heat input, Q, the total vapor flow rate, FV , and the total
liquid flow rate, FL. The objective is to keep the temperature,
pressure, and liquid volume at desired setpoints.

7.1.1. Objective function
The objective function, φ, is the integral of the squared dif-

ferences between the controlled variables and the setpoints:

φ =

∫ t f

t0

[
αT

(
ln T − ln T set

)2

+αP

(
ln P − ln Pset

)2
+ αV l

(
V l − V l,set

)2
]

dt. (73)

The controlled variables include logarithmic temperature and
pressure because of the choice of algebraic variables described
in Section 6. The weights (αT , αP, αV l ) determine the relative
importance of following each setpoint. The objective function
(73) is supplemented with a regularization term that penalizes:
(a) the temporal change in the controls and (b) the difference
between the controls in the first control interval and a set of
initial reference controls: Q−1 = −1 MJ/hr, FL,−1 = 0.6 kmol/hr
and FV,−1 = 0.4 kmol/hr. The discrete objective is augmented
with this regularization term:

Φ̂k = Φk +

[
αQ (Qk − Qk−1)2 + αFV

(
FV,k − FV,k−1

)2

+αFL

(
FL,k − FL,k−1

)2
]
∆tk, k ∈ N . (74)

The weights (αQ, αFV , αFL ) determine the size of the penalty
of temporal changes in the controls. The weights are
(αT , αP, αV l ) = (2000, 20, 2000) and (αQ, αFV , αFL ) =

(0.05, 10, 10). The derivatives of the additional regularization
terms are derived analytically and added to the derivatives that
are computed with the adjoint algorithm.

7.1.2. Constraints
The sum of the vapor and liquid stream flow rates is bounded

from above by a factor times the feed flow rate:

FV,k + FL,k ≤ αF FF,k, k ∈ N . (75)

The factor is αF = 1.2. Furthermore, the controls are subject to
the following bound constraints

Qk ∈ [−60 MJ/hr, 10 MJ/hr], (76a)
FL,k ∈ [0.1 kmol/hr, 1.5 kmol/hr], (76b)
FV,k ∈ [0.1 kmol/hr, 1.5 kmol/hr], (76c)

for k ∈ N . The derivatives of the linear constraints (75) and the
bound constraints (76) are derived analytically.

10
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7.1.3. Optimal control strategy
Fig. 3(a) shows the controlled variables and the vapor frac-

tion obtained with the optimal strategy (blue solid) and with a
reference strategy (green dashed). A step occurs in the setpoints
(black dashed) at time t = 2 hr. The controlled variables suc-
cessfully follow the setpoints both before and after the step. The
large variations in the temperature and pressure significantly af-
fect the vapor-liquid equilibrium. This is evident from the large
variations in the vapor fraction and in the vapor-liquid compo-
sition shown in Fig. 4. Fig. 3(b) shows the optimal strategy, the
reference strategy, and the bound constraints (red dashed). The
reference strategy is constructed such that the controlled vari-
ables eventually reach the setpoints after the step. However,
the transition is significantly faster with the optimal strategy.
This is because the optimal strategy uses the information about
the step in the setpoints to initiate the transition already around
t = 1 hr.

7.2. Minimal cooling example
In this example, we consider a flash unit with a volume

of 1 m3. The unit processes a mixture of methane, ethane,
propane, n-heptane, and hydrogen sulfide (H2S). We use a non-
ideal thermodynamic model based on the PR EOS to com-
pute thermodynamic properties. The time horizon is [t0, t f ] =

[0 hr, 24 hr]. The initial condition is a steady state which is
described in Appendix A. The feed composition changes at
time t = 12 hr such that the total feed mole fraction of H2S in-
creases from 2.0% to 6.0%. The length of the control intervals
is ∆tk = 5 minutes for k ∈ N , which gives a total of 288 con-
trol intervals during the 24 hr time horizon. The objective is to
minimize the energy consumption (in terms of cooling). Mean-
while, an upper bound on the H2S vapor mole fraction should
be satisfied.

