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Abstract

This paper presents the optimal batch scheduling of a multi-product dairy
process using an approach that combines optimization and constraint pro-
gramming techniques. A suitable model describing the subprocesses and
production rules is developed allowing to obtain scheduling constraints re-
lating the production process and the machines available together with their
relative efficiencies. After the scheduling problem has been formulated, the
batch scheduling of a real powder milk/yogurt process is obtained in an op-
timal manner using the proposed approach with the objective of meeting
customers’ deadlines considering the efficiencies/costs of available alterna-
tive machines. Results using real consumer orders on some representative
scenarios corresponding to the dairy production plant used as a case study
are provided. This application shows a formulation closer to the engineering
problem description thanks to the constraint-based language that facilitates
the adaptation of the optimization objectives and constraints to real appli-
cations.
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1. Introduction

Multiproduct multistage batch plants are commonly used in the produc-
tion of end products in the chemical, pharmaceutical, and food processing
industries. In such plants, different products are produced with common
equipment and shared resources. As discussed in Hazaras et al. (2013), the
utilization of the equipment and resources over time is specified through a
production schedule, which specifies the timing and batch size of produc-
tion tasks. The associated complexities make the generation of production
schedules neither an easy nor intuitive task. Compared with other industrial
processes, the food industry and, in particular, the dairy industry exhibits
specific characteristics such as divergent product structures, seasonal prod-
uct demand, high demand variability, multiple intermediate products with
limited storage capacity feeding many finished goods, high consumer-driven
demand variability, long lead times for some packaging materials, and a high
level of complexity in the production process(Bilgen and Dogan, 2015). The
problem becomes even more complex when the production schedule also has
to take into account other aspects such as guaranteeing the required equip-
ment is cleaned at the right time or aiming at energy consumption reduction,
among others. For these reasons, the efficient scheduling and operation of
such multiproduct (as e.g. milk/yogurt powder) process plant requires a
decision support system including consumption monitoring and solution al-
gorithms.

In this paper, the scheduling problem to be solved is stated as a job-shop
scheduling where the objective function to be minimized is the schedule span
plus the energy/cleaning costs and the main constraints are the sequence
of stages required for each order, the machine where each processing stage
must be carried out, the delivery data and the cleaning rules. To solve the
resulting job-shop scheduling problem, a combined optimization/constraint
programming approach is used. Finally, this problem is solved using the
solvers available in the IBM ILOG Optimization Suite, initially developed
by (Van Hentenryck, 1999) and recently updated by (Laborie, 2009). This
optimization suite has a module specifically intended to solve scheduling
problems by including in the modeling language elements such as activities,
temporal constraints, resources, resource constraints and transitions.

The main contributions of this paper are: (i) A constraint program-
ming formulation for the production scheduling of a multistage multiproduct
batch plant considering both production and cleaning tasks; (ii) A multi-



objective optimization formulation considering the production and cleaning
costs. And, (iii) the application of the proposed combined approach to a
real dairy process plant. The application of the proposed approach to the
considered case study shows a formulation closer to the engineering prob-
lem description thanks to the constraint-based language that facilitates the
adaptation of the optimization objectives and constraints to consider practi-
cal situations.

The research presented in this paper has been developed in the context
of the European research project EnReMilk!. The EnReMilk project pro-
poses an integrated engineering approach aiming at the reduction of water
and energy consumption in milk processing. This project focuses on the op-
timization of emerging and novel engineering technologies in key dairy unit
operations to provide significant savings of water and energy, while ensuring
food quality and safety. One way for reducing water and energy consumption
is finding the optimal scheduling of the production that minimizes the cost
while maximizes the production, as presented in this paper.

The structure of the reminder of the paper is as follows: Section 2 presents
the state-of-the-art in the scheduling of the type of batch processes considered
in the paper. Section 3 presents the case study process description and the
scheduling problem statement. Section 4 introduces the proposed solution
based on the combined optimization/constraint programming approach. Sec-
tion 5 describes the results obtained when applying the proposed approach
in the considered case study. Finally, Section 6 presents the conclusions and
future work.

