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José A. Caballero , MILP models for objective reduction in multi-objective optimization: Error mea-
surement considerations and Non-Redundancy ratio, Computers and Chemical Engineering (2018),
doi: 10.1016/j.compchemeng.2018.04.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.compchemeng.2018.04.031
https://doi.org/10.1016/j.compchemeng.2018.04.031


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 

 

Highlights 

 Measurement of the error in which a system incurs when removing one objective using a norm 

1. 

 A new model introducing a new concept considering a modification on the solutions instead of 

the objectives. 

 Systematic characterization of a system in regards of its objectives and Pareto solutions. 

 Combination with other techniques, such as the Principal Component Analysis. 
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Abstract 

A common approach in multi-objective optimization (MOO) consists of removing redundant objectives 

or reducing the set of objectives minimizing some metrics related with the loss of the dominance 

structure. In this paper, we comment some weakness related to the usual minimization of the maximum 

error (infinity norm or δ-error) and the convenience of using a norm 1 instead. Besides, a new model 

accounting for the minimum number of Pareto solutions that are lost when reducing objectives is 

provided, which helps to further describe the effects of the objective reduction in the system. A 

comparison of the performance of these algorithms and its usefulness in objective reduction against 

principal component analysis + Deb & Saxena’s algorithm (Deb & Saxena Kumar, 2005) is provided, and 

the ability of combining it with a principal component analysis in order to reduce the dimensionality of a 

system is also studied and commented.  

Keywords: MOO objective reduction, Non-Redundancy ratio, PCA, δ-error, Deb & Saxena algorithm. 

1. Introduction 

Nowadays, one of the main objectives of the process system engineering community is to develop 

methods to assess a problem from a holistic point of view. As such, multi-criteria analysis as opposed to 

the traditional economic focused analysis is rising among researchers and industries. This does not mean 

that the economic point of view has lost significance, but that other subjects, especially environmental, 

social and safety assessment of a chemical process, have been taking part of the spotlight over the last 
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years. There are multiple alternatives to deal with multi-criteria analysis of a problem, such as Analytical 

Hierarchical Process (AHP) (Saaty, 1990), Analytic Network Process (ANP) (Saaty, 2001), Case Base 

Reasoning (Aamodt & Plaza, 1994), Data Envelopment Analysis (DEA) (Banker et al., 1984) and fuzzy set 

theory (Zadeh, 1965) among others.  

Multi-objective optimization (MOO) has proven to be an excellent method to simultaneously take into 

account different criteria to assess a process when seeking for an optimum design or result of a 

problem. Aspects such as the economic, environmental or social ones must be considered when 

providing an optimal design for a plant from a holistic point of view, or even for smaller problems such 

as a piece of equipment. A huge advantage of these methods is that the solution resultant from their 

use is a set of Pareto optimal alternatives. If a Pareto optimal alternative exists, it is ensured that no 

other feasible alternative will be better in any objective without worsening one or more of the 

remaining objectives. All these Pareto optimal points are equally “good” in terms of optimality, but 

techniques to differentiate them do exist, such as the efficiency of order k (Das, 1999), which is able to 

classify Pareto solutions in different orders, thus helping the decision maker to choose among a smaller 

pool of equally good solutions.  

An important problem when using MOO techniques is the computational burden. A well-known 

method, such as the ɛ-constraint method (Haimes et al., 1971) increases its number of calculations in an 

order of magnitude per objective taken into account. Hence, problems with more than 3 or 4 objectives 

represent a serious difficulty in calculations. A simple, direct alternative to problems with high 

dimensionality of objectives is the use of aggregated objectives. This is common practice in the 

environmental area, with aggregated metrics such as the Econindicator-99 (PRé-Consultants, 2000), 

ReCiPe (Goedkoop et al., 2009) and IMPACT 2002+ (Jolliet et al., 2003). However, this approach leads to 

many problems. On one hand, the aggregation of impacts is “subjective”, even though most of these 

aggregations are based on weights determined by a panel of experts. The relative importance of each 

objective is in most cases at least arguable, since they can be case dependent and the criteria of the final 

user (manager or designer) can be different. On the other hand, the dominance structure of the 

problem may be altered (Guillén-Gosálbez, 2011), and as such, when there exists an aggregation of 

objectives, there may be differences in the results when considering that aggregation versus the initial 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4 

 

objectives (Carreras et al., 2016). Due to these problems, a strategy of reducing the dimensionality of a 

problem without impacting the dominance structure is preferred and necessary when working with 

MOO problems. 

In a previous work (Vázquez et al., 2018), we proposed three models which allowed the user to minimize 

the number of objectives by maintaining the dominance structure of the system to a certain degree, 

given some inputs. It is based upon the concept of δ-error, introduced by Brockhoff & Zitzler (2006a, 

2006b, 2006c, 2009) and on the work performed by Guillén-Gosálbez (2011), increasing its efficiency 

and its modifiability in order to obtain different models which allow the user to perform different 

studies. The first model is able to remove redundant objectives without incurring any error and retaining 

the dominance structure intact. The second model allows removing objectives that are redundant with a 

certain tolerance added to the δ-error. This problem is also denominated the δ-Minimum Objective 

Subset (δ-MOSS) problem. The third model allows the user to find a subset of at most k objectives with 

the smallest possible δ-error. This is also denominated the Minimum Objective Subset of Size k with 