7.2.1. Objective function
Since the heat input is negative (non-positive), Q ≤ 0, in the

case of cooling, the objective function is

φ = −

∫ t f

t0
Q dt. (77)

We incorporate bound constraints on the H2S vapor mole frac-
tion, yH2S, and on the overall vapor fraction, β, into the objec-
tive function using logarithmic barrier functions. The H2S va-
por mole fraction is bounded from above: yH2S,k ≤ ymax

H2S,k for
k = 1, . . . ,N. The overall vapor fraction is bounded from above
and below: εβ ≤ βk ≤ 1 − εβ for k = 1, . . . ,N. The discrete ob-
jective function is augmented with the logarithmic barrier func-
tions in the adjoint algorithm:

Φk = −Qk∆tk − αH2S ln
(
ymax

H2S,k+1 − yH2S,k+1

)
− αβ

[
ln

(
βk+1 − εβ

)
+ ln

(
(1 − εβ) − βk+1

)]
, (78)

for k ∈ N . The first term is a term in the discrete approximation
of the objective function (77). The second term represents the
upper bound on the H2S vapor mole fraction, and the third term
represents the bounds on the vapor fraction. The weights are

(αH2S, αβ) = (1.0, 0.6), and the vapor fraction threshold is εβ =

0.05. The upper bound on the H2S vapor mole fraction is

ymax
H2S,k =

0.02, k = 1, . . . ,N/2,
0.04, k = N/2 + 1, . . . ,N,

(79)

i.e. the upper bound is 2% during the first 12 hrs and 4% during
the last 12 hrs. The objective function (78) is furthermore aug-
mented with a regularization term that penalizes the temporal
change in the controls:

Φ̂k = Φk +

[
αQ (Qk − Qk−1)2 + αFV

(
FV,k − FV,k−1

)2

+αFL

(
FL,k − FL,k−1

)2
]
∆tk, k = 1, . . . ,N − 1.

(80)

The weights (αQ, αFV , αFL ) determine the size of the penalty of
the temporal change in each control variable. The weights are
(αQ, αFV , αFL ) = (0.1, 10, 10). The derivatives of this additional
regularization term are derived analytically. In this problem,
there is no set of initial reference controls as was the case in the
optimal tracking problem in Section 7.1.

7.2.2. Constraints
The total mass supplied by the feed should be equal to the

total mass extracted by the vapor and liquid streams:

FV,k + FL,k = FF,k, k ∈ N . (81)

Furthermore, the controls are subject to the following bound
constraints

Qk ∈ [−150 MJ/hr, 0 MJ/hr], (82a)
FL,k ∈ [4 kmol/hr, 6 kmol/hr], (82b)
FV,k ∈ [6 kmol/hr, 8 kmol/hr], (82c)

for k ∈ N . The derivatives of the linear constraints (81) and the
bound constraints (82) are derived analytically.

7.2.3. The optimal strategy
Fig. 5(a) shows the energy consumption and the H2S vapor

mole fraction obtained with the optimal strategy (blue solid)
and with a reference strategy (green dashed). The optimal strat-
egy reduces the total energy consumption from 2,400 MJ to
around 1,700 MJ. This is a reduction of 26%. The upper bound
on the H2S vapor mole fraction is satisfied at all times. Fig. 5(b)
shows the temperature, the pressure, the liquid volume, and the
vapor fraction. The large variations in the temperature and pres-
sure cause large variations in the vapor fraction. However, the
vapor-liquid composition is not affected significantly as can be
seen from Fig. 6. The vapor consists primarily of methane, and
the liquid phase is primarily heptane and methane. Fig. 5(c)
shows the optimal strategy and the reference strategy. The op-
timal strategy uses the vapor flow rate and the liquid flow rate
to compensate for the increase in the heat input during the first
12 hrs. However, the optimal strategy does not increase the
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(a) Controlled variables (CV) and vapor fraction.
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(b) Inputs and feed flow rate.

Figure 3: The optimal tracking of temperature, pressure, and liquid volume setpoints for a ternary mixture containing benzene, toluene, and diphenyl. Blue solid:
Optimal strategy. Green dashed: Reference strategy. Red dash-dotted: Bounds. Black solid: Feed. Black dashed: Setpoints.

heat input during the last 12 hrs. This is because the upper con-
straint on the H2S vapor mole fraction is incorporated into the
objective function. This undesired behavior can be avoided by
adjusting the parameter αH2S in the barrier function during the
iterations of the optimization algorithm.

8. Performance study

This section presents a performance study of several imple-
mentations of the single-shooting algorithm. The algorithm is
used to solve the optimal tracking problem described in Sec-
tion 7.1 and the minimal cooling problem described in Section
7.2. We compare the efficiency of: (a) the simultaneous and the
nested approach, (b) the exact and the inexact Newton method,
(c) Matlab and C implementations, (d) different NLP solvers,
and (e) different compilers and linear algebra libraries.

