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Abstract8

An approach for optimising the cleaning schedule in heat exchanger networks (HENs) subject9

to fouling is presented. This work focuses on HEN applications in crude oil preheat trains10

located in refineries. Previous approaches have focused on using mixed-integer nonlinear11

programming (MINLP) methods involving binary decision variables describing when and12

which unit to clean in a multi-period formulation. This work is based on the discovery that13

the HEN cleaning scheduling problem is in actuality a multistage optimal control problem14

(OCP), and further that cleaning actions are the controls which appear linearly in the system15

equations. The key feature is that these problems exhibit bang-bang behaviour, obviating the16

need for combinatorial optimisation methods. Several case studies are considered; ranging17

from a single unit up to 25 units. Results show that the feasible path approach adopted is18

stable and efficient in comparison to classical methods which sometimes suffer from failure19

in convergence.20

Keywords: Optimal control problem; Bang-bang control; Fouling; Optimisation;21

Scheduling; Heat exchanger networks22

1. Introduction23

Fouling of heat transfer surfaces is a long-established problem and has been described24

as “the major unresolved problem in heat transfer” (Taborek et al., 1972). It is one of the25

most significant issues affecting heat exchanger operation and thus has been depicted as “a26

nearly universal problem in heat exchanger equipment and design” (Watkinson, 1988). Heat27

exchanger fouling accounts for 0.25% of gross national product (GNP) in highly industrialised28

countries (Pugh et al., 2001).29

This major industry-wide problem is caused by the deterioration in heat transfer resulting30

from fouling and leads to the loss of efficiency in heat exchangers which must be offset. This31
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is achieved through process turndown, increased utility consumption with affiliated surge32

in greenhouse gas emissions until operation requirements such as temperature and pump-33

around targets are met, or in extreme cases plant shutdown. The reduction of production34

rates and increased energy consumption lead to economic losses which are more significant35

in larger networks of heat exchangers that require long continuous operational times between36

shutdowns, particularly crude distillation unit preheat trains (PHT) on oil refineries (Smaïli37

et al., 2001).38

Based on 1995 figures, the costs associated specifically with crude oil fouling in PHT39

worldwide were estimated to be of the order of 4.5 billion USD (Pugh et al., 2001). Foul-40

ing mitigation techniques include addition of antifoulant chemicals, using more robust heat41

transfer equipment, and regular cleaning of fouled units. Cleaning of heat exchangers has42

a negative impact on operating costs due to the unit being taken offline, however with the43

development of optimisation strategies such as those proposed by Casado (1990), Smaïli et al.44

(1999),Georgiadis and Papageorgiou (2000), Lavaja and Bagajewicz (2004), Ishiyama et al.45

(2009b), Gonçalves et al. (2014), among others, these costs can be minimised resulting in46

overall gains due to improved heat transfer of the network over time.47

The cleaning scheduling problem is a discrete decision making problem where a decision48

must be made as to whether cleaning should be performed, and which unit is to be cleaned.49

It consists of continuous as well as binary decision variables and hence it has combinatorial50

complexity that is handled traditionally by Branch and Bound (B&B) methods of one form51

or another. Due to its combinatorial nature and the existence of nonlinear models, mathem-52

atical programming (MP) techniques have been used to solve this mixed integer nonlinear53

programming (MINLP) problem based on time discretisation (Smaïli et al., 2001). Addi-54

tionally this problem has been solved by formulating certain models from a MINLP model55

to a mixed integer linear programming (MILP) model (Georgiadis and Papageorgiou, 2000).56

Stochastic optimisation frameworks using distinctive modifications of simulated annealing al-57

gorithms have been implemented (Smaïli et al., 2002a) as well as heuristic schemes composed58
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of a set of movements according to a greedy rationale (Gonçalves et al., 2014).59

This problem has been addressed in the literature through extending the formulation60

of the general cleaning scheduling problem in a multitude of ways. Rodriguez and Smith61

(2007) combined the conventional cleaning scheduling problem with optimisation of operating62

conditions such as wall temperature and flow velocity in a comprehensive mitigation strategy63

while Ishiyama et al. (2010) considered the addition of the problem of controlling the desalter64

inlet temperature by using hot stream bypassing within a PHT fouling mitigation strategy65

based on heat exchanger cleaning.66

Certain formulations include constraints set by pump-around operation (Smaïli et al.,67

2002a) and pressure drop (Smaïli et al., 2001), while both thermal and hydraulic impacts of68

fouling were considered by Ishiyama et al. (2009b) where variable throughput and control69

valve operation are implemented on the cleaning scheduling problem.70

A cleaning operation will ideally remove all fouling deposits from a heat transfer surface.71

In practice the effectiveness of a cleaning operation depends on the nature of the deposit and72

the method of cleaning. Ishiyama et al. (2011) presented a framework for incorporating this73

complexity into the scheduling problem. The replacement of the single layer fouling model74

with a dual layer consisting of a soft exterior deposit (gel) and a harder interior layer (coke)75

was investigated by Pogiatzis et al. (2012). They considered the case where two cleaning76

methods were available: (a) cleaning-in-place methods and (b) off-line mechanical cleaning.77

An extra decision variable is added to the scheduling model, capturing the choice of cleaning78

method. The current paper addresses a single layer fouling model where the fouling kinetics79

exhibit linear and asymptotic behaviour.80

Current solution methods for the cleaning scheduling problem still present limitations.81

Due to the complexity of networks and the nonlinearity in the models, MINLP approaches82

sometimes suffer from failure in convergence (Georgiadis and Papageorgiou, 2000; Smaïli83

et al., 2001) whereas MILP techniques may be computationally expensive (Lavaja and Baga-84

jewicz, 2004) and involve the introduction of approximations to models. For example, Geor-85
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giadis and Papageorgiou (2000) used the arithmetic temperature difference instead of the86

logarithmic mean temperature difference, which is not suitable for large networks that fea-87

ture extensive feedback of hot (and/or cold) streams (Smaïli et al., 2001).88

Stochastic optimisation methods may not be capable of handling problems involving many89

variables of similar effect (Fouskakis and Draper, 2002). Furthermore, these approaches can90

be very dependent on parameter tuning (Gonçalves et al., 2014). Solutions found by heuristic91

schemes such as greedy algorithms are not guaranteed to be optimal. For the scheduling92

problem, such simple strategies consider cleaning actions only in the current period and may93

be inefficient (Smaïli et al., 2001). Therefore, there is a need to develop robust, reliable and94

inexpensive methods to solve the scheduling cleaning problem.95

In this paper we show for the first time that the heat exchanger network (HEN) clean-96

ing scheduling problems are in actuality mixed-integer optimal control problems (MIOCPs)97

which exhibit a nearly bang-bang solution. This paper is arranged as follows: section 2 de-98

scribes the formulation as a multi-period optimal control problem (OCP), including the proof99

of linearity of the control resulting in this bang-bang optimal solution behaviour. The formu-100

lation considered for the general HEN cleaning scheduling problem is presented in section 3.101