Minimum Error (k-EMOSS) problem. While the full-fledged explanation of these methods is given in the 

previous work, an overview of the basic theoretical foundation is revised below, where the main 

concepts are revisited. The gist of the models is to allow the user to discriminate among different 

objectives with a proper mathematical measurement of the error incurred when an objective is 

removed. The necessary data for these models are already Pareto optimal points in the whole space of 

initial objectives, which may seem counter-intuitive at first. A common drawback of the objective 

reduction methods is that an exploration of the Pareto frontier of the problem in the whole space of 

initial objectives is required. However, this exploration must only be performed up until a significant 

number of Pareto points able to characterize the Pareto frontier is obtained. Thus, with selected data 

from the initial space of objectives, we can rank these objectives in “importance” (i.e., the error we 

incur when we remove them), and we can decide to remove the less important ones for the dominance 

structure. By doing this, the user can now explore the reduced space of objectives more thoroughly and 

perform a multi-objective optimization in a much more maneuverable way. 

In our previous work, we mentioned that while the second and third model provided satisfactory 

solutions, it should be taken into account that the δ-error was computed with an infinity norm. As such, 
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a result of the model could present a small δ-error, but this error would be present in multiple Pareto 

solutions. Another possible outcome is the possibility of obtaining a big δ-error, caused solely by a 

couple of Pareto solutions. This behavior is good enough for the majority of the problems, but a model 

that allows us to obtain the minimum number of Pareto solutions that have to be violated in order to 

maintain completely the dominance structure (i.e., δ-Error = 0) can be useful, since it provides a 

different approximation to define the structure of a problem. Therefore, we introduce a new metric 

denominated non-redundancy ratio, whose model is developed below in the paper. This concept is not 

intended to substitute the δ-error in regards of reducing objectives, but to complement it. Since the 

previous models were written to take into account only an infinity norm, we also introduce the 

necessary modifications to the models in order to use a 1-norm approach instead, exemplifying how this 

consideration would change the results and the related benefits. The model for 1-norm can be easily 

extended to every p-norm. 

Another well-known method to reduce the dimensionality of a problem is the Principal Component 

Analysis (PCA) (Pearson, 1901). It has been used before with this end by other researchers, see for 

example (Pozo et al., 2012), and its effectivity when combined with the algorithm of Deb and Saxena 

Kumar (2005) to reduce objectives in the original space of objectives has been thoroughly proved. In this 

paper, we compare the PCA method with our models and provide some guidelines to use them in 

conjunction to obtain the best possible results. In addition, we compare the performance obtained by 

the combination of PCA and Deb’s algorithm with our model results. 

The paper presents the following structure. The next section is an overview of the main concepts, as 

well as a recapitulation of mathematical programming formulations of the redundant objectives 

removal, δ-MOSS and k-EMOSS models. The following section introduces the concept of non-

redundancy ratio, which allows us to further classify subspaces of objectives. A brief explanation of the 

PCA and the Deb & Saxena algorithm follows, before the case studies utilized to test our algorithms. The 

results from these cases are then presented, followed by a conclusion section that closes the work. 
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2. Theoretical foundations 

A brief overview of the theoretical foundations is presented. A comprehensive review of the theoretical 

foundations is out of the scope of this paper, but the interested reader is referred to our previous work 

(Vázquez et al., 2018) and references therein.  

Consider a decision space X  defined over a set F  of k  objective functions: : ,if X i F   

that must be minimized. A solution x X  is said to weakly dominate another solution y X  if and 

only if x  is not worse than y  in all the objectives. 

In this paper, in order to avoid the repetition, we will refer to the  (x) : , xif i F X     as ,s ix , 

where s X  and  i F . This can be done because the paper centers the models in the value of the 

points in those objective functions, instead of the values of the proper points. As such, it is said that a 

solution s  weakly dominates another solution 's   in a minimization problem if , ',s i s ix x i F   . 

The dominance structure of a problem represents the weakly dominances between a set of objectives 

for a set of solutions, since it is rare that we can evaluate the whole space of solutions X . As such, we 

call S X  to the subspace of individual solutions s . Since we cannot either evaluate all the 

objectives in the world, we call OBJ F  to our initial set of objectives. In Figure 1(a) we have the 

subsets of objectives  1 2 3: , ,OBJ f f f  and the subset of solutions  : ,S A B  . In this parallel 

plot, where each point refers to ,s ix , it can be seen that  , , 1 2,B i A ix x i f f    and as such B  

weakly dominates A  in the subset of  1 2' : ,OBJ f f  . As shown in Figure 1 (b), if we consider this 

subset of objectives, we would incur in a δ-error of 0.4. If we consider the subset  1 3'' : ,OBJ f f , as 

shown in Figure 1 (c) or even the subset  2 3''' : ,OBJ f f , the δ-error would be zero. This is because 

by choosing these subsets of objectives, not a single solution becomes weakly dominated by the others. 
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< Fig.1 > 

 

Figure 1: Parallel plot example. a) 3 initial objectives b) Objectives 1 and 2 maintained c) Objectives 1 and 3 

maintained 

The δ-error can be then defined as the value of ', ' , '| | ' \ 's i s ix x i OBJ OBJ    if 

, ', 's i s ix x i OBJ   . In simple terms, it is the value of the difference between the solutions in the 

objective that is being removed, when by removing this objective we are making a solution weakly 

dominated by another solution. 

