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Abstract 

A medium-term optimization-based approach is proposed for the integration of production planning, scheduling 

and maintenance. The problem presented in this work considers a multiproduct single-stage batch process plant 

with parallel units and limited resources. An MILP continuous-time formulation is developed based on the main 

ideas of travelling salesman problem and precedence-based constraints to deal with, sequence-dependent unit 

performance decay, flexible recovery operations, resource availability and product lifetime. Small scheduling 

examples have been solved and compared with adapted formulations from the literature, based on discrete-time 

and global-time events, demonstrating the effectiveness of the proposed solution approach. Additional planning 

and scheduling problems have been proposed by considering several time periods. Multi-period examples have 

been efficiently solved by the model showing the applicability of the solution approach for medium-size 

problems. 

Keywords: MILP-based approach, Planning, Scheduling and Maintenance, Traveling Salesman Problem, 

Precedence-based representation, Performance decay, Flexible recovery operations. 

1. Introduction 

Joint production planning, scheduling and maintenance have been attracting the attention of the research 

community, but not many approaches have been developed considering the integration of production planning, 

scheduling and maintenance with limited resources, sequence-dependent unit performance decay, flexible 

recovery operations and product lifetime. 

In the past, Dedopoulos & Shah (1995) developed a mathematical model for the short-term scheduling 

production and maintenance activities within a multipurpose plant, considering production and maintenance 

resources. This formulation was extended in Dedopoulos & Shah (1996) to consider combined 

production/maintenance aggregated planning problem. Based on the previous works, Vassiliadis et al. (2000) 

proposed an optimization framework combining ideas of STN (state-task network) model for the production 

planning and Markov Chain for the maintenance model. Similarly, Pistikopoulos et al. (2001) proposed an 

effective approach for the interaction of production planning and maintenance in multipurpose process plants. 

They developed an MILP formulation based on STN representation for the production planning and 

maintenance by dividing the planning horizon into equal length periods and assuming a constant failure rate of 

the unit during the operation period. Thus, each unit operates for a number of time periods until a preventive 

maintenance operation is needed and then it is restored to its initial condition. Later on, based on the same 

assumptions, Suryadi & Papageorgiou (2004) proposed a novel integrated approach for the optimal maintenance 

planning incorporating preventive maintenance and novel design aspects on multipurpose batch plants. 

For the cycle scheduling and maintenance of process plants, Jain and Grossmann (1998) developed a MINLP 

model for cycle scheduling and maintenance with production decay in continuous parallel processes. Alle et al. 

(2004a) presented an MINLP formulation for the production and cleaning operations in multiproduct serial 

plants. Then, Alle et al. (2004b) formulated a TSP-based model for cycle scheduling and cleaning operations 

considering linear performance decay. Casas-Liza et al. (2005) extended the previous work to consider 

exponential performance decay. 

The integration of preventive maintenance planning and production scheduling problem for a batch plant in a 

single machine has been studied by Cassady and Kutanoglu (2005). They proposed an MILP model based on 

WSTP (weight shortest processing time) rule for the scheduling problem, assuming that the preventive 

maintenance (PM) restores the machine to “as good as new” condition after failure. Given the information of the 

MTBF (mean time between failures), they calculate the probability of a failure during the processing time, so as 

to decide if is necessary to perform a PM with the aim of minimising the weighted expected completion time. 

Bock et al. (2012) addressed a single machine scheduling and maintenance problem by considering the idea of 

maintenance level (ML). This ML decreased while the job is processed. Thus, partial and fully maintenance 



activities (MA) were considered by the model according to the sequence of jobs processed in each unit, allowing 

recovery operations to happen at any time and to any level between the actual and the maximum level. Ruiz et 

al. (2007) extend the previous ideas for a permutation flowshop sequencing problem (PFSP) comparing different 

heuristics and metaheuristics specially developed for this kind of NP-hard problem. Then, Varnier and Zerhouni 

(2012) proposed an MILP model for the integration of production scheduling and predictive maintenance in 

flowshop systems by considering both makespan and remaining useful life (RUL) in the objective function.  

Back to the process industry, Hazaras et al. (2012) has introduced a global event continuous-time MILP-based 

formulation for the flexible maintenance and scheduling problem. Nie et al. (2014) proposed a discrete-time 

RTN model for the optimal reactive scheduling of mixed batch/continuous process with resources. While, Velez 

et al. (2015) provide discrete-time STN formulation to deal with large-scale production systems. In these works, 

the reduction of unit life depends on the amount of production processed by the unit. Castro et al. (2014) 

developed a slot-based continuous-time formulation for the maintenance scheduling of a gas engine power plant 

by generalised disjunctive programming (GDP). They reformulate the GDP into MILP by using Big-M and Hull 

reformulations for comparisons. In here, the maintenance occurs after a given amount of time spent online. 

More recently, Liu et al. (2014) developed a continuous-time formulation for the production and maintenance 

planning in the biopharmaceutical industry under performance decay. In addition, Vieira et al. (2017) proposed 

a continuous-time RTN single-grid formulation to deal with optimal production and maintenance planning by 

minimising the intermediate maintenance operations while maximizing the average service level and the 

utilization rate of processing units. 

Finally, Biondi et al. (2017) proposed a multi-time scale MILP formulation based on STN representation for the 

integration of maintenance and production scheduling of the steel making process. For that, an aggregated 

model for the planning horizon is provided while a detailed model is proposed for the scheduling horizon. Both 

models are based on the previous concepts of Residual Useful Life (RUL). Hence, the unit operates in a 

degraded mode, reducing the RUL, and then a recovery operation is performed any time to restore the machine 

to the useful level. In here, the operation mode the unit uses at each time period is a decision variable that the 

model has to optimize in order to reduce the total cost formed by the storage cost, maintenance cost and the 

overall wear cost. 

In this work a TSP/precedence-based continuous-time formulation is proposed to solve a class of planning, 

scheduling and maintenance problem. This new formulation relies on the main ideas of TSP (Pinto et al. 2007, 

Liu et al. 2008, 2010) and precedence-based representation (Mendez et al., 2006), to address planning, 

scheduling and maintenance decisions of a multi-period multiproduct single-stage process plant with parallel 

units and limited resource. The integration of sequence-dependent unit performance decay, flexible recovery 

operations and resource limitations, in a continuous way, represent the main contribution of this novel 

formulation. In here, the unit performance decays during the processing time by considering a linear constant 

degradation. This constant degradation differs for each product and unit, and the performance of the unit should 

be determined by the sequence of products processed. Linear performance decay is considered in this paper by a 

constant rate factor. Similar papers that take into account production scheduling and preventive maintenance 

with fixed factor for unit reliability can be found in Sanmartí et al. (1997) and in Alle et al. (2004b) for example. 

Some similar application examples can be found in the optimal operation and maintenance of networks of 

compressors of chemical plants in Xenos et al. (2016) or in typical evaporation system in the sugar industry with 

several multiple effect parallel lines and time decaying performance in Heluane et al. (2012) and in the cyclic 

scheduling of cracking furnace shutdowns in ethylene plants in Schulz et al. (2006).  

In this work, unit reliability is represented in terms of unit performance, assuming units became very inefficient 

when the performance is too low. In order to illustrate this, we model the processing time as a function of the 

unit performance. This idea has been adopted by other papers in the past, assuming that unit operates in different 

operation modes. For example, at Biondi et al. (2017), similar ideas were applied to the steel making process by 

considering three operation modes (slow mode, nominal mode, fast mode). These operational modes are 

decision variables in the system and the actual performance of the unit may limit the choices of choosing one of 

them. In this work, the operation modes are considered as continuous variable that change over the time, 

according to the current state of the unit performance. Assuming a fixed batch size for each product-unit, the 

processing time is determined by the model according to the current unit performance. Thus, the sequence of 

products at each unit needs to be explicitly considered by the model to correct tracking the unit performance 

level at any time and to calculate the real processing time. 

Flexible recovery operations are taken into account in order to maintain the performance of the unit in a 

reasonable level. Specific limitations on the number of recovery operations per time period and maximum 

recovery operations along the planning horizon are also enforced by the model. Also, initial and final unit 

performance levels at the beginning and at the end of the planning horizon are forced to be the same in order to 

keep the unit operating for the next planning horizon.  



Product inventory, backlog and lifetime constraints are also taken into account by the model for each time 

period. Finally, production and maintenance costs, inventory costs, backlog costs and product prices are 

considered so as to maximise the total profit of the whole planning horizon. 