Implementation and solutions to a number of case studies for crude oil PHT obtained using102

a commercial optimisation software are presented in sections 4 and 5, including comparison103

of solutions to those produced through MP techniques.104

2. HEN Scheduling Optimisation as Multi-period Optimal Control105

This section will demonstrate that the HEN cleaning scheduling problem is in actuality106

a MIOCP. In this problem the controls, i.e. cleaning decisions occur linearly in the system,107

thus resulting in a bang-bang solution. Hence, integrality of the solution can be obtained by108

solving only the relaxed MIOCP as a standard nonlinear programming (NLP). Furthermore,109

proof of linearity in the control is shown in this section.110

The basic formulation for an OCP is expressed in equations (1a) to (1d) where the per-111
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formance index is minimised by selection of controls u(t) subject to differential and algebraic112

equations involving differential and algebraic state variables x(t) and y(t), respectively. Equa-113

tions (1b) to (1c) describe an index-1 differential algebraic equation (DAE) system given the114

initial condition x0, and a fixed final time tF . It is noted that the problem considered involves115

binary control variables, u(t), thus constituting a MIOCP.116

min
u(·)

O = φ[x(tF)]+

tF̂

0

L[x(t), y(t), u(t), t] dt (1a)

subject to117

ẋ(t) = f [x(t), y(t), u(t), t], x(t0) = x0, (1b)

g(x(t), y(t), u(t), t) = 0, (1c)

u(t) ∈ U , U ∈ {0,1} ∀ t ∈ [0, tF] (1d)

The OCP solution is obtained through discretisation of time into periods, where the118

control profiles are allowed to be discontinuous at a finite number of points, tp, termed119

junctions. Period lengths have not been specified. Vassiliadis (1993) gives a general form of120

junction conditions between stages (i.e. periods) p and p + 1. This is shown in equation 2121

for the sake of clarity.122

Jp(ẋp+1(t
+
p ), xp+1(t

+
p ), yp+1(t

+
p ), up+1(t

+
p ), ẋp(t

−
p ), xp(t

−
p ), yp(t

−
p ), up(t

−
p ), tp) = 0 ∀p = 1, 2, . . . , NP−1

(2)

The basic formulation of a multi-period OCP over time periods, p = 1, . . . , NP , t ∈123

[tp−1, tp] with tNP = tF is shown in equations (3a) to (3g).124
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min
u(·)

O =
NP∑
p=1

[
φ(p)x(tp), y

(p)(tp), u
(p), t(p)

]
+

tp̂

tp−1

L(p)
[
x(p)(t), y(p)(t), u(p), t

]
dt (3a)

subject to125

ẋ(p)(t) = f (p)(x(p)(t), y(p)(t), u(p), t) (3b)

0 = g(p)(x(p)(t), y(p)(t), u(p), t) (3c)

tp−1 ≤ t ≤ tp, p = 1, 2, . . . , NP (3d)

x(1)(t0) = I(1)(u(1)) (3e)

x(p)(tp−1) = I(p)(x(p−1)(tp−1), y
(p−1)(tp−1), u

(p)) ∀p = 2, 3, . . . , NP (3f)

u(t) ∈ U , U ∈ {0,1} (3g)

For the HEN cleaning problem the controls u(p)t are considered to be piecewise constant126

so as to reflect the on/off nature of having a unit cleaning or not. The stage switching times127

tp are fixed in this initial derivation. The collective vector of controls over all stages is:128

u = ((u(1))T , (u(2))T , . . . , (u(NP ))T )T (4)

At the junctions, conditions are set where differential state variables are allowed to be129

reinitialised based on the control variable value:130
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xp(tp−1) = up(t) · xp−1(tp−1) ∀p = 2, . . . NP (5)

Proof that the control in the relaxed multistage MIOCP for cleaning scheduling is linearly131

related to the process variables is provided as follows:132

This multistage adjoint system is a linear time-varying coefficient semi-explicit index-1133

DAE system. The performance index in equation (3a) is modified such that the Euler-134

Lagrange multipliers are introduced:135

Ō =
NP∑
p=2

{
φ(p)(x(p)(tp), y

(p)(tp), u
(p), t(p))

+
(
λ(p)(tp−1)

)T · (I(p)(x(p−1)(tp−1), y(p−1)(tp−1), u(p))− x(p)(tp−1))
+

ˆ tp

tp−1

L(p)(x(p)(t), y(p)(tp), u
(p), t) dt

+

ˆ tp

tp−1

(
λ(p)(t)

)T · (f (p)(x(p)(t), y(p)(tp), u
(p), t)− ẋ(p)(t)

)
dt

+

ˆ tp

tp−1

(
µ(p)(t)

)T · (g(p)(x(p)(t), y(p)(t), u(p), t)) dt}
+φ(1)(x(1)(t1), y

(1)(t1), u
(1), t(1))

+
(
λ(1)(t0)

)T · (I(1)(u(1))− x(1)(t0))
+

ˆ t1

t0

L(1)(x(1)(t), y(1)(t), u(1), t) dt

+

ˆ t1

t0

(
λ(1)(t)

)T · (f (1)(x(1)(t), y(1)(t), u(1), t)− ẋ(1)(t)
)
dt

+

ˆ t1

t0

(
µ(1)(t)

)T · (g(1)(x(1)(t), y(1)(t), u(1), t)) dt (6)

Variations on the parameter set of stage p′, of the form δu(p
′) are considered, which result136

in variations in the state values at all times as shown in equation (7). Clearly, the state vector137
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of stage p , where p < p′, will not be influenced. This results in δx(p)(t) , 0 and δy(p)(t) , 0.138

δŌ =
NP∑
p=2

{
[

∂φ(p)

∂x(p)(tp)
δx(p)(tp) +

∂φ(p)

∂y(p)(tp)
δy(p)(tp) +

∂φ(p)

∂u(k)
δu(p)

]
+
(
λ(p)(tp−1)

)T ·(
∂I(p)

∂x(p−1)(tp−1)
δx(p−1)(tp−1) +

∂I(p)

∂y(p−1)(tp−1)
δy(p−1)(tp−1) +

∂I(p)

∂u(p)
δu(p) − δx(p)(tp−1)

)
+

ˆ tp

tp−1

∂L(p)

∂x(p)(t)
δx(p)(t) +

∂L(p)