An objective that can be reduced without affecting the dominance structure of a problem is called a 

redundant objective. In the example shown in Figure 1, both 1f  and 2f  are redundant (not the subset 

1 2{ , }f f  though). If you remove one of them, the δ-error of the two remaining is zero. The first model, 

which takes the form of a set covering problem, allows us to choose the minimum number of non-

redundant objectives. It is shown in Model 1.  
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. . 1 ( , ')
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s s i i s s
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s s i i s s
i OBJ

i

y

s t C y s s P

C y s s P

y







  
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







  (Model 1) 

In this model, iy  refers to a binary variable that takes the value 1 when the objective i  is chosen. The 

subset ,s sP  is formed by the pairs of solutions , ' : { ' }s s s s  . We must point out that this is possible 

due to the fact that S is an ordered set. The parameters 1, , ',s s iC  and 2, , ,s s iC   are calculated as shown in 

Eq.(1). 

 

1 , ', , ' ', ,

1 , ', , ' ', ,

2 , ', , ' ', ,

2 , ', , ' ', ,

1 ( , ) | ( ) 0

0 ( , ) | ( ) 0

1 ( , ) | ( ) 0

0 ( , ) | ( ) 0

s s i s s s i s i

s s i s s s i s i

s s i s s s i s i

s s i s s s i s i

C P i OBJ x x

C P i OBJ x x

C P i OBJ x x

C P i OBJ x x

    

    

    

    

  (1) 

When we find ourselves with objectives that have very different orders, such as an economic one and 

any environmental objective, the data ,s ix  must be scaled. If the limits of each objective are not known, 

it is recommended to use the maximum and minimum of each objective in the studied data to scale the 

values of the others. Bear in mind that by scaling with the maximum and minimum values found, the 

scaling will be directly affected by how effectively the search domain has been explored. This is not 

important for this algorithm, since assuming δ-error = 0 will avoid any scaling problem, but when we 

want to allow a certain δ-error, it will greatly depend on the scaling of the system. 

Our second model allows the user to obtain a subset of objectives which are δ-minimum with relation to 

the original set of objectives. By δ-minimum we mean that the dominance structure was broken at most 

a previously defined δ value MAX  in the subset of objectives. This is known as the δ-MOSS problem. It 

is shown in Model 2. 
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s s P i OBJ
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
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  (Model 2) 

Briefly explained, since it is detailed in the previous work, we introduce binary variables 1, , 2, ,,s s s sv v   

which allow to break the set covering restrictions. We introduce pseudo binary variables 

1, , , 2, , ,,s s i s s iw w   which allow us to relate the binary variables iy  and 1 2,v v , and the δ-error is calculated 

as the infinity norm with the help of previously calculated parameters , , , ,1 , 2s s i s s iPen Pen  , which are 

calculated by using Eq.(2). 

 

1, , ', ', , , ', ', ,

1, , ', , ' ', ,

2, , ', , ', , ' ', ,

2, , ', , ' ', ,

( ) | ( )

0 ( , ) | ( )

( , ) | ( )

0 ( , ) | ( )

s s i s i s i s s s i s i

s s i s s s i s i

s s i s i s i s s s i s i

s s i s s s i s i

Pen x x P i x x

Pen P i x x

Pen x x P i x x

Pen P i x x

   

  

   

  

  (2) 

The third model allows the user to fix the cardinality of the subset of objectives desired and obtain a δ-

minimum subset which also has minimum δ-value. This is known as the k-EMOSS problem. It is shown in 

Model 3. 
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   

   (Model 3) 

We set the cardinality with the parameter Nobj . Both Model 2 and Model 3 work with the assumption 

of an infinity norm. This being, the δ-error of the system is the highest δ-error that exists in it. 

3. Modification to the measurement of δ-error and NR-ratio 

Up until now, the models developed were using only as measure the maximum δ-error of the system as 

measure of the alteration of the dominance structure. As an alternative, the use of a Norm 1 to define 

the error of a system is proposed. Another concept, the non-redundancy ratio, is introduced as well as a 

complementary measure of the error in the dominance structure. 

3.1 δ-error of Norm 1 

An infinity norm to estimate the error induced in the dominance structure by removing some objectives, 

focus only on the maximum error, but it has at least an important weakness:  

It is possible to select a subset of objectives with a large number of ‘breaks’ in the dominance structure 

induced by a single solution. In that case it is possible to argue that a set of objectives that maintain the 

dominance structure in most of the Pareto surface, even with a larger error in a point, is preferable to a 

set of objectives that do not maintain the dominance structure in most of the Pareto surface. A norm 1 
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is a good option in this case because it takes into account all the errors induced by removed objectives 

and at the same time larger errors have larger impacts in the objective function. 

If we take the third model (k-EMOSS) (or the second, --MOSS-), the infinity norm is given by equations 

that define the δ-error, which are shown in Eq.(3) 

 
2 , ', 2 , ',
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 
  (3) 

If we introduce a new variable, i , defined as the maximum δ-error for an objective i , we can simply 

rewrite Eq.(3) as Eq.(4). 
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  (4) 

Now we only need to change the objective function accordingly and we obtain our third Model 

expressed as norm 1, shown in Model 3.1. In order to normalize the error and avoid having numbers 

higher than 1, we divide its sum by the number of maintained objectives. This step is optional if only for 

representing the error. It’s better to perform the optimization without it. 
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  (Model 3.1) 
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 As an example to illustrate the difference between models, we go back to an example presented in the 

previous work (Vázquez et al., 2018), as example 3. The data is shown in Table 1. 