8.1. The simultaneous and the nested approaches

Table 1 shows several performance measures for a Matlab
implementation of the single-shooting algorithm. The simulta-
neous approach is faster than the nested approach for both prob-
lems and regardless of whether an exact or an inexact Newton
method is used. This is due to fewer factorizations, back substi-
tutions, and evaluations of thermodynamic properties. Table 2

shows the computation times of thermodynamic function eval-
uations, factorizations, and back substitutions. The evaluation
of thermodynamic functions and their derivatives is more time
consuming than solving linear systems for both the Matlab and
the C implementations. However, the difference is significantly
larger for the Matlab implementations. There is little or no com-
putational overhead in evaluating thermodynamic functions for
the Jacobian instead of for the residual equations when an ideal
thermodynamic model is used. This is the case for the optimal
tracking problem. The overhead is significantly larger when
equations of state are used in the thermodynamic computations,
as is the case for the minimal cooling problem.

8.2. Exact and inexact Newton methods
For both problems, it is more efficient to use an exact Newton

method in the nested approach. This is likely due to frequent
updating of the Jacobian in the inner Newton iterations. For the
simultaneous approach, there is no advantage in using an inex-
act Newton method when solving the optimal tracking problem.
This is because the overhead associated with evaluating thermo-
dynamic properties for the Jacobians is very small. This is not
true when equations of state are used. For the minimal cooling
problem, where equations of state are used, the performance
of the simultaneous approach thus improves by roughly 35%
when an inexact Newton method is used. This improvement is
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Figure 4: The mixture mole fractions and the total feed mole fractions obtained with the optimal tracking strategy. Blue solid: Benzene. Red dashed: Toluene.
Green dash-dotted: Diphenyl.

also, in part, due to the fewer function evaluations in the NLP
algorithm.

8.3. Programming language, NLP solvers, and compilers
Table 3 shows performance measures for several implemen-

tations of the single-shooting algorithm using the simultaneous
approach with an inexact Newton method. The implementa-
tions use different optimization libraries (NLP solvers), com-
pilers, and linear algebra libraries. The least efficient is a pure
Matlab implementation using fmincon. This implementation
solves the optimal tracking problem in 8.5 s and the minimal
cooling problem in 137.8 s. A mixed implementation, which
uses fmincon and C routines for the simulation and the gradient
computations, improves over the pure Matlab implementation.
It attains a speedup of 10 for the optimal tracking problem and
3.7 for the minimal cooling problem, as compared to the pure
Matlab implementation.

The C implementation using IPOPT is not efficient for the
optimal tracking problem. This is because IPOPT is used with
a limited-memory BFGS approximation. This implementation
is more efficient for the larger minimal cooling problem where
it performs as well as the implementations using KNITRO and
NPSOL when GCC compilers are used. The implementation
that uses NPSOL is in general the fastest. Its performance im-
proves significantly when Intel compilers are used. It thus at-
tains a speedup of 83 for the optimal tracking problem and 55
for the minimal cooling problem. The Intel compilers do not
improve the performance of the other implementations signifi-
cantly.

9. Conclusions

We have presented a single-shooting algorithm for gradient-
based dynamic optimization of vapor-liquid equilibrium pro-
cesses. It uses the adjoint method for the computation of gradi-
ents. We have described a dynamic UV flash model and demon-
strated that the UV flash is equivalent to a UV-constrained PT
flash, i.e. a PT flash combined with specifications of the inter-
nal energy and volume. We have presented a numerical per-
formance study with two optimal control problems. The first

problem is a small tracking-type control problem. The second
is a medium-size economical control problem. We have com-
pared the efficiency of a simultaneous approach and a nested
approach for the numerical solution of the differential-algebraic
constraints in the optimal control problem. The simultaneous
approach is faster because it uses fewer factorizations, back
substitutions, and thermodynamic function evaluations. Not
surprisingly, the performance study also shows that the C im-
plementations are significantly faster than a pure Matlab imple-
mentation. Furthermore, we have compared the performance of
four nonlinear constrained optimization solvers: Matlab’s fmin-
con, IPOPT, KNITRO, and NPSOL. NPSOL is generally the
fastest solver for this problem formulation, and the performance
of NPSOL is significantly improved when Intel compilers are
used. The Intel compilers do not improve the efficiency of the
implementations using fmincon, IPOPT, and KNITRO signifi-
cantly. The implementation using NPSOL is able to solve the
tracking problem in 0.1 s which is 83.4 times faster than the
pure Matlab implementation. Furthermore, it solves the eco-
nomical control problem in 2.5 seconds which is 55.5 times
faster than the Matlab implementation.
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Appendix A. Parameter values for the optimal control ex-
amples