∂y(p)(t)
δy(p)(t) +

∂L(p)

∂u(p)
δu(p) dt

+

ˆ tp

tp−1

(
λ(p)(t)

)T · ( ∂f (p)

∂x(p)(t)
δx(p)(t) +

∂f (p)

∂y(p)(t)
δy(p)(t) +

∂f (p)

∂u(p)
δu(p) − δẋ(p)(t)

)
dt

+

ˆ tp

tp−1

(
µ(p)(t)

)T · ( ∂g(p)

∂x(p)(t)
δx(p)(t) +

∂g(p)

∂y(p)(t)
δy(p)(t) +

∂g(p)

∂u(p)
δu(p)

)
dt}

+

[
∂φ(1)

∂x(1)(t1)
δx(1)(t1) +

∂φ(1)

∂y(1)(t1)
δy(1)(t1) +

∂φ(1)

∂u(1)
δu(1)

]
+
(
λ(1)(t0)

)T · (∂I(1)
∂u(1)

δu(1) − δx(1)(t0)
)

+

ˆ t1

t0

∂L(1)

∂x(1)(t)
δx(1)(t) +

∂L(1)

∂y(1)(t)
δy(1)(t) +

∂L(1)

∂u(1)
δu(1) dt

+

ˆ t1

t0

(
λ(1)(t)

)T · ( ∂f (1)

∂x(1)(t)
δx(1)(t) +

∂f (1)

∂y(1)(t)
δy(1)(t) +

∂f (1)

∂u(1)
δu(1) − δẋ(1)(t)

)
dt

+

ˆ t1

t0

(
µ(1)(t)

)T · ( ∂g(1)

∂x(1)(t)
δx(1)(t) +

∂g(1)

∂y(1)(t)
δy(1)(t) +

∂g(1)

∂u(1)
δu(1)

)
dt (7)

Integration by parts for the last term in the integrals involving δẋ(p) is used to obtain139

equation (8):140
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δŌ =
NP∑
p=2

{
[

∂φ(p)

∂x(p)(tp)
δx(p)(tp) +

∂φ(p)

∂y(p)(tp)
δy(p)(tk) +

∂φ(p)

∂u(p)
δu(p)

]
+
(
λ(p)(tp−1)

)T ·(
∂I(p)

∂x(p−1)(tp−1)
δx(p−1)(tp−1) +

∂I(p)

∂y(p−1)(tp−1)
δy(p−1)(tp−1) +

∂I(p)

∂u(p)
δu(p) − δx(p)(tp−1)

)
+

ˆ tp

tp−1

∂L(p)

∂x(p)(t)
δx(p)(t) +

∂L(p)

∂y(p)(t)
δy(p)(t) +

∂L(p)

∂u(p)
δu(p) dt

+

ˆ tp

tp−1

(
λ(p)(t)

)T · ( ∂f (p)

∂x(p)(t)
δx(p)(t) +

∂f (p)

∂y(p)(t)
δy(p)(t) +

∂f (p)

∂u(p)
δu(p)

)
dt

+

ˆ tp

tp−1

(
λ̇(p)(t)

)T
δx(p)(t) dt

+
(
λ(p)(tp−1)

)T · δx(p)(tp−1)− (λ(p)(tp))T · δx(p)(tp)
+

ˆ tp

tp−1

(
µ(p)(t)

)T · ( ∂g(p)

∂x(p)(t)
δx(p)(t) +

∂g(p)

∂y(p)(t)
δy(p)(t) +

∂g(p)

∂u(p)
δu(p)

)
dt}

+

[
∂φ(1)

∂x(1)(t1)
δx(1)(t1) +

∂φ(1)

∂y(1)(t1)
δy(1)(t1) +

∂φ(1)

∂u(1)
δu(1)

]
+
(
λ(1)(t0)

)T · (∂I(1)
∂u(1)

δu(1) − δx(1)(t0)
)

+

ˆ t1

t0

∂L(1)

∂x(1)(t)
δx(1)(t) +

∂L(1)

∂y(1)(t)
δy(1)(t) +

∂L(1)

∂u(1)
δu(1) dt

+

ˆ t1

t0

(
λ(1)(t)

)T · ( ∂f (1)

∂x(1)(t)
δx(1)(t) +

∂f (1)

∂y(1)(t)
δy(1)(t) +

∂f (1)

∂u(1)
δu(1)

)
dt

+

ˆ t1

t0

(
λ̇(1)(t)

)T
δx(1)(t) dt

+
(
λ(1)(t0)

)T · δx(1)(t0)− (λ(1)(t1))T · δx(1)(t1)
+

ˆ t1

t0

(
µ(1)(t)

)T · ( ∂g(1)

∂x(1)(t)
δx(1)(t) +

∂g(1)

∂y(1)(t)
δy(1)(t) +

∂g(1)

∂u(1)
δu(1)

)
dt (8)

For a stationary point, infinitesimal variations in the right hand side should yield no141

change to the performance index, i.e. δŌ = 0, and hence related terms must be chosen so142
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that they always guarantee this. This leads to the following set of Euler-Lagrange equations143

and the Pontryagin et al. (1962) maximum (minimum) principle.144

To cancel the δx(1)(t) and δx(1)(t1) terms, the differential equations and final time stage145

conditions as shown in equations (9a) to (10) must hold, respectively:146

λ̇(1)(t) = −
[
∂f (1)

∂x(1)(t)

]T
λ(1)(t)−

[
∂g(1)

∂x(1)(t)

]T
µ(1)(t)−

[
∂L(1)

∂x(1)(t)

]T
(9a)

t0 ≤ t ≤ t1 (9b)

λ(1)(t1) =

[
∂φ(1)

∂x(1)(t1)

]T
(10)

Algebraic equations and final stage conditions (11a) to (11b) must hold in order to cancel147

the δy(1)(t) and δy(1)(t1) terms;148

[
∂f (1)

∂y(1)(t)

]T
λ(1)(t) +

[
∂g(1)

∂y(1)(t)

]T
µ(1)(t) +

[
∂L(1)

∂y(1)(t)

]T
= 0 (11a)

t0 ≤ t ≤ t1 (11b)

[
∂φ(1)

∂y(1)(t1)

]T
+

[
∂I(2)

∂y(1)(t1)

]T
· λ(2)(t1) = 0 (12)

The δx(p)(t) and δx(p)(tp) terms are cancelled through the condition that the following dif-149

ferential equations and final time stage conditions are held;150

λ̇(p)(t) = −
[
∂f (p)

∂x(p)(t)

]T
λ(p)(t)−

[
∂L(p)

∂x(p)(t)

]T
(13a)