Table 1: Data for norm 1 example 

,s ix  i1 i2 i3 i4 i5 i6 i7 i8 i9 

s1 0.000 0.400 0.714 0.880 0.429 0.400 0.700 0.800 0.600 
s2 0.333 0.000 0.143 0.800 0.250 0.150 0.500 0.400 0.500 
s3 0.167 0.700 0.000 0.600 0.000 0.000 0.000 0.200 0.400 
s4 1.000 0.850 1.000 0.000 1.000 0.100 1.000 1.000 1.000 
s5 0.500 1.000 0.400 1.000 0.100 1.000 0.800 0.000 0.900 

Both Model 3 and Model 3.1 are run with these data, using a binary cut strategy to obtain different runs 

and see how the different norms behave. The results are shown in Table 2. 

 

 

 

 

Table 2: Results of Model 3 and 3.1 for data in Table 1 

Run # 'OBJ   
Model 3 

 100·z    

Model 3.1 

100· /i
i OBJ

z Nobj


 

  

1 2 4 8{ , , }i i i   33.30% 11.10% 

2 2 4 5{ , , }i i i  33.30% 17.78% 

3 3 42{ , , }i i i  40.00% 29.43% 

4 6 82{ , , }i i i  60.00% 31.10% 

5 4 5{ , }i i  70.00% 61.65% 

6 4 8{ , }i i  70.00% 51.65% 

7 3 4{ , }i i  70.00% 79.15% 

8 6 8{ , }i i  70.00% 81.65% 

As a result, for subsets that were treated as equally good with the previous model, now we can see a 

difference among them in order to choose one with preference to another.  
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3.2 Non-redundancy ratio 

While the utilization of a norm 1 can refine the measure of the modifications introduced in the 

dominance structure of a system when an objective is removed, it still does not provide a completely 

faithful information of the amount of Pareto solutions that stop being Pareto optimal. This is due to the 

fact that the mere concept of δ-error does include an infinity norm, even if it is only considered 

objective per objective, as in the norm 1 model. 

As such, either if we want to maintain the minimum maximum δ-error concept, which is utilized in both 

Model 2 and 3, or the norm 1 of maximum δ-error per objective, which is utilized in Model 3.1, it is still 

possible that the dominance structure is broken only by a reduced number of solutions. This is more 

common in cases in which the number of solutions is much larger than the number of objectives which 

is usually the case. To control this undesirable effect we introduce the concept of non-redundancy ratio. 

It is defined as the percentage of the Pareto solutions that are maintained for a subset of up to a 

determined size of non-redundant objectives. It is shown in Eq.(5). 

 
0

·100
S

N tio
S

R ra


   (5) 

Where 'S  is the number of solutions that remain as Pareto solutions for a δ-error = 0 when maintaining 

a certain subset of objectives, and 0S  is the initial number of Pareto solutions of the system. 

In the case treated in the theoretical foundations section (Figure 1), the subsets 1 3 2 3{ , },{ , }f f f f  are 

non-redundant with a non-redundancy ratio of 100%. This means that in the whole space of initial 

solutions { , }A B , those subsets are able to reduce the number of objectives without incurring a δ-

error. As an example to illustrate this concept, we observe the data represented in Figure 2, where we 

cannot remove any objective without incurring a δ-error. If we remove the first objective, D stops being 

Pareto optimal. If we remove the second, C stops being Pareto optimal. And if we remove the third one, 

A stops being Pareto optimal. 
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In this case, it is obvious that all 3 objectives are important. But sometimes, we have a high number of 

solutions and a much smaller number of objectives, and the dominance structure is broken only by a 

couple of solutions.  

< Fig.2 > 

 

Figure 2: Parallel plot example for a case with 4 Pareto solutions and 3 objectives 

 The idea behind the non-redundancy ratio is as follows. If we remove solution D, it would be enough 

with the objectives 2f  and 3f  to maintain completely the dominance structure. Likewise, if we remove 

solution A, it would be enough with objectives 1f  and 2f  to maintain the dominance structure. As such, 

it is said that the subsets of objectives 2 3{ , }f f  and 1 2{ , }f f  are non-redundant with a ratio of 75%. Or, 

that the objectives 1f  and 3f  respectively are redundant with a ratio of 75%. 

In order to account for the possibility of removing solutions, instead of removing objectives, which was 

the desired outcome up until now, the model must be modified. We introduce a new binary variable to 
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the model, sz , that will takes the value 1 when solution s  is maintained and 0 otherwise. The new 

objective function is also modified, as shown in Eq.(6). 

 s i
s i

z y    (6) 

Where   is a parameter with a small value, which ensures that when maximizing that objective 

function, the method will account for the minimum allowable number of objectives. The algorithm 

would work as well without this penalization expression, but then it would not have any reason to try to 

provide the minimum number of objectives as well as the maximum number of Pareto solutions 

maintained. 

The constraints of Model 1 must also be modified as shown in Eq.(7), allowing them to break instantly 

its need for fulfillment if any of the two solutions being compared is not being maintained.  