The rest of the paper is described as follows. First, we present a general MILP model for a multi-period multi-

product single-stage problem with parallel units and limited resources while considering unit performance decay 

and flexible recovery operations. Then, we introduce some small examples to demonstrate the effectiveness of 

our solution approach in comparison with adapted formulations from the literature. Finally, we provide 

motivating examples to demonstrate the applicability of the proposed solution approach for medium-size 

problems. Sensitivity analysis of the model for different possible scenarios and concluding remarks is presented 

at the end. 

2. Problem statement 

The problem presented in this work considers the integration of planning, scheduling and maintenance of 

multiple products in a single-stage production process with parallel units and limited resources (see Figure 1).  

 

Figure 1. Integration of planning, scheduling & maintenance in a single-stage process with parallel units and shared 

resources 

 

The main features of this problem are presented below: 

Planning 

 Product demands [kg] for each time period are known and given in advance. Product batches sold are 

delivered at the end of each time period. Product prices [$] are known and fixed. 

 Once produced, product batches are stored in the system. The inventory level is updated at the end of 

each time period. Unit inventory cost is considered as 30% of the product prices [$/kg]. The inventory 

cost does not consider the storage time. 

Bi,t-1

Period  t1 … Period t … Period TH

CustomersCustomers

Continuous-time 
representation of 

scheduling 
decisions

Discrete-time representation of planning decisions

Di,t-1 Dit SLitSLi,t-1

P
ro

d
u

ct
s 

 “
i”

i1 i3

Time Horizon

Unit j4

Unit j3

Unit j2

Unit j1

ChangeoverProcessing

i4

i2

i5

Processing units

Product orders

j1

j2

j3

j4

Storage units

Deliveries 

Maintenance Resource level

100%

Time Horizon

90%

80%

70%

60%

Unit Performance : Unit j1 Unit j2 Unit j3 Unit j4

Workers
3 2 2 3 3 2

LBt UBt

Vi2,t

Vi4,t

Vi3,t

Vi1,t

Vi5,t

Vi,t-1 Bit Vit



 In case of unsatisfied demand, late deliveries can be programmed as backlogs. Backlogs have a penalty 

cost which is 50% of the product prices [$/kg].  

 Products lifetime is defined as θ. Therefore, produced batches cannot be stored for more than θ 

consecutive time periods in the system. 

 The planning horizon is divided into equal length time-periods. Each time period represents a month of 

30 working days. Weekends are not considered, but could be easily introduced in the model by 

assuming time periods of 5 working days. 

Scheduling 

 Multiple products can be processed per time period. This should be determined by the model according 

to demand, sales, inventory levels and backlog limitations. 

 Products should be processed in only one of the available units at each time period. Unit availability is 

given in advance. 

 Fixed cost related to the production of a particular product at each time period and variable costs 

associated with the production time are known in advance. 

 Product batch size is determined by the model according with the fixed batch size of each unit. 

 Sequence-dependent changeover operations are taking place when two different products are 

immediately processed one after the other in the same unit. 

 The beginning of the next product in a processing unit should be done after the current one has been 

completed. Thus, non-pre-emptive operation mode is applied at each processing unit. 

Resources 

 Resource availability related to processing and recovery operations are known in advance.  

 A single type of resource, manpower, is required for both processing and recovery operations. All 

resource units are considered identical. 

 There is no difference between processing and recovery operations for resource assignments. Thus, any 

resource can be assigned to processing or recovery operations. 

 There is no cost associated with the limited resources. We assume that the resources are contracted in 

advance and there are only limitations in the amount of resources used during a time period. 

Performance 

 Linear unit performance degradation is considered known. There are different performance 

degradations for each product-unit. These performance degradations remain constant during the 

processing time. 

 Processing time is determined by the initial performance of the unit before processing, the given batch 

size and the constant performance degradation. 

 Unit performance at the beginning and at the end of the planning horizon is determined by the model, 

and should be equal. 

Recovery 

 Recovery operations are always taking place at the end of the processing operations. No slack time 

between processing and recovery operations are allowed.  

 Recovery operations are determined by the model. There is a maximum number of recovery operations 

that could be performed at each time period and also there is a maximum number of recovery 

operations for each unit in consecutive time periods ϕ. 

 Fixed cost related to the recovery operations and variable costs associated with the recovery time are 

known in advance. 

 There are minimum and maximum recovery times when a recovery operation is performed. The 

maximum recovery time is associated with the maximum time required to fix the unit to its “as good as 

new” condition when the unit performance is zero. 

 

According to all the features described above and given the information of,  

 product batch I={i1…I
max

}, 

 parallel unit J={j1…J
max

}, 

 time periods TH={t1…T
max

}, 

 breakpoints K={k1… K
max

}, 

 batch-unit IJ={(i,j)|pij>0}, 

 fixed batch size pij, 

 processing times tpijk,  



 changeover times τii’, 

 maximum recovery time trj
max

, 

 production rates rij, 

 product demand Dit, 

 amount of resource needed ρi, 

 performance decay dij, 

 unit performance value yk, 

 product lifetime θ, 

 elapsed time between maintenance operations ϕ, 

 lower LBt and upper bounds UBt of time period t, 

 maximum number of available resources Rt
max

 at time period t, 

 maximum number of recovery operations Mt
max

 at time period t, 

 big-M value BM, 

 

this problem aims to find the best production plan and schedule for all time periods by computing 

 the starting TSit and ending times TFit of each product batch i at time period t,  

 assignment decisions Eijt, Lijt, Fijt of product batch i on unit j at time period t,  

 sequencing decisions Zii’jt, Xii’t, Yii’t of product batches i, i’ on unit j or different units at time period t,  

 flexible processing times Tijt and recovery times RTijt batch i on unit j at time period t,  

 total amount of resources Rit used by all batches at time TSit, 

 recovery operations Uijt performed at the end of the product batch i on unit j at time period t, 

 unit performance at the beginning y
0

jt of each time period t,  

 the initial y
1

ijt and final y
2

ijt performance of product batch i at unit j, 

 production amount PRit, inventory Vit, backlogs Bit and sales SLit are also taken into account,  

 

so as to maximize the total profit TP by considering, product prices pi, fixed fpcij and variable vpcij production 

costs, fixed fmcij and variable vmcij recovery costs, backlog bci cost and inventory vci costs. 

3. Multi-period continuous-time formulation  

A multi-period continuous-time model for a multiproduct single-stage continuous plant with parallel units and 

limited resources is presented in this section by Eqs. (1-44). Assignment and sequencing decisions are 

introduced by Eqs. (1-6). Here, binary variables Eijt, Fijt and Lijt are proposed to decide which products are 

produced at each unit at different time periods. Immediate-precedence variables Zii’jt are derived from the 

sequencing decisions between different products (i≠i’) at the same unit j for time period t. Timing constraints 

are stated by Eqs. (7-9), for the starting TSit and finishing time TFit of product batch i at period t. These variables 

are bounded between lower LBt and upper bounds UBt for each period t by Eqs. (10-13). Processing times 

defined by Tijt are calculated in Eqs. (14-19). This processing time is a function of the initial y
1

ijt and final unit 

performance y
2

ijt. Assuming that the amount of product batch i produced in unit j at any time period pij is known 

in advance, then the processing time could be expressed by a simple quadratic equation which depends only on 

the initial performance of the unit y
1

ijt. Thus, the non-linear expression for the processing time presented in Eq. 

(18) can be linearized by Eqs. (20-23) using a piecewise linearization by considering discrete unit performance 

yk at different breakpoints k.  

The amount of resources used by processing and recovery operations in the system is calculated based on the 

main ideas of Marchetti and Cerdá (2009). Thus, Eqs. (24-27) are presented to consider discrete renewable 

resources, as manpower, for each product batch i at time period t by Rit. For this, two additional binary variables, 

based on general-precedence concepts, are introduced Xii’t|(i>i’) and Yii’t|(i≠i’). These variables determine when two 

different products are overlapping in time by Eqs. (24-26). Hence, the amount of resources is calculated using 

the expression presented in Eq. (27).  

The real performance of the unit along the time is also considered by the model in Eqs. (14, 28-34). Here the 

performance of the unit decays constantly according to dij. Thus, the final performance y
2
ijt is obtained by the 

initial performance y
1

ijt minus the processing time Tijt multiplied by dij, as is stated in Eq. (14).  

Sequence-dependent unit performance decay is stated by Eqs. (28-29). The initial unit performance y
1

i’jt of 

product batch i’ in unit j depends on the final performance y
2
ijt of immediately previous product batch i 

determined by Zii’jt, at time period t. The recovery operation at the end of product batch i, defined by RTijt/rt
max

, 

also affects the initial performance of the product batch i’. 