151

tp−1 ≤ t ≤ tp ∀p = 2, 3, . . . NP (13b)
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λ(p)(tp) =

[
∂φ(p)

∂x(p)(tp)

]T
+

[
∂I(p+1)

∂x(p)(tp)

]T
· λ(p+1)(tp) ∀p = 2, 3, . . . , NP − 1

To cancel δy(p)(t) and δy(p)(tp) terms, the following algebraic equations must hold:152

[
∂f (p)

∂y(p)(t)

]T
λ(p)(t) +

[
∂g(p)

∂y(p)(t)

]T
µ(p)(t) +

[
∂L(p)

∂y(p)(t)

]T
= 0

tp−1 ≤ t ≤ tp ∀p = 2, 3, . . . NP

[
∂φ(p)

∂y(p)(tp)

]T
+

[
∂I(p+1)

∂y(p)(tp)

]T
· λ(p+1)(tp) = 0 ∀p = 2, 3, . . . , NP − 1

The terms δu(1) and δu(p) are cancelled on the condition that equations (15a) to (16b) hold.153

These are equivalent to the Hamiltonian gradient condition:154

[
∂φ(1)

∂u(1)
(t1)

]T
+

[
∂I(1)

∂u(1)

]T
· λ(1)(t0)

+

ˆ t1

t0

{[
∂L(1)

∂u(1)
(t)

]T
+

[
∂f (1)

∂u(1)
(t)

]T
· λ(1)(t) +

[
∂g(1)

∂u(1)
(t)

]T
· µ(1)(t)

}
dt = 0

(15a)

t0 ≤ t ≤ t1 (15b)

[
∂φ(p)

∂u(p)
(tp)

]T
+

[
∂I(p)

∂u(p)

]T
· λ(p)(tp−1)

+

ˆ tp

tp−1

{[
∂L(p)

∂u(p)
(t)

]T
+

[
∂f (p)

∂u(p)
(t)

]T
· λ(p)(t) +

[
∂g(p)

∂u(p)
(t)

]T
· µ(p)(t)

}
dt = 0

(16a)
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tp−1 ≤ t ≤ tp ∀p = 2, 3, . . . NP (16b)

When the functions appearing in equations (15a) and (16a) are linearly related to the155

control, the optimal control for the relaxed MIOCP will exhibit bang-bang behaviour (with156

potential singular arcs). Bang-bang solutions occur when the optimal control action is at157

either bound of the feasible region (Bryson and Ho, 1975). Controls that are not bang-158

bang, where the control lies between the bounds, are called singular. In this case, singular159

arcs exist. Pure bang-bang controls are demonstrated in minimum-time problems for linear160

systems (Bellman et al., 1956) and bilinear systems (Mohler, 1973), optimal control of batch161

reactors (Blakemore and Aris, 1962), optimal thermal control (Belghith et al., 1986), etc.162

For nonlinear optimisation systems, this bang-bang principle does not always hold. Zandvliet163

et al. (2007) investigated reservoir flooding problems, where the control is linear in relation164

to the continuous variables, and showed that if the only constraints are upper and lower165

bounds on the control, then due to their particular structure, these problems will sometimes166

have bang-bang optimal solutions. This is advantageous since bang-bang solutions can be167

implemented with simple on–off control valves.168

Approaches for optimal control of nonlinear dynamical systems with binary controls (on/off)169

were reviewed by Sager (2009). To satisfy requirements for bang-bang behaviour, the general170

OCP is reformulated such that the binary controls are presented linearly in the system171

dynamics. Solutions in this case may require use of heuristics e.g. rounding up or a sum172

up rounding strategy, or algorithms such as Branch and Bound when singular arcs appear173

(Sager, 2009).174

For the scheduling cleaning problem, reformulation is not necessary as the controls involved175

already have linear presentation in the system. More importantly, the formulation of this176

problem as an OCP facilitates the solution of the relaxed nonlinear programming (NLP)177

problem through the feasible path approach, obviating the need to discretise the system178

equations. This otherwise leads to a very large scale optimisation problem with a strongly179
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nonlinear system of equality constraints. This approach avoids failures of convergence pro-180

duced by direct solutions of MINLPs resulting from discretisation, such as in previous work181

of Georgiadis and Papageorgiou (2000) and of Smaïli et al. (2001).182

3. HEN Scheduling Optimisation Formulation183

The effect of fouling on heat transfer performance is often quantified in lumped parameter184

models of process heat transfer via the fouling resistance, Rf.185186

1

U
=

1

Uc
+Rf (17)

Equation (17) expresses the overall heat transfer coefficient U in relation to the fouling187

resistance and Uc, its value when clean.188

The impact of fouling resistance is more severe for heat exchangers with a high overall189

heat transfer coefficient. Both linear (equation (18)) and exponentially asymptotic fouling190

behaviour (equation (19)) are considered in this paper , which are quantified via191

Ṙf = a (18)

Rf = R∞f (1− exp(−t′/τ)) (19)

where a is the linear fouling constant for a particular heat exchanger, R∞f is the asymptotic192

fouling resistance, τ is the decay constant, and t′ is the operating time elapsed since the last193

cleaning action.194

The heat duty of a single-pass shell and tube heat exchanger operating in counter-current195

mode is given by equation (20), which is based on the log-mean temperature difference196

method.197198

Q = UA4Tlm (20)

Here A is the area and 4Tlm is the logarithmic mean temperature difference.199
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The heat duty, Q, is also linearly related to the stream inlet and outlet temperatures through200

the energy balances outlined in equations (21) and (22):201202

Q = FcCc (T out
c − T in

c ) (21)
203

Q = FhCh (T in
h − T out

h ) (22)

where Fh and Fc are the mass flow-rates of the hot and cold streams respectively, and Ch204

and Cc are their specific heat capacities.205

The cleaning scheduling problem is a multi-period OCP where a decision must be made206

regarding when, i.e. in which period(s), cleaning should occur, and which unit is to be207

cleaned. The control action is discretised into time periods of equal length, where each208

period is discretised further into a cleaning and operating sub-period. This is represented by209

binary variable ynp which is used to describe the cleaning status of each exchanger in each210

cleaning sub-period, where211

ynp =

 0 if the nth heat exchanger is cleaned in period p

1 otherwise

 ∀n, p (23)

Within an operating sub-period, this binary variable is fixed to 1 for all n i.e. all units are212

online. The objective is to minimise the operating and cleaning costs due to fouling over213

a specified horizon of time tF. The objective function is given by equation (24). The form214

of this objective function is generally common to all approaches. Local considerations may215

give slightly different mathematical expressions. However, the differences lie in the solution216

approach.217218

Obj =

tFˆ

0

CEQF(t)