 
1, , ', , '

2, , ' ,

'

, '

(1 ) (1 ) 1 ( , ')

(1 ) (1 ) 1 ( , ')

s s i i s s
i O

s s

s s

BJ

s s i i s s
i OBJ

C y z z s s P

C y z z s s P





      

      





  (7) 

We need as well to introduce a new constraint that will limit the number of objectives to the number 

that we want to maintain. We will call that parameter the same as in previous models, Nobj . In the 

previous example, 2Nobj  . The constraint is shown in Eq.(8). 

 i
i

y Nobj   (8) 

As such, the model is defined as Model 4. 
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

  (Model 4) 

And, as it is obvious, 's
s

z S . By using this model, we can obtain the optimum NR ratio of a system. 

In order to further exemplify this, we use again the data of Table 1. The results are shown in Table 3. 

Table 3: Results of Model 3 and Model 4 for data in Table 1 

Run # 'OBJ   
Model 3 

 100·z    

Model 4 
 NR-ratio 

1 2 4 8{ , , }i i i   33.30% 80% 

2 2 4 5{ , , }i i i  33.30% 80% 

3 3 42{ , , }i i i  40.00% 60% 

4 6 82{ , , }i i i  60.00% 60% 

5 4 5{ , }i i  70.00% 60% 

6 4 8{ , }i i  70.00% 60% 

7 3 4{ , }i i  70.00% 60% 

8 6 8{ , }i i  70.00% 60% 

 

We can see that the NR-ratio provides useful information. If we are considering the δ-error, we could 

argue that between 2 4 5{ , , }i i i  and 2 3 4{ , , }i i i  there is only a difference of a ~7 % in the δ-error so, if we 

wanted for some reason to keep 3i , we could justify its presence with that minimum deviation of the 

optimum subset of size 3. Thanks to the NR-ratio, we can see that the impact when choosing the later 

subset is more than just a 7 % in δ-error, since more solutions stop being Pareto optimal. Even so, in this 

case it can be seen that the NR-ratio is not very sensitive. This is due to the fact that the number of 

solutions is too small to make a difference in this system. In the following paragraphs, with the different 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17 

 

case studies, it can be seen its utility as complementary measurement to the δ-error once the number of 

solutions becomes considerably higher than the number of objectives. 

4. Comparison with the Principal Component Analysis (PCA) and Deb’s algorithm 

The Principal Component Analysis is a statistical procedure based upon performing an orthogonal 

transformation to convert a set of points, which are expected to have a correlation between them, to a 

series of uncorrelated linear variables. Those variables are called principal components. 

The method provides an equal number of principal components as of variables, but it is normal to 

consider a threshold of explained variance. This threshold tends to be around +95%, so the number of 

principal components maintained is lower than the initial number of variables, otherwise the technique 

is not useful. 

While this reduces the dimensionality of the problem in a majority of cases, due to the fact that the 

number of principal components maintained will be lower than the initial number of variables, it does 

not ease the calculations needed in the problem resolution. Each principal component will be formed by 

all the variables present at the initial problem. This meaning, that even though you are reducing the 

objectives to a lesser number of pseudo-objectives, you still have to calculate every single objective of 

the initial set. 

Deb and Saxena Kumar (2005) developed a series of guidelines that allowed the user to remove 

objectives in the main space of objectives based on the results of the principal components. Those 

guidelines are resumed as: 

1. Retain the amount of Principal Components that are over a certain threshold in accumulated 

explained variance. 

2. For those Principal Components, if the eigenvalue is less than 0.1, add to the subset of 

objectives the objective with the higher absolute value.  

3. If the eigenvalue is more than 0.1: 

a. If all the components of the principal component are positive, add to the subset of 

objectives the objective corresponding to the highest value. 
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b. If all are negative, add all the objectives to the subset of objectives.  

c. If none of the previous two cases apply: 

i. If the most positive element is smaller than the 90% of the absolute value of 

the most negative one, add the most negative objective to the subset of 

objectives. 

ii. If the most positive is bigger than the 90% of the absolute value of the most 

negative one, but smaller than the absolute value of the most negative one, 

add both the most negative and most positive to the subset of objectives. 

iii. If the absolute value of the most negative is bigger than the 80% of the most 

positive, but smaller than the most positive, add to the subset of objectives 

both the most negative and most positive. 

iv. If none of the previous cases apply, add to the subset of objectives the most 

positive one. 

4. If the subset of objectives differs from the original set of objectives, make the subset the new 

original set and repeat the procedure. 

In the next section, the case studies presentation, we use both our models and the PCA combined with 

Deb & Saxena’s algorithm, in order to compare the results obtained. 

5. Case studies 

5.1 First case study  

For the first case study, the data are extracted from the works of Pozo et al. (2012). It is based on an 

existing supply chain established in Europe which comprises one plant and one warehouse, with four 

different markets and six different technologies to consider. While the entire optimization solution is 

not reproduced here, some of the resultant Pareto solutions are the only data needed. These Pareto 

solutions are shown in Table 4. 
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Table 4: Data of the first case study. 4 objectives and 16 solutions 