Then, Eqs. (30-35) enforce the same initial and final performance of the unit at the beginning and at the end of 

the planning horizon TH determined by y
0

j,0=y
0
j,T

max
 . Flexible recovery times RTijt of product batch i in unit j at 



time period t are enforced by Uit in Eqs. (36-39). This binary variable determines if a recovery operation is 

needed or not at the end of production batch of product batch i. 

More complex and challenging features are introduced here by considering the resolution of planning, 

scheduling for single or multiple time periods of a multi-product single-stage continuous process plant. For this, 

production, inventory and backlog constraints are introduced by Eqs. (40-42). Thus, product lifetime is 

considered by Eq. (43) forcing to sale produced batch instead of keeping in inventory for a long time. This is 

commonly considered when products are deteriorated along the time. Examples of perishable products, like food 

(Kopanos et al., 2009) or bio-pharmaceutical products (Devapriya et al. 2017), can be found in the literature. 

Finally, this model is solved by maximising the total profit TP in Eq. (44) calculated by the revenues of sales 

while considering production, maintenance, inventory and backlog costs. 

3.1. Unit assignment and batch sequencing 

The unit assignment and sequencing decisions of products are represented by Eqs. (1-6). The following 

variables are needed to represent assignment and sequencing decisions. Note that, only Eijt and Zii’jt should be 

defined as binary variables while Fijt and Lijt can be defined as continuous or binary variables. 

 





otherwise0

 tperiod at time junit in  performed is ibatch product if1
ijtE  





otherwise0

 tperiod at time junit in  performedbatch productfirst   theis ibatch product if1
ijtF  





otherwise0

 tperiod at time junit in  performedbatch productlast   theis ibatch product if1
ijtL  





otherwise0

 tperiod at time junit in   i'batch product beforeexactly  performed is ibatch product if1
' jtiiZ  

 

Eqs. (1-2) ensure that at most one product should be produced at first or last in a single unit j at time period t. 

Eq. (3) is used to enforce a single unit assignment per product batch i at time period t. While Eq. (4) is provided 

to relate first and last variables with the assignment decisions allowing the possibility to have none, one or 

multiple products in a single unit j at time period t. Sequencing constraints based on immediate precedence 

concepts are stated in Eqs. (5-6). These equations enforce a single predecessor or successor for each product 

batch i in unit j and time period t. 
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3.2. Timing constraints 

Timing decisions about the starting and finishing time of product batch i at time period t are represented by 

continuous variables TSit and TFit. Eq. (7) is provided for sequencing and timing decisions of different products i 

and i’ in the same unit j at time period t while Eq. (8) is introduced for sequencing and timing decisions between 



the same or different products in unit j at consecutive time periods t-1 and t. The fishing time of product batch i 

at time period t is calculated by Eq. (9) considering the processing time Tijt and the recovery time by RTijt. 

Bounding constraints of product batch i produced at time period t are stated by Eqs. (10-13). Note that, Eqs.(12-

13) are redundant due to Eqs.(9-11).  
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3.3. Processing time estimation 

The performance of the unit j at the end of the production time of product batch i is represented by Eq. (14). The 

final performance y
2
ijt is a function of the initial performance y

1
ijt of the unit j at any time period t minus the 

decay dij multiplied by the processing time Tijt. 

𝑦2
𝑖𝑗𝑡(𝜏)

= 𝑦1
𝑖𝑗𝑡

−  𝜏 ∙ 𝑑𝑖𝑗  THtIJji  ,,  (14) 

The amount of product batch i produced in unit j at any time period, pij, is given by the integral of the final 

performance of unit j, along the processing time Tijt, multiplied by the fixed production rate rij of product batch i 

at unit j, as is determined by Eq. (15). 

 

𝑝𝑖𝑗 = 𝑟𝑖𝑗 ∙ ∫ 𝑦2
𝑖𝑗𝑡(𝜏)

 𝑑𝜏
𝜏=𝑇𝑖𝑗𝑡

𝜏=0
 THtIJji  ,,  

 
(15) 

Replacing Eq. (14) in Eq. (15) and solving the integral, the production amount is finally represented by Eq.(16). 
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Assuming that the production amount and the processing rate are known in advance and moving pij to the right-

hand side of Eq. (16), we can obtain the following quadratic equation in Eq. (17). 
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The solution roots of the quadratic equation of Eq.(17) are given by Eq.(18).  
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Thus, Eq. (18) provides the roots of the quadratic equation for different y
1
ijt, pij, rij and dij parameters. The exact 

solution of Tijt is the one that satisfies the conditions imposed by Eqs. (14-15, 19). These equations ensure 

positive values on unit performances, avoiding choosing the root that generates negative areas as it is shown in 

Figure 2. It is worth noticing that, the determinant of negative values provides non-real numbers. For these 

cases, we assume that the unit fails and a corrective maintenance is urgently needed to continue using this unit. 

01 21  ijtijt yy THtIJji  ,,  (19) 

Figure 2 shows a geometrical interpretation of solution roots expressed by Eq. (18). The results of these two 

roots are expressed by w1 and w2 which are basically different values of Tijt. These also represent the width of 

the areas in Figure 2 determine by Eq. (15). The heights of these areas are represented by h1 and h2. The 

resulting area (⌂) of each root is determined by the summation of the triangle (Δ) and the square (□) areas in 

Figure 2. As it can be seen, the first root provides the area behind the curve by calculating ⌂1 = Δ1 + □1. The 

second root (⌂2 = Δ2 + □2) also provides the same result (⌂1 = ⌂2) but some of the resulting areas are negative. 

This behaviour is repeated for any proposed value of the y
1
ijt, pij, rij and dij parameters in Eq. (18).  

 Figure 2. Geometrical interpretation of the solution roots of Eq.(18). 

 

3.4. Piecewise linearization of processing times 

Figure 3 shows an approximate solution of Eq. (18) for different values of y
1
ijt. In order to do this, a piecewise 

linearization is applied discretising the unit performance in equal length intervals represented by discrete 

breakpoints k. The length of the interval is defined in 0.1 and the total number of breakpoints is |K| = 10.  

Each breakpoint k represents a different value of the unit performance yk in between [0,1] and its corresponding 

processing time tpijk is calculated offline by Eq. (18). Thus, we found a piecewise linear curve of the processing 

times based on the unit performance so as to be used as an input parameter in the model. 
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Figure 3. Processing time tpijk at different unit performance yk. 

The solution of the piecewise linearization is done offline and the real processing time is calculated by Eqs. (20-

23). Here, SOS2 variable λijtk is introduced in the model select a specific value of processing times in the 

parametric curve. This variable λijtk represents a linear combination of breakpoints of consecutive intervals. 

Thus, Eqs. (20-21) are derived to force the processing time to be a specific value for Tijt while Eq. (22) does the 

same with the unit performance y
1
ijt. Finally, Eq. (23) forces the summation of all variables λijtk to be exact one 

for each triplet (i,j,t). As it is defined in CPLEX, I.I. (2009), at most two of these variables λijtk may have non-

zero values and the two non-zero values are adjacent. 
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3.5. Resource availability 

Availability of renewable resources (e.g. manpower) is considered by Eqs. (24-27). For this, two additional 

binary variables Xii’t|(i>i’) and Yii’t|(i≠i’) are introduced. These variables denote when two different products are 

performed in different units at the same time (overlapped in time). 
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For example, for the case in which i>i’ and Xii’t=Yii’t=1 then TSit ≥ TSi’t and TSit ≤ TFi’t, then both products batch i 

and i’ are overlapping in time. Note that, if Xii’t=1 then Yii’t could be [0,1]. But if Xii’t=0 then Yii’t should be 1 

which means that TFi’t >TSi’t  ≥ TSit+δ, where δ represents a small value to cope with the case of same starting 

time TSi’t =TSit. The amount of resources Rit used by each product batch i produced at time period t is calculated 

by Eq. (27). Thus, if product batch i is produced in unit j at time t then Eijt=1 then the amount of resources 

needed is going to be at least ρi. In case of overlapping with another product batch i’, e.g. if i>i’ and Xii’t =Yii’t 

=1, then the second term of Eq. (27) is going to be 1. On the other hand, if i<i’ and Xi’it =0, Yii’t =1, then the third 

term of Eq. (27) is going to be 1. A simple example of the conditions stated above is shown in Figure 4. 
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Here it is worth to remark that if product batch i is not performed at time period t then both, TSit and TFit should 

be zero due to Eqs. (11,13), and then any relationship with another product batch i’|i>i’ should be denoted by 

Xii’t =0 and Yii’t =1 and the second term of the RHS of Eq. (27) is going to be 0. The same for i’|i<i’, then Xii’t=1 

and Yii’t=1 and the third term of the RHS of Eq. (27) is going to be 0. Also, it is important to emphasise that if 

TSit =TFi’t then Xii’t =1 and Yii’t =0 and so for this two product batches are not overlapping in time. 