ηf
dt+

NP∑
p=1

NE∑
n=1

Cc(1− ynp) (24)

The extra furnace energy consumption is described by the term QF(t) which is determined219

based on the temperature of the crude oil entering the furnace, i.e. the crude inlet temper-220

ature (CIT). CE represents the cost of fuel, ηf is the furnace efficiency, NE is the number221
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of exchangers considered for cleaning, NP is the number of periods, and Cc is the cost per222

cleaning action. For the purpose of attaining results that can be compared to published ones223

from case studies in the open literature, Cc is taken to be independent of the exchanger size224

and duty. In industrial practice this is not the case, as larger exchangers take more effort to225

clean and will thus have a higher value of Cc and vice versa. The amount of time taken to226

clean depends on the installation: if the exchanger must be isolated, removed and relocated227

for cleaning, these operations can determine the cleaning time. Furthermore, different clean-228

ing methods will have different durations, but this is not considered in this work. Through229

incorporation of binary variable ynp, equations (18) and (19) can be rewritten as:230

Ṙf = ynpa ∀n, p (25)

Rf = R∞f (1− exp(−t′/τ)) (26a)

ṫ′ = ynp ∀n, p (26b)

The HEN optimisation is started from a clean condition, i.e. the initial fouling resistance231

is 0 for the first period for all heat exchangers. In consecutive periods, the initial fouling232

resistance is related to the fouling resistance at the end of the previous period by integration233

in time and this value is allowed to be reset through a junction condition when cleaning234

occurs.235

The number of transfer units (NTU) effectiveness method is used to assess the performance236

of each heat exchanger. This is achieved by rearranging equation (20) in terms of a rating237

calculation. The units are modelled as simple countercurrent exchangers. The effectiveness238

term denoted by α and the ratio of capacity flow-rates P defined by equations (27) and (28)239

are reproduced from Smaïli et al. (2001) :240241

α =
UA

FhCh
(27)
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P =
FhCh

FcCc
(28)

Through combination and rearrangement of equations (20), (21) and (22) the temperature242

of the hot and cold streams leaving each exchanger can be calculated. The temperatures of243

the cold and hot streams leaving an exchanger are determined by:244245

T out
c = T in

c + P
(
T in

h − T out
h

)
(29)

246

T out
h = ynp

[
(1− P )T in

h exp(−α(1− P )) + T in
c (1− exp(−α(1− P )))

1− P exp(−α(1− P ))

]
(30)

+(1− ynp)T in
h ∀n, p

The above equations are applicable to most preheat configurations which feature P < 1. If247

the alternative case arises, these equations must be amended.248

4. Implementation249

The implementation is performed in MATLAB® R2016b with its Optimisation ToolboxTM
250

and Parallel Computing ToolboxTM (The MathWorks Inc., 2016). It is noteworthy that this251

methodology cannot be implemented in current commercial simulators directly. For example,252

gPROMSTM (Process Systems Enterprise, 2017), which is one of the most advanced commer-253

cial simulators, does not facilitate multi-period optimal control problem solutions as it does254

not allow for junction conditions.255

The MATLAB® code works as a standard multi-period optimal control problem solver256

using the feasible path approach (i.e. sequential approach) by linking together the Ordinary257

Differential Equation (ODE) solver ode15s with the optimiser fmincon. The default set-258

tings for ode15s are used, with absolute tolerance of 10-6 and relative tolerance of 10-3. The259

optimiser fmincon is used with the Sequential Quadratic Programming (SQP) algorithm op-260

tion whilst keeping the remaining settings at their default values: constraint, optimality and261

step tolerances of 10-6 using a forward finite difference scheme for the estimation of gradi-262
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ents. Gradient evaluations conducted via finite differences are costly and require repeated263

simulations of the dynamic process model.264

Additionally, since this problem is non-convex, multiple runs with different starting points265

are performed and the best solution is reported. A test was run using the Parallel Computing266

ToolboxTM to compare the computational time between parallelisation of the gradient evalu-267

ations versus parallelising a loop of multiple starting points. On a 4GHz Intel Core i7, 16 GB268

RAM iMac running on macOS Sierra the latter was faster than the former. Parallelisation269

of a loop of 50 runs is performed using a parfor loop. For cases where singularities appear in270

the control, a rounding up scheme is employed.271

5. Case Studies272

Computation experiments for the scheduling of cleaning actions for HENs located in273

crude oil distillation unit PHTs undergoing fouling are considered here. We present case274

studies appearing in the work of Lavaja and Bagajewicz (2004): a single heat exchanger275

unit; 4 units in series, a network of 10 units; and the more complex network of 25 units276

presented by Smaïli et al. (2002a). These are shown in figures 1 to 3. Stream data for each277

model are presented in tables 1 to 3 and 5. For the 10 unit HEN case study presented in278

the Lavaja and Bagajewicz (2004) formulation and the 25 unit HEN case study presented279

in the Smaïli et al. (2002a) formulation, the selection and operational constraints imposed280

through consideration of performance targets or acceptable operating practice are shown in281

tables 4 and 6, respectively. These constraints are based only on exchanger cleaning actions.282

However, in practice temperature bounds on the performance of exchangers are required to283

be applied, for example in the case of desalter temperature control considered by Ishiyama284

et al. (2010). For the purpose of achieving results that can be compared to published ones285

from case studies in the open literature, only the constraints shown in tables 4 and 6 are286

imposed on the corresponding case studies.287

The number of periods considered is NP = 24 for the single unit and NP = 18 for the288
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10 unit HEN case studies while this is NP = {12, 18} for the 4 unit heat exchanger case289

study. A longer duration is considered for the 25 unit HEN, with NP = 36. Both linear and290

asymptotic fouling models are considered in the single unit and 10 unit HEN cases whilst291

only linear fouling is modelled in the 4 units and 25 unit HEN case studies. This is done for292

comparison purposes.293

The extra energy cost required due to fouling CE in the objective function displayed in294

equation (24) is £0.34/kW day for the 25 unit HEN case. There is no mention of the furnace295

fuel cost in the work of Lavaja and Bagajewicz, so a cost of £2.93/MM Btu is used here based296

on the value reported by Smaïli et al. (2002b). The work of Smaïli et al. is the source of297

data for Lavaja and Bagajewicz’s models where they compared the solutions from their MILP298

approach with those obtained by Smaïli et al. using the OA/ER algorithm. Although Lavaja299

and Bagajewicz stated that they accounted for the decay in the heat transfer coefficient in300

each sub-period, expressed by ηc, there is no mention of the value of this parameter in their301

work. Hence, we considered the value of parameter ηc to be 1 in our model. This decay302

parameter is also fixed at the value of 1 in the 25 unit HEN case study along with the303

furnace efficiency ηf . Smaïli et al. (2002b) did not consider these parameters in their model.304

The cleaning cost incurred for cleaning operations, Cc, is £5000 per cleaning action in the 25305

unit HEN case and £4000 for all other cases. For the former case, the duration of the cleaning306

and operating sub-periods are equal with 4tcl = 4top = 15 days. If the cleaning time did307

depend on the size of the exchanger, these durations would have to be unit dependent.308

The scheduling problem was reformulated into a MILP problem by Lavaja and Bagajewicz309

(2004) whereas Smaïli et al. (2002a) solved the MINLP problem directly using two methods:310

a Backtracking Threshold Accepting (BTA) algorithm and the Outer Approximation (OA)311

method.312
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Figure 1: Four heat exchanger case. Temperature values are given for initial, clean condition. Adapted from
Lavaja and Bagajewicz, 2004.