Solution  1f    2f   3f   4f  

s1  -103,772  22,530,227  104,242,733  359,642,956 

s2  -113,850  22,889,709  106,029,789  365,276,235 

s3  -114,954  22,928,460  106,233,138  369,279,030 

s4  -114,980  22,930,280  106,242,154  369,309,474 

s5  -117,401  23,180,056  107,474,994  370,909,514 

s6  -119,897  23,330,333  108,220,586  376,260,912 

s7  -119,903  23,332,064  108,223,542  376,391,893 

s8  -120,158  23,450,603  108,787,926  376,542,793 

s9  -122,652  23,730,386  110,109,661  382,176,072 

s10  -122,681  23,730,386  110,103,519  382,300,057 

s11  -122,679  23,749,505  110,213,947  382,176,072 

s12  -122,781  23,752,498  110,213,947  382,505,703 

s13  -122,682  23,752,871  110,232,303  382,176,072 

s14  -123,716  24,130,438  112,147,778  385,082,154 

s15  -123,739  24,141,495  112,204,351  385,157,527 

s16  -124,284  24,530,491  114,194,755  387,809,352 

Where 1f  refers to the economic objective of the Net Present Value in dollars. We want to maximize 

this objective. Since our models work for minimization problems, the sign is changed, as it is already 

shown in the table. The objectives 2f  to 4f  refer to environmental objectives; Ecosystem Quality (EQ), 

Human Health (HH) and Damage to Natural Resources (NR) respectively. Obviously, these are to be 

minimized. 
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5.1.1 Model 1 and Model 4 

After running our Model 1, the non-redundant subsets of objectives are shown in Table 5. We can see 

that the cardinality of the minimum subset is 3.  

Table 5: Results of  Model 1 for the first case study 

Subsets Objectives 

1'OBJ  1 2 4{ , , }f f f  

2'OBJ  3 41{ , , }f f f  

We now apply our model 4 for 2N  . We use a binary cut strategy in order to obtain the rest of the 

solutions in order to compare them. The results are shown in Table 6. 

Table 6: Results of Model 4 for the first case study. Nobj = 2 

Number of solutions removed Objectives maintained NR ratio δ-error 

2 41 1 3 1 2{ , },{ , },{ , }f f f f f f  87.5 % 1.29 %, 1.17 %, 1.17 % 

11 2 4 3 4{ , },{ , }f f f f  25.0 % 100 %, 100 % 

14 2 3{ , }f f  12.5 % 100 % 

It is clear that the number of objectives can be reduced to two without an important loss in the 

dominance structure. A ratio of non-redundancy of the subsets of ~ 90% is maintained, with a δ-error 

rounding the 1%. It is important to note that Model 4 counts the three first subsets as equally good, 

while the δ-error differs slightly. Thus, both variables, NR-ratio and δ-error, must be checked in order to 

obtain the best subset of objectives. 

5.1.2 PCA 

If we perform a Principal Component Analysis, we obtain the results showcased in Table 7. 

Table 7: PCA results for the first case study. 4 objectives 

Objective PC1 PC2 PC3 PC4 
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1f   -0.4871 0.7700 0.4120 -0.0116 

2f  0.5033 0.4331 -0.1941 0.7221 

3f  0.5026 0.4486 -0.2638 -0.6903 

4f  0.5068 -0.1350 0.8503 -0.0437 

Explained (%) 95.9235 3.6705 0.4045 0.0015 

With a threshold of a 95% the first principal component would suffice to explain correctly the data. If we 

first reduce the dimensionality of the problem to three objectives, for example by using the first subset 

of objectives shown in Table 5, the number of PC remains the same, but this is calculated using only 

those three objectives, simplifying the calculations. The results are shown in Table 8. 

Table 8: PCA results for the second case study. First subset of objectives. 

Objective PC1 PC2 PC3 

1f   -0.5715 0.7337 0.3675 

2f  0.5738 0.6775 -0.4602 

4f  0.5866 0.0522 0.8082 

Explained (%) 95.9468 3.5852 0.4680 

In this case study, the advantage is not clearly seen since the difficulty of calculating three objective 

versus four objectives seems small. In the second case study, the gap between the raw PCA and the PCA 

after reducing objectives is more noticeable. 

5.1.3 PCA + Deb’s algorithm 

With a threshold of 95%, only the first principal component remains. Looking at the values in Table 7, we 

note, based on Deb’s algorithm, that we must maintain both the most positive and the most negative 

one. Thus, in a first step of the algorithm, the subset of objectives is reduced to 1 4{ , }f f  . After reducing 
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the space of objectives and obtaining new Pareto points, the results of Deb’s algorithm show that the 

number of objectives cannot be further reduced, as the original article notes (Pozo et al., 2012). 

As such, the result is the same that we obtained with our method, but it only obtains one of the subset 

of solutions, and does not provide any quantifiable error when doing so. Even so, it is not even the best 

subset of objectives in regards to the δ-error, considering that both the subset 1 3{ , }f f  and the subset 

1 2{ , }f f   provide a smaller maximum δ-error. 

5.2 Second case study 

Considering the data found in the case study from Carreras et al. (2016), where the objective is to 

optimize the construction of a building considering both economic and environmental objectives. It has 

a space of solutions of 7776 solutions, with 12 different objectives. From those objectives, the twelfth 

one is an aggregated environmental index. It is interesting to study what happens whenever the 

aggregated index is taken into account, and what would mean to remove it from the study. Thus, the 

models are applied to both to the case that the initial 12 objectives are maintained, i.e., considering the 

aggregated environmental metric, and to the case when only 11 objectives, without the aggregated 

metric, are considered. 

5.2.1 Model 1 and Model 4 

From those 7776 solutions, a subspace of 200, equally spaced solutions is chosen. After applying our 

Model 1, the subsets of non-redundant objectives are shown in Table 9. 