The total amount of resources used by all product batches at time TSit is represented by Rit. This amount should 

be lower or equal than the maximum available resourced defined by Rt
max

 which is defined also by Eq. (27). In 

the case of equal starting times it is assumed arbitrarily that the batch i’ starts before i and the amount of 

resources should be counted properly for the largest index batch i by Eq. (27). This idea is applied to equal 

starting times whatever the number of overlapping batches has happened. The other batches i’<i basically 

underestimate the amount of resources required by the system at time TSi’t. Here we are using similar 

assumptions and equations originally provided in Marchetti and Cerda (2009). For more detailed information of 

this assumption please refer to Marchetti and Cerda (2009). 

 

    
Figure 4. Resource-constrained example with product batches overlapping in time. 

3.6. Unit performance 

The performance of unit j is computed at the initial and at the final time event of the products processed in that 

unit at each time period. Thus, the performance at the beginning and at the end of product batch i performed in 

unit j is represented by y
1

ijt and y
2
ijt.Thus, the unit performance is changing according to the sequence of 

products produced at that unit at each time period. Then, sequence-dependent unit performance is provided in 

Ei4,jt = Ei2,jt = Ei3,j+1,t = Ei1,jt = 1

i4

Time period “t”

i3

i2

Time

Immediate precedence

General precedence

Unit j

Unit j+1

Xi4,i3,t=0
Yi4,i3,t=1
Yi3,i4,t=0

Xi3,i2,t=1
Yi3,i2,t=1 
Yi2,i3,t=1 

Resources “r”

Time

Zi4,i2,jt=1

Overlapped!

i1

Zi2,i1,jt=1

Xi3,i1,t=0
Yi3,i1,t=1
Yi1,i3,t=1 

Ri1,t = Ei1,jt + (Yi1,i2,t-Xi2,i1,t + Yi1,i3,t-Xi3,i1,t + Yi1,i4,t-Xi4,i1,t ) = 2

Yi4,i3,t=Yi4,i2,t=Yi4,i1,t=Yi3,i2,t=Yi3,i1,t=Yi2,i3,t=Yi2,i1,t=Yi1,i3,t=1
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Eqs. (28-29) by using the immediate-precedence variable defined for different products in Zii’jt. Thus, if Zii’jt=1 

then product batch i’ is processed immediately after product batch i in unit j at time period t and so for the initial 

performance of product batch i’,y
1
i’jt , should be equal to the final performance of product batch i ,y

2
ijt ,plus the 

percentage of unit recovery defined by RTijt/trj
max

 where RTijt is the recovery time of product batch i in unit j at 

time period t and trj
max

 is the maximum time required to recovery unit j to “as good as new” condition.  
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If product batch i is the first product to be produced in unit j at time period t then Fijt=1and Eqs. (30-31) are 

activated. These equations force the initial performance of the unit y
1
ijt to be equal to y

0
jt-1 which represents the 

performance of unit j at the end of time period t-1. In the same way, if product batch i is the last one processed 

in unit j at time period t then Lijt=1 and Eqs. (32-33) are activated forcing the final performance of product batch 

i,y
2
ijt, plus the percentage of recovery, to be equal to the initial performance of unit j at time period t. Notice that 

these constraints, Eqs. (30-33), are big-M constraints that are activated when Fijt=1 or Lijt=1, and the BM=1 since 

the unit performance varies between 0 and 1. 

Performance of unit j at time period t is defined by Eq. (34). While Eq. (35) enforces the same performance 

decay at the beginning y
0

j,0 and at the end y
0

j,T
max

 of the planning horizon (TH). Figure 5 shows a simple example 

of unit performance decay and recovery. Notice that, for graphical reasons, recovery time is included as part of 

the whole processing time while changeover times are drawn separately. 
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Figure 5. Unit performance decay and recovery example. 

 

3.7. Recovery operations 

A recovery operation performed at the end of the processing time of product batch i in unit j at time period t is 

defined by a new binary variable Uijt. Eq. (36) is introduced to enforce recovery operation on product-unit that is 

activated during time period t. Then, Eq. (37) is proposed to limit the recovery time between a minimum and a 

maximum time. The maximum recovery time is the time required to recover the unit to “as good as new” state. 

The number of recovery operations at each time period t is limited by a maximum number defined by Mt
max

 in 

Eq. (38). While Eq. (39), enforces a single recovery operation for each unit j in ϕ consecutive time periods. 
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3.8. Production amount 

Production amount of product batch i at time period t is defined by PRit. If product batch i is performed in unit j 

at that time period t then PRit= pij, otherwise PRit=0 by Eq. (40). It is worth reminding that products can only be 

performed in one unit at any time period and the batch size is fixed and known in advance. 
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3.9. Product inventory 

Dedicated inventory for each product batch i at any time period t is considered by Vit. Inventory balance 

constraint is defined in Eq. (41) considering the actual inventory, the production amount PRit and the sales SLit. 
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3.10. Product backlog 

Product backlog is considered if product batch i is not delivery on time or the amount of sales SLit cannot reach 

the demand Dit at that time period. The backlog balance is defined in Eq. (42). 
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(42) 

3.11. Product lifetime 

Products lifetime is introduced in Eq. (43). This equation forces the total inventory of product batch i at time 

period t to be lower than the amount of sales of the following θ periods. The main idea is to maintain a certain 

level of inventory along the time avoiding huge inventory levels at some periods and nothing later on. 
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3.12. Total profit 

The total profit is stated in Eq. (44). Product prices pi, fixed production fpcij and recovery costs fmcij, variable 

production vpcij and recovery vmcij unit costs, backlog cost bci and inventory vci cost are considered. 
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4. Benchmark example 

The following example from the literature was proposed by Pinto and Grossmann (1997) and subsequently 

studied by Méndez and Cerdá (2002), Janak et al. (2004) and Marchetti and Cerdá (2009) for a plastics 

compounding facility. In here, 12 products must be produced over a time horizon of 30 days in a single-stage 

process with four Extruders working in parallel. Specific processing times, due-dates and setup times can be 

found in Pinto and Grossmann (1997). This problem considers that a single worker is required per unit for 

processing. Thus, three versions are derived, a) an unlimited version with 4 workers, b) a limited version with 3 

workers and c) a limited version with 2 workers. The aim of this problem is to minimise the overall earliness OE 

defined by the following expression in Eq. (45) for a single time period with specific due-dates ddi. But 

originally in Pinto and Grossmann (1997) the problem was solved by maximizing the summation of the starting 

times. 

tiTFddOE
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This example was solved efficiently by other formulations in the past. The idea is to compare the statistics 

provided by our model with the statistic reported by the existing approaches for this simple example in Table 1. 

For this, Eq.(3) has been modified in order to force the model to produce all product orders and Eq. (9) has been 

adapted in the way to adopt a nominal processing time defined by tpij. The resulting formulation considers the 

main assignment, sequencing, timing, and share resources constraints by Eqs. (1,2,3bis,4-8,9bis,10-13,24-27). 

The objective function is defined by Eq. (45) considering that TFit ≤ ddi. 
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Despite of using more variables and constraints than other formulations, our model is able to solve these 

problem instances very well, reporting the same optimal solution for each instance with short CPU time. It is 

worth remarking than this specific problem does not consider performance decay and only takes into account 

setup times which are independent from the product sequence. Our model was formulated in a general way, 

allowing coupling with sequence-dependent issues, limited resources and performance degradation. That is the 

reason why extra variables and constraints are considered in our TSP-based and precedence-based formulation. 

The introduction of changeover times or performance decay may affect the performance of the existing 

formulations. The following motivating problem is proposed to study what is happening when a sequence-

dependent issues are introduced. 