Figure 2: 10 unit HEN case. Temperature values are given for initial, clean condition. Adapted from Lavaja
and Bagajewicz, 2004.
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Figure 3: 25 unit HEN case. Solid lines, cold (crude) streams; dashed lines, hot streams; CIT, crude inlet
temperature to furnace. Temperature values are given for initial, clean condition. Adapted from Smaïli et al.,
2002a.

The cleaning schedules featuring the best objective, i.e. lowest overall cost, are reported313

for each case. The optimal cleaning schedules are presented in tables 11 to 16 alongside314

those obtained by Lavaja and Bagajewicz (2004) and Smaïli et al. (2002a). In the economic315

comparison, we placed the cleaning schedules obtained by Lavaja and Bagajewicz (2004) and316

Smaïli et al. (2002a) into our model to evaluate the cost. Tables 7 to 10 show the economic317

comparison.318

Fouling rates directly impact the performance of heat exchangers. The asymptotic fouling319

cases have larger initial fouling rates, causing a rapid decay in the hot stream temperatures320

through the network, resulting in a much larger objective value for the uncleaned case (e.g.321
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Table 1: Data for single heat exchanger case. Adapted from Lavaja and Bagajewicz, 2004.
Parameter Value
Fh [lb/h] 208000
Fc [lb/h] 649000
Ch [Btu/lb°F] 0.67
Cc [Btu/lb°F] 0.57
Uc [Btu/hft2°F] 88.1
U0 [Btu/hft2°F] 88.1
A [ft2] 1257
a (linear fouling) [ft2°F/Btu] 3.88×10−7

R∞f (asymptotic fouling) [hft2°F/Btu] 6.73×10−3

τ (decay constant) [month] 4
∆tcl [month] 0.20
∆top [month] 0.80
ηf 0.75

£317k vs. £203k for the single unit case shown in table 7). Consequently, one would expect322

more cleaning actions in all the asymptotic fouling model cases than the corresponding linear323

ones due to the early loss of exchanger efficiencies. This is evident in table 11 with the cleaning324

actions increasing from 3 to 5 in both this work’s solution and the solution of Lavaja and325

Bagajewicz (2004). Similar observations to Lavaja and Bagajewicz (2004) are seen in the326

single unit case, where cleaning actions are cyclic (table 11). For linear fouling, the number327

of cleaning actions as well as the schedules are very similar: however the cleanings in our328

model are performed 1 month earlier than in Lavaja and Bagajewicz ’s schedule.329

For the four heat exchanger case, the number of cleaning actions are the same as Lavaja330

and Bagajewicz ’s model and the schedule for the 12 month operating horizon is the same,331

meanwhile the schedule for the 18 month duration differs. No pattern is evident when the332

schedules are compared, with some cleaning actions occurring earlier in some cases and later333

in others.334

In the majority of our cases our model produced similar overall costs to those reported335

by Lavaja and Bagajewicz (2004), the only differences being (i) the 4 heat exchanger case336

over 18 months, where the cost of our schedule is slightly smaller than that reported, with337

the difference in savings being only <1.5%; and (ii) the 10 unit HEN case with asymptotic338
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Table 4: Operational constraints for 10 unit HEN case.
only one unit of exchangers 1-4 can be cleaned in each period y1p + y2p + y3p + y4p ≥ 3 ∀p
only one unit of exchangers 5-7 can be cleaned in each period y5p + y6p + y7p ≥ 2 ∀p
temperature drop across desalter T in

c,5p = T out
c,4p − 18 ∀p

Table 5: Data for 25 unit HEN case. Adapted from Smaïli et al., 2002a.
HEX Fh

(kg s−1)
Fc

(kg s−1)
Ch
(kJ kg−1K−1)

Cc
(kJ kg−1 K−1)

Uc
(kW m−2K−1)

A
(m²)

a× 1011

(m²KJ−1)
1A 8.7 23 2.8 2.4 0.5 21.3 1.9
2A 11.4 23 2.9 2.4 0.5 29.7 1.8
3A 4.8 23 2.8 2.4 0.5 31.4 1.6
1B 8.7 23 2.8 2.4 0.5 21.3 1.9
2B 11.4 23 2.9 2.4 0.5 29.7 1.8
3B 4.8 23 2.8 2.4 0.5 31.4 1.6
1C 8.7 23 2.8 2.4 0.5 21.3 1.9
2C 11.4 23 2.9 2.4 0.5 29.7 1.8
3C 4.8 23 2.8 2.4 0.5 31.4 1.6
1D 8.7 23 2.8 2.4 0.5 21.3 1.9
2D 11.4 23 2.9 2.4 0.5 29.7 1.8
3D 4.8 23 2.8 2.4 0.5 31.4 1.6
4A 23 47.4 2.8 2.3 0.5 26.7 1.5
5A 28 47.4 2.6 2.3 0.5 35.4 1.1
6A 17.4 47.4 2.9 2.3 0.5 79.1 1.5
4B 23 47.4 2.8 2.3 0.5 29.2 1.6
5B 28 47.4 2.6 2.3 0.5 35.4 1.1
6B 17.4 47.4 2.9 2.3 0.5 79.1 1.5
7A 25 47.4 2.6 1.92 0.5 60.8 0.8
7B 25 47.4 2.6 1.92 0.5 80.3 0.8
8 49.6 95 2.6 1.92 0.5 129 0.8
9A 55.8 95 2.6 1.92 0.5 110 0.9
9B 55.8 95 2.6 1.92 0.5 96.6 0.9
10 3.3 95 2.9 1.92 0.5 8.5 0.6
11 19.1 95 2.8 1.92 0.5 56.6 0.6
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fouling, where there is an insignificant difference in savings. This is because of the existence339

of multiple local optima. It is noteworthy that Lavaja and Bagajewicz’s (2004) MILP model340

is solved to global optimality whereas our model, being a non-convex MINLP model, is not.341