Table A.4 contains values of quantities related to the optimal
tracking problem described in Section 7.1. It contains the con-
trol variables and the disturbance variables necessary for com-
puting the initial and final steady states that are used to generate
the setpoints in the objective function (73). This initial steady
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(a) Energy consumption and H2S vapor mole fraction.
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(b) Temperature, pressure, liquid volume, and vapor fraction.
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(c) Inputs and feed flow rate.

Figure 5: Optimal flash separation of a mixture of four hydrocarbons and hydrogen-sulfide with minimal energy consumption (in terms of cooling). Blue solid:
Optimal strategy. Green dashed: Reference strategy. Red dash-dotted: Bounds. Black solid: Feed.

state is also used as the initial condition. Furthermore, it con-
tains the feed variables as well as the reference strategy. Table
A.5 contains values of quantities related to the minimal cooling
problem described in Section 7.2. It contains the control vari-
ables and the disturbance variables used to compute the initial
steady state that is used as initial condition in the minimal cool-
ing problem. Furthermore, the table contains the feed variables
and the reference strategy.
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Figure 6: The mixture mole fractions and the total feed mole fractions for the minimal cooling strategy. Blue dotted: Methane. Green dash-dotted: Ethane. Red
dashed: Propane. Black solid: Heptane. Blue solid: Hydrogen sulfide.

Table 1: Performance indicators for the solution of the two optimal control problems using the single-shooting algorithm with the simultaneous approach (Sim.)
and the nested approach (Nest.). The implementations use either an exact or an inexact Newton method. Sim. time and Adj. time are the relative computation
times of the simulation and the adjoint gradient computations. There is no relation between the relative computation times in the two examples. NLP Iter. and NLP
Func. are the number of iterations and function evaluations performed by Matlab’s fmincon, respectively. Fact. is the number of factorizations and Back. sub. is the
number of back substitutions. Furthermore, the number of evaluations of thermodynamic properties for evaluating residual equations and for evaluating Jacobians
are shown.
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Nest. (exact) 0.792 0.123 146 205 654,674 654,674 0 507,831

Pergamon Press. pp. 242–247.
Bryson, Jr., A.E., 1999. Dynamic Optimization. Addison-Wesley.
Capolei, A., Jørgensen, J., 2012. Solution of constrained optimal control prob-

lems using multiple shooting and ESDIRK methods, in: Proceedings of the
2012 American Control Conference, pp. 295–300.

Capolei, A., Völcker, C., Frydendall, J., Jørgensen, J.B., 2012. Oil reservoir
production optimization using single shooting and ESDIRK methods, in:
Automatic Control in Offshore Oil and Gas Production, International Feder-
ation of Automatic Control. pp. 286–291.

Castier, M., 2009. Solution of the isochoric-isoenergetic flash problem by direct
entropy maximization. Fluid Phase Equilibria 276, 7–17.

Castier, M., 2010. Dynamic simulation of fluids in vessels via entropy maxi-
mization. Journal of Industrial and Engineering Chemistry 16, 122–129.

Colson, B., Marcotte, P., Savard, G., 2007. An overview of bilevel optimization.
Annals of operations research 153, 235–256.
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Table 2: Absolute computation time (in microseconds) of evaluating thermodynamical properties and solving a linear system Ax = b for x where A is a dense
matrix. The sizes of A are chosen according to the sizes of the matrices that occur in the Newton iterations in the simultaneous approach (Sim.) and in the inner
and outer Newton iterations in the nested approach (Nest. inner and Nest. outer, respectively). We distinguish between evaluating thermodynamic properties to be
used in residual equations and to be used in Jacobians. The linear systems are solved with an LU factorization (Fact.) and a back substitution (Back. sub.). The C
factorizations and back substitutions are obtained with Netlib’s LAPACK routines dgetrf and dgetrs.
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Wächter, A., Biegler, L.T., 2006. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathe-
matical programming 106, 25–57.

Watson, H.A.J., Vikse, M., Gundersen, T., Barton, P.I., 2017. Reliable flash
calculations: Part 1. nonsmooth inside-out algorithms. Industrial & Engi-
neering Chemistry Research 56, 960–973.