Table 1. Model size and statistics for a benchmark case study 

Model Case 
Discrete,  

Variables & Eqs. 
Objective Function CPU time(s) Nodes 

Pinto and Grossmann 19971 
a - 269.10# 63.56 283 
b - 268.24# 125.42 673 

c - 264.98# 927.16 7341 

Méndez and Cerdá 20022 

a 82, 24, 214 1.026 0.03 12 

b 127, 24, 622 1.895 2.93 4372 
c 115, 24, 490 7.334 13.28 21583 

Janak et al 20043 

a 150, 513, 1389 1.026 0.07 7 

b 458, 2137, 10382 1.895 6.53 1374 
c 444, 2137, 10382 7.334 236.37 38621 

Marchetti and Cerdá 20092 

a 82, 24, 214 1.026 0.03 12 

b 223, 24, 622 1.895 0.66 121 

c 223, 24, 622 7.334 7.39 3943 

Proposed TSP/precedence-based4 

a 191, 75, 299 1.026 0.1 0 

b 389, 87, 587 1.895 0.3 475 

c 389, 87, 587 7.334 1.37 3447 

a 191, 75, 299 269.69# 0.3 213 
b 389, 87, 587 268.82# 0.47 72 

c 389, 87, 587 265.97# 0.62 2761 
1 solution reported in Pinto and Grossmann 1997 by using IBM 6000-530 w/GAMS/OSL. 
2 solutions reported in Marchetti and Cerdá 2009 by using an ILOG OPL Studio 3.6 with CPLEX v. 8.0 on a Pentium IV 1.8 GHz. 
3 solutions reported in Janak et al. 2004 by using GAMS 2.5 with CPLEX 8.1 on a Linux Workstation 3 GHz. 
4 solutions reported by using AIMMS 4.3 with CPLEX 12.6 in an Intel Xeon 3.5 GHz. 
# maximising the summation of starting times = sum((i,t),TSit). 

5. Motivating problem 

This motivating problem is a modified version of the one published in Cerdá et al. (1997). Thus, a maximum of 

10 products I=(i1…i10) should be processed at 4 non-identical processing units J=(j1…j4), taken into account 

constant linear performance decay dij with limited resources Rt
max 

and limited number of recovery operations 

Mt
max

 per time period t. Fixed product batch size pij, nominal processing times tpij and changeover times τii’ are 

shown in Table 2. Maximum recovery time trj
max

 per unit j is known in advance. Specific demand is given by 

Dit. The fixed product batch size pij in Eq. (18) is replaced by the demand Dit, in order to represent the real size 

of the batch to be produced. Processing times tpijk at each breakpoint k for unit j is calculated offline by the 

adapted Eq. (18) where production rate is given by rij = (pij/tpij) and y
1

ijt is replaced by yk = (|K|-k+1)/|K| for each 

breakpoint k. For the case of no performance decay (dij=0), Eq. (18) is not used and tpijk is calculated by Dit/rij. 

Table 2. Fixed product batch size [kg/batch], processing time [days/batch] and changeover times [days] 

pij i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 

j1 100 - 140 - - 280 - - 200 250 

j2 - - - 120 90 210 - - - 270 
j3 - 210 170 - - - 390 - - - 

j4 - - - - 130 - 290 120 - - 

tpij i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 

j1 1.7  - 1.25  - -  2.4  - -  1.6 2.6 

j2 -  - - 1.7 1.4 1.8 - - - 1.9 

j3  - 0.9 1.1 - - - 1.05 - - - 
j4  - -   - -  0.85  - 1.65 2.1  - -  

τii’ i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 

i1 0.0 - 0.0 - - 0.65 - - 0.9 0.4 

i2 - 0.0 1.1 - - 0.0 0.0 - - - 
i3 1.0 0.15 0.0 - - 0.0 0.3 - 1.6 0.2 

i4 - - -  0.05 0.0 - - - 0.5 

i5 - - - 0.3 0.0 0.7 0.9 0.6 - 0.0 
i6 1.4 - 0.3 0.7 0.0 0.0 - - 1.2 0.0 

i7 - 1.8 0.0 - 0.85 - 0.0 0.45 - - 

i8 - - 0.0 - 0.0 - 1.65 0.0 - - 
i9 2.1 - 1.25 - 0.0 0.8 - - 0.0 0.65 

i10 1.5 - 0.6 0.8 0.5 0.0 - - 0.7 0.0 

 

Three example problems (Examples 1, 2, 3) are presented in Table 3 considering 8, 9, 10 product orders, 

respectively. These examples are used for solving single and multi-period cases presented below. All the 

problems are solved using CPLEX® v12.6 on an Intel® Xeon® CPU 3.5GHz with12 parallel threads. 



Table 3. Demands [kg] for Examples 1-3 

Dit Example 1 Example 2 Example 3 

i1 700 700 550 

i2 1050 850 850 
i3 900 900 700 

i4 1000 900 900 

i5 650 500 500 
i6 1350 1350 1050 

i7 950 950 950 

i8 850 850 850 
i9 - 450 450 

i10 - - 650 

 

5.1. Single period problem (Examples 1-3) 

Results for Examples 1-3 are reported in Table 4-5. These examples were proposed in Cerdá et al. (1997) for a 

single time period without performance decay by considering makespan MK as an objective function, which in 

our model is defined by Eq. (46). Our proposed formulation is run by considering Eqs. (1,2,3bis,4-8,9bis,10-

13,24-27,46). In the case of no performance decay, the value of tpij in Eq.(9bis) will be equal to tpijk. Note that 

production amount, inventory, backlogs and lifetime constraints are not considered here. In order to compare 

with existing formulations, a discrete-time STN formulation of Kondili et al. (1993) and a unit-specific time 

event STN formulation of Janak et al. (2004) have been implemented. 

1,  tiTFMK it
 (46) 

The results provided in Table 4 for Examples 1-3 confirm the values (MK) reported by Cerdá et al. (1997) for a 

single time period problem without considering performance decay. These values 24.55, 26.90 and 23.9 [days] 

were obtained by our formulation in less than 0.25s of CPU time. The global-time event model reaches the same 

solutions in 1.4s, 2.9s, 7.8s, respectively by considering 4, 4, 5 global events. Solutions reported by discrete-

time STN model have some limitations due to, discrete processing, changeover and recovery times. The 

discrete-time model assumes a maximum recovery time trj
max

, even if the unit is not recovered to the maximum 

level. Processing times and changeover times are also rounded to the next integer value. Due to these limitations 

the discrete-time STN model only could find makespan results of 25, 27, 24 [days] in few seconds by using a 

daily grid (30 points). 

Table 4. Results of STN vs TSP models for Examples 1-3 by using Rmax=4, Mmax=4 and dij=0 

Example 1 STN-discrete STN-continuous TSP-continuous 

Time points 30 3 4 - 
Equations 51432 700 1031 256 

Variables 3871 322 4269 193 

Discrete 3720 72 96 120 
Makespan 25 24.55 24.55 24.55 

CPU time (s) 1.0 0.47 1.4 0.23 

Example 2 STN-discrete STN-continuous TSP-continuous 

Time points 30 3 4 - 
Equations 69434 769 5638 305 

Variables 4171 352 469 231 

Discrete 4020 78 104 151 
Makespan 27 26.9 26.9 26.9 

CPU time (s) 1.5 0.45 2.9 0.22 

Example 3 STN-discrete STN-continuous TSP-continuous 

Time points 30 4 5 - 
Equations 96436 1366 1894 372 

Variables 4771 533 666 285 

Discrete 4620 120 150 194 

Makespan 24 24.2 23.9 23.9 

CPU time (s) 2.4 2.7 7.8 0.25 

 

Table 5 shows the results for a similar problem by considering limited resources R
max

=3. The addition of limited 

resources does not affect much the convergence of our model, providing optimal results for all cases in less than 

1 second. On the other hand, the global time event STN formulation requires more events and CPU time to 

guaranty optimal solution. For example, best solution found for Example 3 was 26.9 [days] by using 6 global 

time points after 203 seconds when the optimal solution is 26.35 [days]. More events may produce better 

solutions but at expenses of much more CPU time. The discrete-time STN model behaves similar than our 

formulation, providing good near optimal solutions in less than 3 seconds. 



Table 5. Results of STN vs TSP models for Examples 1-3 by using Rmax=3, Mmax=4 and dij=0 

Example 1 STN-discrete STN-continuous TSP-continuous 

Time points 30 5 6 - 

Equations 51432 1410 1837 256 
Variables 3871 536 643 193 

Discrete 3720 120 144 120 

Makespan 26 26.85 25.55 25.55 
CPU time (s) 1.4 11 81 0.23 

Example 2 STN-discrete STN-continuous TSP-continuous 

Time points 30 5 6 - 

Equations 69434 1565 2047 305 
Variables 4171 586 703 231 

Discrete 4020 130 156 151 

Makespan 27 27.4 26.9 26.9 
CPU time (s) 1.6 14 30 0.26 

Example 3 STN-discrete STN-continuous TSP-continuous 

Time points 30 5 6 - 

Equations 96436 1894 2496 372 
Variables 4771 666 799 285 

Discrete 4620 150 180 194 

Makespan 27 27.65 26.9 26.35 

CPU time (s) 2.1 28 203 0.66 
 

The third problem instance is reported in Table 6 by assuming limited resources R
max

=3 and considering 

constant performance decay dij=0.01. In here, our formulation is proposed by considering Eqs. (1-14,20-39,46). 

The existing formulations have been adapted to consider unit performance decay by dij with limited resources 

Rt
max

 and recovery operations Mt
max

. Details about adapting models are summarised in Appendix A section. 