Despite this, we still obtain similar results.342

For the 10 unit HEN (tables 14 and 15), although a general relation is seen in Lavaja343

and Bagajewicz’s schedule where cleaning actions increase in the asymptotic fouling case vs.344

the linear one (from 10 to 11 cleanings), this drops down by 4 cleaning actions in our model345

as shown in tables 14 and 15. Only the last 3 units are cleaned here whilst there is a more346

distributed cleaning of units in the schedule of Lavaja and Bagajewicz, with half the units347

in the network undergoing cleaning during the operational horizon. Consequently, the cost348

of their schedule is slightly less than ours (£484k versus £493k as shown in table 9). This is349

a small difference of just over 1.5% in savings.350

For all reported schedules there is an absence of cleaning actions near the start and the end351

of the operating horizon as there is little incentive to clean a relatively clean unit and there is352

little time for the cost of cleaning to be recovered towards the end of the operating horizon.353

If one were to increase the cost of cleaning further, this would limit the number of cleaning354

actions even more and increase the objective further. This can be used to determine which355

cleaning actions and/or exchangers are more important. For the 10 unit HEN, from tables356

14 and 15, it can be seen that exchangers 9 and 10 are cleaned most frequently, indicating357

that these exchangers are more important in the network, while exchangers 1 and 2 in the358

linear and asymptotic models are not cleaned at all. Exchangers 9 and 10 are cleaned more359

often as they have the highest fouling rates as shown in table 3. The fouling rate is not the360

only criterion that determines how often cleaning is done. For instance as shown in table 3361

in Lavaja and Bagajewicz’s (2004) schedule, despite the similar asymptotic fouling rates of362

exchangers 5 and 7, the former is not cleaned at all while the latter is cleaned twice during363

the operating horizon. This is due to network sensitivity.364

An important point to note is the bang-bang nature of these problems. The solutions365
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of the relaxed models are completely integer i.e. a bang-bang control solution. Thus, the366

proposed rounding up scheme was not performed here. A number of schedules with similar367

objective values but different order of cleaning actions are obtained where very few fractional368

binary variables occur. These solutions are termed bang-singular. For the majority of cases,369

the range of objective values obtained in the 50 runs is quite narrow as shown in table 17,370

where the objective values only vary from as little as £3k up to £15k in the first 5 case371

studies. For the 10 unit asymptotic HEN case study, this range widens up to to £42k with a372

minimum of £493k to a maximum of £535k, and up to £28k for the 25 unit HEN case study373

with a variation of £902k to £930k. Hence, for less complex networks and/or fouling models374

many runs at different starting points are not required to obtain a good solution.375

A cost comparison only makes sense in the case studies appearing in Lavaja and Baga-376

jewicz (2004) where the objective value for the no cleaning scenarios are similar (see tables377

7 to 9). For the 25 unit HEN case studies, Smaïli et al. (2002a) reported a lower objective378

associated with the no cleaning scenario representing <11% difference (see table 10). This is379

partly attributed to our model retaining the fouling expressions in their dynamic form, which380

is more accurate. Smaïli et al. (2002a) discretised the system equations and thus assumed381

that variables such as temperature of hot and cold stream are fixed within each sub-period382

which is not a good approximation for large complex networks with extensive feedback of383

hot/cold streams. Temperatures in our model are interpreted continuously over time. The384

difference in the objective for the no cleaning scenario in the 25 unit HEN is also attributed385

to the different numerical methods used to the solve the equation sets.386

For the 25 unit HEN case study our solution yields a saving of 36.2% with an overall387

cost of £902k, whereas the best reported cost produced by Smaïli et al. (2002a) using their388

BTA algorithm is £917k. Smaïli et al. (2002a) were unable to generate a solution using the389

OA method. Our schedules have a small number of cleaning actions, in common with that390

of Smaïli et al.. As in the 4 units over 18 months case study, no pattern is evident in the391

cleaning actions for the Smaïli et al. (2002a) method. More cleaning actions are performed392
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in our schedule (37 versus 34, table 16). Some features in common are that most exchangers393

are cleaned the same number of times as our schedule and certain exchangers are not cleaned394

at all (e.g. exchanger 10).395

In terms of the distribution of the objective values for the 50 runs performed in each case,396

the results for each of the cases is narrowly dispersed around its associated mean value. The397

relative standard deviation (RSD) of the local optima for each of the cases considered lies in398

a narrow range of 0.8 to 1.5% (table 17). Furthermore, the difference between the maximum399

and minimum cost value is only £3k for the 4 unit heat exchanger case over a 12 month400

operating horizon, whereas this difference is the highest for the 10 unit HEN case subject to401

asymptotic fouling, at £42k. For the 10 unit HEN case subject to asymptotic fouling, the402

worst run results in a saving of 3.6% compared to 11.2% for the best solution achieved, while403

for the 4 unit heat exchanger case over a 12 month length of operation this is a saving of404

19.3% in the worst case compared to 21.5% in the best case scenario.405

The resource usage varies depending on fouling type, method used and problem size.406

Reasonable time for convergence is achieved for cases studies appearing in Lavaja and Baga-407

jewicz (2004) and resource usage is practical even for the worst case: the 10 unit HEN with408

asymptotic fouling model required 942 CPU s (15.7 CPU min), with the corresponding best409

case for this model being a modest 91 CPU s. Lavaja and Bagajewicz (2004) stated that the410

time to solve the 10 unit HEN case was impractical, therefore in addition to reformulating411

their model into a MILP problem they used a decomposition procedure to decrease the com-412

putational time. They also stated that they kept the linearity of the expressions with the413

aim of having better chances of capturing the global optimum. From our findings, neither of414

these are required. In comparison, the resource usage becomes expensive for the 25 unit HEN415

case study. This required 55,243 CPU s (15.3 CPU hr) with 38,603 function evaluations in416

the worst case. This is due to the implementation approach whereby gradients are estimated417

using finite differences in the MATLAB® optimiser.418

The computational cost is proportional to the number of finite difference calculations419
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required, with each finite difference calculation requiring a full dynamic system simulation;420

for larger problems, this leads to a significant computational cost. For example, for the single421

heat exchanger case under linear fouling for an operating horizon of 24 periods, an average of422