Table 9: Results of Model 1 for the second case study. 12 objectives 

Subsets Objectives  Subsets Objectives 

1'OBJ  1 2 5{ , , }f f f   
10'OBJ  1 2 10{ , , }f f f  

2'OBJ  101 12{ , , }f f f   
11'OBJ  3 11 0{ , , }f f f  

3'OBJ  5 11 1{ , , }f f f   
12'OBJ  4 11 0{ , , }f f f  

4'OBJ  5 91{ , , }f f f   
13'OBJ  7 11 0{ , , }f f f  
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5'OBJ  5 81{ , , }f f f   
14'OBJ  9 11 0{ , , }f f f  

6'OBJ  5 71{ , , }f f f   
15'OBJ  101 11{ , , }f f f  

7'OBJ  5 61{ , , }f f f   
16'OBJ  6 11 0{ , , }f f f  

8'OBJ  4 51{ , , }f f f   
17'OBJ  5 11 2{ , , }f f f  

9'OBJ  3 51{ , , }f f f   
18'OBJ  8 11 0{ , , }f f f  

We apply now our Model 4 to the same data with 2N  . The results are shown in Table 10. 

Table 10: Results of Model 4 for 12 objectives and Nobj = 2 

Number of solutions removed Objectives maintained NR ratio δ-error 

1 121{ , }f f  99.5 % 24.01 % 

As shown, we can practically say that these two objectives are non-redundant in regards of the non-

redundancy ratio.  However, the δ-error must be taken into account as well. 

An important feature of this model is that it is much faster than the third model, as shown in Table 11. 

Table 11: Comparison of the computational time for Models 4 and 3 with 12 objectives 

Model 4: NR-ratio problem 

Blocks of equations : 4 Single equations   : 39,802 

Blocks of variables   : 3 Single variables     : 213 

Non-zero elements  : 318,625 Discrete variables : 212 

Time (s)                      : < 1    

Model 3: k-EMOSS problem  

Blocks of equations : 12 Single equations   : 1,950,202 

Blocks of variables   : 7 Single variables     : 517,414 

Non-zero elements  : 4,378,014 Discrete variables : 477,612 

Time (s)                      : ≈ 4000   

All the calculations were performed with a PC using Windows 7 Professional 64-bits as OS, with an Intel® 

Core ™ i7-4790 CPU of 3.60 GHz and 8 Gb of RAM. The optimization was performed in GAMS using the 

solver Cplex. 

We repeat the procedure without taking into account the aggregated environmental objective. The 

results of applying Model 1 are shown in Table 12. 
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Table 12: Results of Model 4 for the second case study. 11 objectives, Nobj = 2 

SUBSETS OBJECTIVES  SUBSETS OBJECTIVES 

1'OBJ  1 2 5{ , , }f f f   
9'OBJ  1 2 10{ , , }f f f  

2'OBJ  101 11{ , , }f f f   
10'OBJ  3 11 0{ , , }f f f  

3'OBJ  5 91{ , , }f f f   
11'OBJ  4 11 0{ , , }f f f  

4'OBJ  5 81{ , , }f f f   
12'OBJ  7 11 0{ , , }f f f  

5'OBJ  5 71{ , , }f f f   
13'OBJ  9 11 0{ , , }f f f  

6'OBJ  5 61{ , , }f f f   
14'OBJ  6 11 0{ , , }f f f  

7'OBJ  4 51{ , , }f f f   
15'OBJ  5 11 1{ , , }f f f  

8'OBJ  3 51{ , , }f f f   
16'OBJ  8 11 0{ , , }f f f  

The results of Model 4 are shown in Table 13. 

Table 13: Results of Model 4 for 11 objectives and Nobj = 2 

Number of solutions removed Objectives maintained NR ratio δ-error 
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133 101{ , }f f  33.5 % 60.76 % 

Both these parameters, δ-error and non-redundancy rank, are needed in order to fully understand how 

removing objectives affects the system. In this case, both the NR-ratio and δ-error get worse on the 11 

objectives case, but this is not the only outcome possible. If there exist an objective that can be 

removed by removing only one solution, that is the solution that Model 4 would reach, while if there is 

another objective that by removing it removes 3 solutions, but with a smaller value of δ-error, that one 

is the solution that Model 3 would aim to. It can also be seen that when we maintain two objectives, if 

we consider the aggregated objective (f12) the dominance structure is much better maintained than in 

this case, where we do not consider it.  

 

5.2.2 PCA 

Now, let’s compare the results from our models with the results from the PCA. With 200 solutions and 

12 objectives, the results of performing a PCA to the whole space are shown in Table 14, taking only into 

account the two first principal components, which explain practically completely the whole data. 

Table 14: PCA results for the second case study. 12 objectives 

Objective PC1 PC2 

1f   -0.2986 -0.2077 

2f  0.3086 -0.0300 

3f  0.2983 -0.2106 

4f  0.2953 -0.2380 

5f  0.1614 0.6931 

6f  0.3075 0.0755 

7f  0.2872 -0.2989 

8f  0.2895 -0.2828 
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9f  0.3079 0.0629 

10f  0.2920 0.3313 

11f  0.2986 -0.2069 

12f  0.2986 0.2075 

Explained (%) 87.39  12.60 

While the PCA reduces effectively the space to a two dimensional one, there must be noted that each of 

those principal components have as many coefficients as original objectives. This can make the 

calculations still very difficult to perform. 