Table 6. Results of STN vs TSP models for Examples 1-3 by using Rmax=3, Mmax=4 and dij=0.01 

Example 1 STN-discrete STN-continuous TSP-continuous 

Time points 35 5 6 - 

Equations 60570 1687 1926 453 

Variables 4660 720 839 353 
Discrete 4340 140 168 132 

Makespan 31 29.56 28.76 28.76 

CPU time (s) 10 19 56 0.4 

Example 2 STN-discrete STN-continuous TSP-continuous 

Time points 35 4 5 - 

Equation 81572 1377 1858 526 

Variables 5010 651 780 404 
Discrete 4690 120 150 164 

Makespan 34 32.11 32.11 32.11 

CPU time (s) 14 8 32 2 

Example 3 STN-discrete STN-continuous TSP-continuous 

Time points 35 5 6 - 

Equations 113074 2219 2882 645 

Variables 5710 880 1025 484 
Discrete 5390 170 204 209 

Makespan 31 31.08 30.90 (11%) 30.23 

CPU time (s) 45 110 600* 5 
* CPU time limit = 600 seconds. Relative gap in brackets.  

 

Results in Table 6 show the advantages of the proposed formulation in finding optimal solutions for all the cases 

in 0.4, 2 and 5 seconds while continuous-time STN spends 56, 32 and 600 seconds and discrete-time STN takes 

10, 14 and 45 seconds of CPU time, respectively.  

The superior performance of CPU time, of at least one order of magnitude in comparison with other existing 

models, on a simple case study considering a single time period problem, allow us to infer that a greater 

difference will occur when multiple time periods would be considered due to the increasing number of time 

points that should be taken into account in the STN formulations. That is the main reason why we have decided 

to prioritize the use of the proposed continuous-time formulation for the rest of the study. 

The following section provides multi-period problems based on the information presented in Example 4. These 

new cases have been proposed for the integration of planning,  

scheduling and maintenance decisions. Planning decisions as production amount, inventory and backlog levels 

and sales are introduced. Thus, new parameters as product prices, production costs, inventory and backlog costs 

are also taken into account so as to maximise the total profit stated by Eq. (44). 

 



5.2. Multi-period problem (Example 4) 

A multi-period problem is proposed and three cases are solved by different planning horizon a) TH=4, b) TH=6 

and c) TH=8, respectively. This new example considers fixed product prices by pi and fixed and variable 

production costs by fpcij and vpcij. Backlog cost and inventory costs are assumed in 50% and 30% of the product 

prices, respectively. Maintenance costs are defined by fmcij and vmcij. Demand profile Dit in Table 7 is generated 

for all the time periods by using the information of Example 1. Table 8 shows information on product prices and 

costs. Variables costs are assumed in vpcij=100 [$/day] and vmcij=1000 [$/day]. No limits for inventory capacity 

are considered. The elapsed time for consecutive recovery operations in the same unit is defined by ϕ=2 time- 

periods. The maximum recovery time is defined by tr
max

 =5[days] while the maximum number of resources in 

R
max

=3, the maximum number of recovery operations in M
max

=4 and the degradation in dij=0.005. Results for 

Example 4 are summarised in Table 9. 

Table 7. Multi-period demand [kg] of Example 4 

Dit t1 t2 t3 t4 t5 t6 t7 t8 

i1 - 700 - 700 - 700 - 700 

i2 1050 1050 1050 1050 1050 1050 1050 1050 
i3 900 900 900 900 900 900 900 900 

i4 1000 - 1000 - 1000 - 1000 - 

i5 650 - 650 - 650 - 650 - 
i6 - 1350 - 1350 - 1350 - 1350 

i7 950 950 950 950 950 950 950 950 

i8 850 850 850 850 850 850 850 850 

Total 5400 5800 5400 5800 5400 5800 5400 5800 

Table 8. Product prices and costs [$] of Example 4 

 pi fpcij fmcij  

i1 7 980 2450 
i2 2 210 420 

i3 5 450 900 

i4 3 300 600 
i5 8 520 1040 

i6 1 135 270 

i7 4 380 760 
i8 6 510 1020 

 

Table 9 shows the main results for different cases of Example 4 considering 4, 6 and 8 time-periods (T
max

). 

Notice that in all the cases the first integer solution found by the monolithic model has been provided in few 

seconds while spending a few minutes to improve the initial result. These cases haven’t been solved to 

optimality and the solutions have been reported within 5% of relative gap. 

Table 9. Model statistics of Example 4 by using Rmax=3, Mmax=4 and dij=0.005 

Example 4 Case Tmax 
Discrete,  

Variables & Eqs. 
Best LP 
Solution 

CPU  
time (s) 

Best Integer  
Solution 

CPU  
time (s) 

Gap% 

Proposed formulation 
Eqs. (1-14,20-42,44) 

a 4 528, 985, 2341  55923 1 40430 12 4.9 

b 6 792, 1475, 3521 83885 1 63206 124 5.0 

c 8 1056, 1965, 4701 111846 1 86315 700 4.7 

 

Table 10 shows the comparison between the solutions obtained within 5% of relative gap and the corresponding 

one found by the model in a time limit imposed of 1000 seconds. As it can be seen, the solutions obtained after 

1000 seconds of CPU time, improve the one reported in Table 9 in less than 1% of all the cases compared in 

Table 10 and only in one of these cases the relative gap has been reduced to 1%. Thus, it seems to be 

unnecessary to impose a time limit of 1000 seconds as a stopping criterion when the model has been able to find 

a good quality result (<5% gap) in less CPU time. 

Table 10. Solution comparison for Example 4 

Example 4 Case Tmax 
Best Integer 

Solution 
CPU  

time (s) 
Gap% 

Best Integer 
Solution 

CPU  
time (s) 

Gap% 

Proposed formulation 
Eqs. (1-14,20-42,44) 

a 4 40430 12 4.9 40741 1000 0.1 

b 6 63206 124 5.0 63213 1000 2.9 

c 8 86315 700 4.7 86342 1000 4.3 

 



Revenues and costs of the solutions reported in Table 9 are reported in Table 11. Detailed scheduling and unit 

performance of Example 4a and Example 4c are shown in Figure 6a and Figure 6b. In here, units are shown in 

y-axis while time in days is represented in the x-axis. In the unit performance graph, unit performance is shown 

on y-axis while time is shown on the x-axis. 

Table 11. Results of Example 4 

 Case Total Profit Production cost Maintenance cost Inventory cost Backlog cost Revenues 

Example 4 

a 40430 33820 9032 5877 580 89740 

b 63206 46503 12475 8496 2370 133050 

c 86315 63783 16666 10476 3780 181020 

 

 
(a) 

 
(b) 

Figure 6. Gantt chart and unit performance decay along the time (days) for a) Example 4a and b) Example 4c 

 

These examples have been solved assuming a fixed demand with a specific pattern that it is repeated every two-

time period. Thus, analysing the solution schedule of Figure 6a and Figure 6b it seems possible to obtain a 

solution for the first two time-periods and then use this schedule to build a solution for the whole planning 

horizon on Examples 4a, 4b, and 4c. Or, use the solution obtained from Example 4a to build a solution for 

Example 4c. This kind of rolling horizon technique is very common to solve large planning problems especially 

when the schedule is repeated every fixed time period (cyclic schedule). Despite of this, the final solution 

reported by the model changes at every time period and the overall profit is improved in comparison with the 

estimated solution by repeated the same schedule many times. This happens mainly due to the restrictions 

imposed over unit performance and recovery operations stated by Eqs. (28-39). These recovery operations are 

taking place after ϕ time periods restricting the occurrence of successive recovery operations at consecutive time 

periods. It is worth noticing that each unit operates at certain performance levels, allowing flexible maintenance 

operations that recover the unit to an intermediate level, not necessarily to “as good as new” level. It is 

important to remark that each unit start and finish at specific levels at the beginning and at the end of the 

planning horizon, ensuring unit availability at the beginning of the next planning horizon. These limitations 

complicate the resolution of the system, forcing the model to create scheduling solutions that a priori seems to 

be very inefficient in terms productivity, leaving extensive idle times. However, the solution found by the model 

allows to improve the overall profit by considering more flexible decisions regarding maintenance operations, 

ensuring at the same time a reliable schedule in terms of unit and resource availability for the current and the 

next planning periods. 

 



5.3. Scenario analysis 

The following analysis is provided to study the behaviour of the solution to different values of main problem 

parameters as, performance decay dij, demand Dit, inventory capacity θ, elapsed time between recovery 

operations ϕ and maximum recovery time tr
max

. This analysis is provided to understand how sensible the 

proposed model is according to different state conditions. Thus, five scenarios are proposed by changing some 

of the main deciding factors (see Table 12).  