11 gradient calculations is required with each one requiring 24 finite difference calculations,423

as shown in Table 17. This accounts for the average computational cost of 30 CPU s. In424

the case of the 25 unit heat exchanger network under linear fouling over 36 periods results425

in a much larger average computational time of 39,611 CPU s (11 CPU hr). In this case,426

there is an average of 31 gradient calculations each of them requiring 900 finite difference427

calculations.428

Future applications of the multistage optimal control approach will include the reduction429

of CPU time such that it becomes significantly smaller in larger and more complex networks.430

This will be achieved through gradient estimation using sensitivity equations. Furthermore,431

future work will involve extending the range of case studies in HENs to include pressure432

drop constraints, variable throughput, and optimisation of operating conditions such as the433

consumption of utilities. This approach is not limited to HENs, and future work will focus434

on the optimisation of general scheduling maintenance problems.435

6. Critique436

This work has demonstrated that the heat exchanger cleaning scheduling problem as437

posed, considering all potential cleaning actions, can be solved for large networks and larger438

numbers of actions than previously achieved through the recognition of the task as an optimal439

control problem where the solutions fit bang-bang characteristics. We here review which440

aspects of the scheduling problem which may be encountered in practice have been included441

in the work, and those which have not, in order to identify the scope and potential for further442

development.443

Aspects which have been included are the distribution of heat duties within networks in444

response to cleaning actions, and their evolution; linear and nonlinear (asymptotic) fouling445
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behaviour; and constraints on the selection of combination of cleaning actions representing446

pump-around targets, rundown temperature targets, flash temperature maintenance, etc.447

Aspects presented by other workers which could be included without loss of generality, but448

requiring more detailed modelling and therefore solution time, include the choice between449

two cleaning actions (Pogiatzis et al., 2011) and temperature target constraints (e.g. desalter450

temperature, see Ishiyama et al. (2010)).451

Those not included can be grouped as follows:452

(i) Nonlinearity arising from fouling phenomena. Fouling rates are known to depend453

strongly on temperature, and will therefore vary in an exchanger over time as fouling changes454

the temperature distribution within a network. This level of detailed modelling can be455

incorporated in greedy (Ishiyama et al., 2009a) and genetic algorithm approaches (Rodriguez456

and Smith, 2007), at the expense of ensuring global optimality, as well as in these total457

horizon approaches.458

(ii) Nonlinearity arising from network dynamics. Fouling deposits change the pressure459

drop across a heat exchanger as well as its heat transfer performance. The network model460

presented here assumes constant stream flow rates, but fouling in practice can give rise to flow461

redistribution between parallel streams as well as throughput reduction as a result of pumping462

limitations (Yeap et al., 2004; Ishiyama et al., 2008). Changes in flow rate affect both local463

fouling rates and the objective function, and network models incorporating pressure drop and464

throughput dynamics have been constructed. The relationship between fouling resistance,465

pressure drop and throughput is not linear: depending on the network configuration, it can466

feature a threshold followed by a quasi-parabolic region. The heat duty in the objective467

function (equation (24)) then contains a product of two variables (Ḟc and CIT), and with an468

appropriate formulation, this is amenable to this total horizon approach.469

(iii) Uncertainty in fouling models and model parameters. Wilson et al. (2017) recently470

reviewed the progress in quantitative fouling models for crude oil fouling. They reported471

three areas where systematic uncertainty arise in models for predicting the fouling rates in472
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crude oil as related to the problems presented here:473

(a) The fouling models are semi-empirical and the relationship to crude oil composition474

and characteristics has yet to be established, so one cannot predict, for example, whether475

linear or asymptotic fouling will be observed in a given unit.476

(b) Fouling rates for complex fluids such as crude oil are rarely studied under controlled477

conditions. In practice many operators used fouling models constructed from reconciliation478

and interpretation of plant fouling data. These are subject to uncertainties in measurement479

and calculation, so the accuracy of the fouling rate data is low.480

(c) The relationship between fouling rates and crude composition is unknown. In most481

applications the crude being processed varies with time so the rate(s) will also vary. This is482

one of the reasons why plant fouling data, used to quantify fouling model parameters, contain483

noticeable scatter and variation. These areas mean that, in practice, scheduling calculations484

must be able to consider a range of likely fouling rates.485

There is a conflict between aspects (i) and (ii), and (iii): the increased model complexity in486

the former means that multiple condition testing, as required by (iii), will require considerable487

resource. The desire to account for known, deterministic phenomena must be balanced488

against the limitations to tractability introduced by those phenomena. From an engineering489

perspective, the question to be asked is which essential features of the problem must be490

included, at a suitable level of detail, to achieve the desired outcome.491

Aspects (i) and (ii) will require special reformulation to be incorporated in a suitable level492

of detail for some practical cases with total horizon approaches, such as the one described493

in this work. These approaches are, however, ideally suited for combination with algorithms494

for designing heat exchanger networks as they can generate estimates for expecting optimal495

operating performance, including considerations of uncertainty in fouling (and operating496

parameters).497

For the case of a crude preheat train, the initial network design would yield temperature498

and flow rate conditions for which fouling rates could be estimated. The operation of this499

42



network, with cleaning schedules calculated for a portfolio of fouling rates, could then be500

quantified (and key exchangers identified for design attention), and this information used501

to update the design. Wang and Smith (2013) employed simulated annealing approaches502

to identify fouling resistant preheat train designs but did not incorporate cleaning aspects503

in their consideration of network performance: the current work now makes this a tractable504

problem and one worthy of attention. Current network complexities may prohibit application505

of a full optimisation based methodology for the scheduling of cleaning, and hence currently506

the preference in industry is to use heuristic or greedy approaches. However, the contribution507

of this work is to show that optimisation based methodologies can be general enough to508

encapsulate both complexity and different operating modes and this will be explored further509

in future work.510

7. Conclusions511

An alternative methodology to the solution of the HEN cleaning scheduling problem is512

presented here by recognising, for the first time, that this optimisation model is in actuality513

a MIOCP which exhibits bang-bang behaviour. This proves to be an efficient and robust514

approach and has been compared with 3 different methods: a direct MINLP approach (OA),515

reformulation of the MINLP to an MILP model, and a stochastic optimisation technique516

(BTA algorithm).517

The multistage optimal control formulation using the feasible path approach does not518

suffer from failures in convergence and is thus reliable, contrary to the OA method which519

fails to produce a solution in larger and more complex networks. The feasible path approach520

as implemented is shown to be very competitive. Optimal solutions reported here are all521

bang-bang in the controls. As a result, these particular case studies did not require any522

heuristic approaches to be applied. In comparison to the classical methods, economic values523

are similar and in some instances better than those obtained. The cleaning schedules showed524

several conventional characteristics, with key exchangers being cleaned more often. However,525
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the allocation of cleaning actions was often not systematic, i.e. unpredictable.526
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