Wilhelmsen, Ø., Skaugen, G., Hammer, M., Wahl, P.E., Morud, J.C., 2013.
Time efficient solution of phase equilibria in dynamic and distributed sys-
tems with differential algebraic equation solvers. Industrial & Engineering
Chemistry Research 52, 2130–2140.

Zavala, V.M., Biegler, L.T., 2009. Nonlinear programming strategies for state
estimation and model predictive control, in: Magni, L., Raimondo, D.M.,
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Table 3: Absolute computation time (in seconds) and relative computation time of solving the two optimal control problems using the single-shooting algorithm
with the simultaneous approach. Average over ten solutions to the optimal control problem.

Optimal tracking problem
GCC compilers and Netlib’s BLAS/LAPACK Intel compilers and Intel MKL

NLP solver fmincon fmincon IPOPT KNITRO NPSOL fmincon IPOPT KNITRO NPSOL

Prog. Lang. Matlab C C C C C C C C

Iterations 202 202 486 186 152 202 486 186 152

Func. Eval. 203 203 1517 190 153 203 1517 190 153

Absolute 8.503 0.851 1.319 0.291 0.223 0.843 0.911 0.245 0.102

Relative 1.000 0.100 0.155 0.034 0.026 0.099 0.107 0.029 0.012

Speedup 1.0 10.0 6.4 29.2 38.1 10.1 9.3 34.7 83.4

Minimal cooling problem
GCC compilers and Netlib’s BLAS/LAPACK Intel compilers and Intel MKL

NLP solver fmincon fmincon IPOPT KNITRO NPSOL fmincon IPOPT KNITRO NPSOL

Prog. Lang. Matlab C C C C C C C C

Iterations 156 156 328 117 150 156 328 117 150

Func. Eval. 173 173 1364 121 152 173 1364 121 152

Absolute 137.803 37.525 6.868 6.654 7.002 37.929 6.437 8.149 2.481

Relative 1.000 0.272 0.050 0.048 0.051 0.275 0.047 0.059 0.018

Speedup 1.0 3.7 20.1 20.7 19.7 3.6 21.4 16.9 55.5

Table A.4: Parameter values used in the optimal tracking problem in Section
7.1. Certain parameters have different values on the first and the second half of
the time interval [t0, t f ] = [0 hr, 4 hr].

t ∈ [0 hr, 4 hr] Unit
Initial Steady State

TF 505.0 K
PF 1.0 MPa
zF [0.25; 0.40; 0.35]
FF 1.0 kmol/hr
Q -1.0 MJ/hr
FL 0.6 kmol/hr
FV 0.4 kmol/hr

Final Steady State
TF 505.0 K
PF 1.0 MPa
zF [0.25; 0.40; 0.35]
FF 1.5 kmol/hr
Q -40.0 MJ/hr
FL 1.3 kmol/hr
FV 0.2 kmol/hr

t ∈ [0 hr, 2 hr] t ∈ [2 hr, 4 hr] Unit
Feed

TF 505.0 505.0 K
PF 1.0 1.0 MPa
zF [0.25; 0.40; 0.35] [0.25; 0.40; 0.35]
FF 1.0 1.5 kmol/hr

Reference Control Strategy
Q -1.0 -40.0 MJ/hr
FL 0.6 1.3 kmol/hr
FV 0.4 0.2 kmol/hr

Table A.5: Parameter values used in the minimal cooling problem in Section
7.2. Certain parameters have different values on the first and the second half of
the time interval [t0, t f ] = [0 hr, 24 hr].

t ∈ [0 hr, 24 hr] Unit
Initial Steady State

TF 335.15 K
PF 1.0 MPa
zF [0.60; 0.10; 0.05; 0.23; 0.02]
FF 12.0 kmol/hr
Q -150.0 MJ/hr
FL 4.5 kmol/hr
FV 7.5 kmol/hr

t ∈ [0 hr, 12 hr] t ∈ [12 hr, 24 hr] Unit
Feed

TF 335.15 335.15 K
PF 1.0 1.0 MPa
zF [0.60; 0.10; 0.05; 0.23; 0.02] [0.59; 0.09; 0.04; 0.22; 0.06]
FF 12.0 12.0 kmol/hr

Reference Control Strategy
Q -90.0 -110.0 MJ/hr
FL 4.5 5.5 kmol/hr
FV 7.5 6.5 kmol/hr
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