Table 12. Scenario analysis 

Scenario Example Problem Parameter Model Statistics Results Figures 

1 Example 5 Example 4a dij Table 13 Table 14 Figure 7 

2 Example 6 Example 4a Dit Table 16 Table 17 Figure 8 
3 Example 7 Example 4b θ Table 18 Table 19 Figure 9 

4 Example 8 Example 4b ϕ Table 20 Table 21 Figure 10 

5 Example 9 Example 4b trmax Table 22 Table 23 Figure 11 

 

5.3.1. Scenario 1 

Example 5 is presented here to evaluate the impact of the performance decay factor dij on the solution and the 

performance of the proposed model. Here a more intense performance degradation dij is tested by using 

Example 4a for the comparison. Thus, the original Example 4a represented by case a) dij=0.005 is compared 

with case b) and c) that use respectively dij=0.007 and dij=0.010. Case d) is proposed by using a uniform 

distribution between 0.005 and 0.015. 

Table 13. Model statistics of Example 5 by using Rmax=3, Mmax=4 

Example 5 Case dij 
Discrete, 

Variables. & Eqs. 
Best LP 
 Solution 

CPU  
time (s) 

Best Integer 
Solution 

CPU  
time (s) 

Gap% 

Proposed formulation 

Eqs. (1-14,20-42,44) 

a 0.005 528, 985, 2341 55923 1 40430 12 4.9 

b 0.007 528, 985, 2341 53295 1 35156 36 5.0 

c 0.010 528, 985, 2341 49178 1 28931 235 5.0 
d U(0.005,0.015) 528, 985, 2341 51355 1 23393 900 5.0 

 

Results demonstrate that more intensive performance decay really affects the efficiency and the final solution 

reported by the model. Total profit has decreased by 13%, 28% and 42% for cases b), c) and d) in comparison 

with original case. The computational time has also been affected. More intensive performance decay factor 

more CPU time is required. Despite of that, the model has been able to converge to a good quality solution 

(<5% gap) in less than 1000 seconds in all cases analysed. Table 14 shows the results in terms of revenues and 

costs for Example 5. Here it is easy to appreciate that, more decay produces larger processing times, which 

affect directly to the production amount, generating more backlogs and also reducing the revenues and the total 

profit. 

Table 14. Results of Example 5 

 Case Total Profit Production cost Maintenance cost Inventory cost Backlog cost Revenues 

Example 5 

a 40430 33820 9032 5877 580 89740 

b 35156 31636 11584 6000 2175 86550 
c 28931 31587 15021 4425 5355 85320 

d 23393 32906 18418 5214 5390 85320 

 

Figure 7a shows the schedule for the more intensive performance decay in Example 5c. Notice that unit’s 

performance deteriorates quickly in comparison with Example 4a (Figure 6a), requiring an immediate recovery 

operation after few time periods. Figure 7b shows the impact of having different performance decay per 

products and units. This aspect affects much the schedule, creating totally different production schedules per 

time period, anticipating or delaying the execution of certain products orders and also spending much time 

recovering the units. 

 



 
(a) 

 
(b) 

Figure 7. Gantt chart and unit performance decay along the time (days) for a) Example 5c and b) Example 5d 

 

5.3.2. Scenario 2 

The following example, Example 6, is proposed to evaluate the impact of different demand profiles. The 

original case study is provided in Example 6a based on the demand profile shown in Table 7, the same used for 

Example 4. Then, two additional cases are introduced for the comparison, case b) by using the demand profile 

shown in Table 15 and case c) by using the original demand profile of Example 1 provided in Table 3 for all 

time periods. Results and comparisons are shown in Tables 16-17. Table 16 shows the model performance and 

statistics while Table 17 shows the main results for Example 6. 

Table 15. Multi-period demand [kg] of Example 6 

Dit t1 t2 t3 t4 

i1 - 1400 - 1400 
i2 1050 1050 1050 1050 

i3 900 900 900 900 

i4 2000 - 2000 - 
i5 1300 - 1300 - 

i6 - 2700 - 2700 

i7 950 950 950 950 
i8 850 850 850 850 

Total 7050 7850 7050 7850 

Table 16. Model Statistics of Example 6 by using Rmax=3, Mmax=4, dij=0.005 

Example 6 Case Dit 
Discrete,  

Variables & Eqs. 

Best LP 

Solution 

CPU  

time (s) 

Best Integer  

Solution 

CPU  

time (s) 
Gap% 

Proposed formulation 
Eqs. (1-14,20-42,44) 

a Table 7 528, 985, 2341  55923 1 40430 12 4.9 

b Table 15 528, 985, 2341  58518 1 39959 517 5.0 

c Table 3 528, 985, 2341  70048 1 49353 980 5.0 

Table 17. Results of Example 6 

 Case Total Profit Production cost Maintenance cost Inventory cost Backlog cost Revenues 

Example 6 
a 40430 33820 9032 5877 580 89740 
b 39959 42553 11641 8868 10740 113760 

c 49353 44772 12752 5583 2840 115300 



 

The final solution for Example 6b, 39959 [$], was reached after 517 seconds. Notice that increasing a half the 

total demand, the total revenue only has been increased by 26%, while the production cost and maintenance cost 

in 25% and 28%, respectively while the inventory cost and backlog cost have grown many times. Basically, 

despite of having more revenues the total profit remains almost the same than the original case in Example 6a. 

Example 6c is proposed by considering a dense profile by assuming that all products are produced at every time 

period following the demand in Table 3 – Example 1. Note that, in both cases, case b) and case c), the total 

demand per time period is 29800 [kg] with an average value of 7450 [kg].  

The total profit reached for Example 6c, 49353 [$], was 22% higher than the original profit of Example 6a. Here 

the revenues have been increased by 28% while production and maintenance costs have been 32% and 41% 

higher, respectively. Despite of that, inventory costs were reduced and backlogs were only few times bigger than 

the original values. This case represents an intermediate situation between cases a) and b), in where most of the 

product demand can be delivered on time. 

A detailed Gantt chart for this case is shown in Figure 8. Here it can be seen that most of the products are 

produced every time period leaving less idle time. Due to this, the model has tried to produce in advance in 

order to have some inventory to serve the demand of the following periods. Despite of that, the model cannot 

serve the demand on time in most of the time period and part of the demand is served later as backlogs. 

 

 
(a) 

 
(b) 

Figure 8. Gantt chart and unit performance decay along the time (days) for a) Example 6b and b) Example 6c. 

 

5.3.3. Scenario 3 

Example 7 is proposed to study the behaviour of the model with limited inventory capacity by changing product 

lifetime parameter. For this, Example 4b is used and the model is run by adopting different values of θ factor in 

Eq. (43). First, for case a), we have assumed that there are no limitations on product lifetime, and the results 

have been the same as the ones in Example 4b. Then, in case b), we have considered θ=2 and then more 

restrictive in case c) by considering θ=1. Results for Example 7 are shown in Table 18 and Table 19. 

Table 18. Model statistic of Example 7 by using Rmax=3, Mmax=4 and dij=0.005 

Example 7 Case θ 
Discrete,  

Variables & Eqs. 

Best LP 

Solution 

CPU  

time (s) 

Best Integer  

Solution 

CPU  

time (s) 
Gap% 

Proposed formulation 

Eqs. (1-14,20-44) 

a - 792, 1475, 3521 83885 1 63206 124 5.0 

b 2 792, 1475, 3569 83885 1 62174 75 5.0 
c 1 792, 1475, 3569 83885 1 61759 52 5.0 



Table 19. Results of Example 7 

 Case Total Profit Production cost Maintenance cost Inventory cost Backlog cost Revenues 

Example 7 

a 63206 46503 12475 8496 2370 133050 

b 62174 47057 12373 8676 2770 133050 
c 61759 46583 12514 8994 3200 133050 

 

Results demonstrate that product lifetime parameter θ does not affect much the final solution of the original 

problem presented in Example 7a but improves the behaviour of the model, speeding up the convergence of the 

model until 5% gap. The total profit for Example 7a was reduced only 1.6% and 2.3%, respectively for cases b) 

and c) due to higher production costs (1.19% and 0.17% higher), inventory costs (2.12% and 5.86% higher) and 

basically more backlog costs (16.87% and 35.02% higher) associated with the less anticipated demand. Figure 9 

shows the details about the schedule and the unit performance for Examples 7b and 7c. 