If we first reduce the set of objectives to a subset with zero δ-error, for example 1 1 2 5: { , , }OBJ f f f , 

and then perform the PCA, we obtain the results showcased in Table 15.  

Table 15: PCA results for the second case study. First subset of objectives. 

Objective PC1  PC2 

1f   0.6328 0.1577 

2f  -0.5840 -0.5456 

5f  -0.5084 0.8231 

Explained (%) 82 18 

It is also reduced to two principal components, but now it has the advantage of only needing three 

functions to calculate for each principal component, simplifying greatly the weight of the calculations. 

This behavior is analogous for when not considering the aggregated environmental metric. 

As such, doing an initial dimensionality reduction can help immensely the PCA of the system, providing 

easier to calculate principal components. The PCA can as well help reduce the dimensionality space to a 

better representable one. 

 

5.2.3 PCA + Deb’s algorithm 
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With a threshold of 95%, both the first and the second principal components remain. Looking at the 

values in Table 14, we note, based on Deb’s algorithm, that we must maintain both the most positive 

and the most negative one. Thus, in a first step of the algorithm, from the first principal component we 

must maintain the objectives 1 9,f f  and from the second principal component we must maintain 5f . 

After maintaining those, repeating the PCA, we obtain the data shown in Table 16. 

 

 

 

 

Table 16: Second PCA for the second case study. Reduced objectives. Deb's algorithm 

Objective PC1 PC2 

1f   0.6195 0.2315 

5f  -0.5159 0.8403 

9f  -0.5917 -0.4902 

Explained (%) 84.73  15.27 

If we repeat the algorithm, now from the first PCA we maintain 1 9,f f , while from the second we must 

maintain 5f . As such, the algorithm cannot reduce any more the number of objectives. 

This result was already obtained by our method, as well as multiple others, for a δ-error of 0.  

6. Conclusions 

A slight modification of the previous model, where the δ-error is assessed by a norm 1 of the different 

objectives is presented, which allows to further classify different subset of objectives that may seem 

equally good when considering only the maximum δ-error of the system. The model includes a 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28 

 

normalization to maintain the δ-error inside a 0 – 100% limit, but it is recommended to perform the 

optimization without the normalization and then normalize the results if desired. 

 A new model has been developed to account for the amount of solutions that stop being Pareto 

optimal when removing objectives. The concept of non-redundancy ratio is introduced as this value, and 

proven its utility with the case studies. Ideally, the optimal subset would have the highest NR-ratio and 

the lowest δ-error. They are certainly related by the structure of the problem, but as shown in the 

results, both must be taken into account in order to completely classify a subset of objectives. This NR-

ratio is especially effective when we are not sure of the bounds of each objective, since it is not sensible 

to them, while the δ-error is. Besides, the fact that the NR-ratio is especially sensitive to the number of 

solutions in the problem, while the δ-error, both in its infinity norm and norm 1 form, is especially 

sensitive to the number of objectives, as showcased by the examples and case studies, reinforces the 

complementarity between these concepts and the need of considering both when the objective is to 

completely study a dominance structure among different objectives.  

Our models are then compared with another well-known objective reduction technique, this being the 

combination of the Principal Component Analysis and the algorithm from Deb & Saxena. It is being 

shown that our models are able to provide a quantifiable error when reducing objectives, while Deb’s 

algorithm uses a heuristic approach that provides a solution that may or may not have an intrinsic error. 

As such, when reducing objectives using Deb’s algorithm, we cannot be sure of the reduction not being 

the best one for the process. 

While the PCA cannot reduce the number of objectives on its own, since it only aggregates them in 

weighted terms which allow for easier representation of data. If we perform a PCA of a set of data, the 

dimensionality will be reduced in the sense that the number of principal components maintained, for a 

given threshold, will be smaller than the initial number of objectives. However, these principal 

components require the total number of initial objectives to be computed. If on the other hand we start 

by using our methodology of objective reduction, and then we perform the PCA, we obtain the same 

benefit of reducing the dimensionality in the principal component space, where the reduced number of 
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principal components now are not calculated operating with all the initial objectives, but only with the 

reduced subset of objectives maintained.  
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Nomenclature 

SETS  

,F OBJ   Set of objectives indexed by ,k i   

'OBJ   Set of reduced objectives indexed by i   

,X S   Set of solutions indexed by ,x s   

'S   Set of reduced solutions indexed by s   

P   Subset of pairs of S  indexed by ( , ')s s  where 's s   

DATA  

,s ix   Value of the solution s  in the objective i   

PARAMETERS  

1, , , 2, , ,,s s i s s iC C    Coefficients which have either a value of 1 or 0, depending on the data 

1, , , 2, , ,,s s i s s iPen Pen    Measurement of the error between pairs of solutions when one objective is 

removed 

Nobj   Number of objectives to maintain in Model 3, 4 
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VARIABLES  

iy   
Binary variable that takes the value 1 when objective i  is chosen and 0 

otherwise 

sz   
Binary variable that takes the value 1 when solution s  is maintained and 0 

otherwise 

1, , 2, ,,s s s sv v    Binary variables that takes the value 1 when the constraints of Model 1 are 

to be broken 

1, , 2, ,,s s s sw w    Pseudo-binary variables that help formulate the logical constraints 

   Value of the maximum δ-error of the system 

i   Value of the maximum δ-error of an objective i   
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