 

 
(a) 

 
(b) 

Figure 9. Gantt chart and unit performance decay along the time (days) for a) Example 7b and b) Example 7c 

 

5.3.4. Scenario 4 

Example 8 is proposed by changing the ϕ parameter, which enforced a number of elapsed time periods for 

consecutive recovery operations. For this example, we have considered Example 4b as reference for comparison 

by using ϕ=2 as case a). Then, two additional cases have been proposed by considering ϕ=4 and ϕ=6 in case b) 

and case c), respectively. Main model statistics and results are presented below in Tables 19 and 20. 

Table 20. Model statistics of Example 8 by using Rmax=3, Mmax=4 and dij=0.005 

Example 8 Case ϕ 
Discrete,  

Variables & Eqs. 

Best LP 

Solution 

CPU  

time (s) 

Best Integer  

Solution 

CPU  

time (s) 
Gap% 

Proposed formulation 

Eqs. (1-14,20-42,44) 

a 2 792, 1475, 3521 83885 1 63206 124 5.0 

b 4 792, 1475, 3521 83885 1 58882 938 5.0 
c 6 792, 1475, 3521 83885 1 51840 1000 5.4 

Table 21. Results of Example 8 

 Case Total Profit Production cost Maintenance cost Inventory cost Backlog cost Revenues 

Example 8 
a 63206 46503 12475 8496 2370 133050 
b 58882 47818 12223 7926 6200 133050 

c 51840 47753 10988 7704 7755 126040 



 

Results for case b) has shown a decrease of 6.85% on the total profit in comparison with original case in a) by 

performing at most two recovery operations per unit along over the planning horizon (see Figure 10a). Case c) 

has been solved allowing a single recovery operation for the whole planning horizon (see Figure 10b). The total 

profit for case c) has been reduced by 17% from the original case. In both cases backlog costs have increased 

and most of the products could not be served on time, which have generated less revenues. These cases 

demonstrate the impact of ϕ factor over the total profit while Figure 10 shows how this factor affects the 

schedule, reducing the number of batches produced, and reducing the average performance of the units over 

time. 

 

 
(a) 

 
(b) 

Figure 10. Gantt chart and unit performance decay along the time (days) of a) Example 8b and b) Example 8c 

 

5.3.5. Scenario 5 

An additional example is provided, in Example 9, to evaluate the impact of the maximum recovery time tr
max

. 

For this, Example 9a is proposed by using the information of Example 4b in where tr
max

=5. Then two extra cases 

are created in b) and c) by considering tr
max

=10 and tr
max

=15, respectively. Results are shown in Tables 22-23. 

Table 22. Model statistics of Example 9 by using Rmax=3, Mmax=4 and dij=0.005 

Example 9 Case trmax 
Discrete,  

Variables & Eqs. 

Best LP 

Solution 

CPU  

time (s) 

Best Integer  

Solution 

CPU  

time (s) 
Gap% 

Proposed formulation 

Eqs. (1-14,20-42,44) 

a 5 792, 1475, 3521 83885 1 63206 124 5.0 
b 10 792, 1475, 3521 76346 1 54930 360 5.0 

c 15 792, 1475, 3521 69016 1 46812 800 5.0 

Table 23. Results of Example 9 

 Case Total Profit Production cost Maintenance cost Inventory cost Backlog cost Revenues 

Example 9 

a 63206 46503 12475 8496 2370 133050 

b 54930 46565 20690 8496 2370 133050 
c 46812 45365 27841 8892 2960 131870 

 

Table 22 and Table 23 show the high impact of tr
max

 over the total profit. Example 9b and Example 9c show a 

decrease of 13% and 26% in comparison with case a). Higher values of maximum recovery time forces higher 

recovery times RTijt. Thus, associated maintenance costs are increased and some extra costs may also occur due 



to higher backlogs or lower revenues. Figure 11 shows detailed schedule and unit performance for Example 9b 

and Example 9c. 

 

 
(a) 

 
(b) 

Figure 11. Gantt chart and unit performance decay along the time (days) for a) Example 9b and b) Example 9c 

 

6. Concluding Remarks 

A novel MILP model for the integration of production planning scheduling and maintenance in a multi-product 

single-stage process plant with parallel units, limited resources and sequence-dependent unit performance decay 

has been presented in this work. Travelling salesman problem and precedence-based concepts have been 

combined into a single continuous-time formulation to address the main issues related to this problem. The 

principal contribution of this work relies on the integration planning, scheduling and maintenance with 

sequence-dependent performance decay, flexible maintenance operations and resource limitations in a 

continuous-time model representation. 

In order to test our model, a benchmark example from the literature has been introduced. This simple example 

has been solved considering scheduling and resource availability decisions without sequence-dependent issues 

and recovery constraints. The solution of this single time period scheduling problem has been compared with 

some existing solutions provided in Marchetti and Cerdá (2009), considering minimizing the overall earliness 

and the summation of starting times. The results demonstrate the effectiveness of the proposed formulation in 

terms of computational performance.  

After that, three new examples (Examples 1-3) have been proposed by using the information provided in Cerdá 

et al. (1997). Thus, different problem instances have been solved minimising the makespan while considering 

different resource availabilities and performance decay. In order to compare with other approaches, a discrete-

time STN formulation (Kondili et al., 1993) and a unit-specific time event STN formulation (Janak et al., 2004) 

were adapted from their original versions to deal with maintenance operations and unit performance decay, by 

using similar ideas than the ones introduced in Biondi et al., (2017). The addition of sequence-dependent issues, 

as performance decay and changeover, provides a novel contribution on these existing formulations. 

Unfortunately, these restrictions do not provide a good performance and difficult the resolution of the STN 

models. In contrast, our formulation takes the advantages of TSP and precedence-based ideas, dealing efficiently 

with limited resources, sequence-dependent changeovers and unit performance decay, demonstrating a superior 

performance in comparison with other approaches. 

The rest of the examples have been solved by using our proposed formulation. Thus, some cases have been 

proposed for the multi-period problems by considering different planning horizons and additional equations 



have been introduced to deal with, inventory, backlogs and lifetime limitation in order to maximize the total 

profit. Results for these examples have shown the applicability of the solution approach for solving integrated 

planning, scheduling and maintenance problems at a reasonable computational time.  

In order to analyse the behaviour of the model for planning problems, additional examples were tested by 

changing some of the most important model parameters. Thus, performance decay, demand profile, and 

parameters related to recovery operations and product’s lifetime were varied from their original values in order 

to provide a sensitivity analysis of the model and the final solution. After solving different instances, we can 

conclude that the model performs very well, providing good quality solutions (<5% gap) in almost all cases in 

less than 1000 seconds of CPU time. The sensitivity analysis has been able to demonstrate the applicability of 

the solution approach and the importance of some of the main parameters involved in the resolution of the 

problem. For the case analyses, we have been able to demonstrate that changes on the demand profile and the 

inventory capacity have not affected much the final solution while changes on the other factors, especially 

performance decay factor, may provide a reduction in between 5%-50% on the total profit which is considerably 

high. 

Future work will be focused on the development of efficient decomposition approaches for solving larger 

problem instances, considering product orders and parallel units. 
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Appendix A 

Discrete-Time Model Formulation (STN) 

Given a set of discrete-time periods H=(h1…h100) and operation modes K=(k1…k10) and assuming fixed 

processing times tpijk, changeover times τii’ and recovery time trj with constant decay by dij, a discrete-time STN 

model based on the main ideas of Kondili et al. (1993) and adapted constraints from Biondi et al. (2017) for the 

integration of maintenance operations is proposed in Eqs.(47-60) to find the best production schedule and 

maintenance, taking into account task’s allocation of production and recovery operations by Whijkh and Mhjh 

respectively, unit performance by Dhjh (initial unit performance by Dj
0
 and maximum unit performance by 

Dj
max

), with limited resources Rhh and limited recovery Qhjh, so as to minimise the makespan MK.  
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Continuous-Time Model Formulation (Global-time event) 

Given a set of events points N=(n1…n12) and operation modes K=(k1…k10) and assuming continuous 

processing times Tnijn and recovery times Tmijn, changeover times τii’ and constant unit degradation dij, a unit-

specific time event STN model is proposed here by following the main ideas of Janak et al. (2004) for 

scheduling tasks and adapted constraints from Biondi et al. (2017) for maintenance operations in Eqs.(61-95). 



This model considers production and maintenance operations by Wnijn and Mnjn, unit performance by Dnjn with 

limited resources Rnn and limited recovery by Qnjn, so as to minimise the makespan MK. Assignment decision 

variables are stated by Wsijn and Wfijn in order to represent the starting event and the ending event for each task 

i,j at event point n. Related timing decisions for each task i,j at event point n are represented by Tsijn and Tfijn. 

While starting and ending times for each global event are enforced by ttsn and ttfn variables. 
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