2. State-of-the-art

It is well known that the generation of the optimal production schedule
for dairy processes involving multiproduct batch plants is not an easy task.
Several optimization techniques, which are able to perform well in problems
of such complexity, providing efficient solutions, have been described in the
literature. Some of the most common solution methods are mixed-integer lin-
ear programming (MILP) methods, mixed-integer non-linear programming
(MINLP) methods, constraint programming (CP) and Heuristic and Meta-
heuristic methods. Harjunkoski et al. (2014) presents an overview on existing
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modeling and scheduling methodologies and focuses on their industrial ap-
plicability. A survey on the application of metaheuristics for optimization in
food manufacturing industry can be found in Wari and Zhu (2016b), where
logistic planning and scheduling problems represent the majority of the ap-
plications. A review of the most relevant literature considering production
planning and scheduling applied to dairy industry can be found in Sel and
Bilgen (2015) and Sel et al. (2015). The former intends to provide a crit-
ical review on quantitative supply chain models within the dairy industry.
On the other hand, the latter reviews the most relevant literature consid-
ering planning and scheduling problems in yogurt production. Both papers
propose the use of CP, offering a more flexible modeling framework.
Nowadays, as is pointed out in Novara et al. (2016), there are still some
challenges aimed at capturing more realistic aspects of the scheduling prob-
lem and trying to solve bigger size case-studies. Some of the challenges
currently being addressed are related to: (i) minimizing the energy consump-
tion, the production cost or the number of cleaning operations; (ii) dealing
with large number of product orders, (iii) searching a simultaneous solution
of batching and scheduling problems, (iv) the integration of planning and
scheduling, and (v) the integration of scheduling and control activities.
Some authors have already provided solutions to these challenges. For
example, a mixed-integer linear programming model, based on the definition
of families of products, is proposed in Kopanos et al. (2011). In this paper,
timing and sequencing decisions are made for product families rather than for
products, thus reducing significantly the model size. A hybrid MILP formu-
lation, which combines elements from discrete and continuous time represen-
tation, is presented in Silvente et al. (2014). This formulation is proposed for
determining optimal decisions in terms of both energy production and con-
sumption of a smart grid. A hybrid MILP/CP approach is proposed in Sel
et al. (2015) for solving the integrated production planning and distribution
problem for a two-stage semi-continuous set type yogurt production. Okubo
et al. (2015) presents two models based on integer programming and con-
straint programming to solve the scheduling problem considering the energy
consumption. In Doganis and Sarimveis (2007), a MILP model is proposed
targeting the optimal production scheduling in a single yogurt production
line while considering production time and production sequence cost. Deka
and Datta (2017) propose an evolutionary algorithm for solving the schedul-
ing problem of a network of heat exchangers under milk fouling as a multi-
objective optimization problem for minimizing not only the cleaning cost but
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also to minimize both the excess energy consumed on overheating milk and
flow rate of heating medium. Wari and Zhu (2016a) uses MILP to solve
a multi-week scheduling problem for an ice cream facility. The proposed
solution includes the clean-up sessions, weekend breaks and semi-processed
products in the model.

As discussed in the introduction, in this paper, a combined optimiza-
tion/constraint programming approach is applied for solving the problem of
determining an optimal batch scheduling of a real multi-product milk/yogurt
powder process. Constraint programming is a programming paradigm wherein
relations between variables are stated in the form of constraints. Constraints
differ from the common primitives of imperative programming languages in
that they do not specify a step or sequence of steps to execute, but rather
the properties of a solution to be found (Marriott and Stuckey, 1998). In re-
cent years, the constraint programming paradigm has successfully automated
the solution of complex combinatorial problems in many domains as diverse
as planning, routing, allocating resources, managing time, organizing per-
sonnel, cutting materials, blending mixtures, and many others (Ceberio and
Kreinovich, 2017; Zeballos et al., 2011). A major advantage of the constraint
programming paradigm is that it enables to use the statement of a prob-
lem directly to develop scheduling model. When a constraint-based model
for describing a problem is developed, the solution of the problem is guided
by the constraints themselves that help choosing variables with values that
guarantee the constraint satisfaction. Since the model of the problem derives
directly from the problem representation, there is much less chance of error
or incongruence between the semantics of the problem representation and
the semantics of the problem solution.

For batch scheduling problems, as the one presented in this paper, the new
constraint programming solvers as the CP Optimizer available in IBM ILOG
Optimization Suite (Laborie, 2009), presents some advantages compared with
classical mixed-integer optimization approach, as indicated in the studies
presented by Ham and Cakici (2016), Ku and Beck (2016) or in Ham et al.
(2017). Among other facts regarding the CP approach, the authors highlight
the ability to write a more natural formulation of the problem, the flexibility
and scalability of the code, and the high level description of the problem
close to the engineering one where the search algorithms are automatically
embedded in the CP solver. This is the reason for selecting the CP Optimizer
in this paper.



3. Case study and problem formulation

In this section, the considered case study is introduced and the problem
statement is presented.

3.1. Case study description

The case study is based on a real milk/yoghurt powder production plant
that can produce skim milk powder(SMP), whole milk powder (SVP), cream
powder (SSP), yogurt and two types of quark (quark and UF-quark).

Milk /yogurt powder production consists in removing the water content at
the lowest possible cost under stringent hygienic conditions while retaining
all the desirable natural properties of the milk/yogurt, such as: color, flavor,
solubility and nutritional value (Pearce, 2000). Milk/yogurt powder can be
produced using skim milk or skim milk concentrate. Skim milk contains,
typically 91-92% of water, while in the case of skim milk concentrate, water
content is about 64%. During powder milk production, this water is removed
in two stages, namely an evaporation phase followed by a spray drying pro-
cess. Figure 1 shows one part of the different processing paths involved in
the considered case study.

In the evaporation process, part of the water is removed by boiling the
milk under reduced pressure at low temperature. In our case study, two types
of evaporators are available, named as ED1 and ED2, respectively. Note
from Figure 1 that ED1 can produce all products having two operation ways
(named way 1 and way 2 for milk and yogurt/quark powder respectively)
while ED2 only can produce milk powder. They differ in the capacity of
product to process, ED1 way 1 can process between 5800 to 11000 kg/h,
ED1 way 2 can process 11000 kg/h and ED2 can process 13000-20000 kg/h,
depending on the product being produced. Our case study includes also
two dryers, identified as Tower 1 (TW1) and Tower 2 (TW2), the difference
between them being their capacity. Tower 1 can process 700-770 kg/h of
milk, whereas Tower 2 can process 3400-4000 kg/h.

Yogurt and quark must be pasteurized and fermented before drying. Dur-
ing these processes, which are critical to guarantee product quality, the pas-
teurized product is formed, and its textural characteristics and distinct flavor
are acquired. In case of yogurt, fermentation time is about 5 hours, whereas
in case of quark and UF-quark fermentation, time ranges are 15 h and 18 h,
respectively.
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Figure 1: Processing paths and involved production units of the case study process where
dashed line corresponds to yoghurt and quark production and continuous line corresponds
to SMP, SVP and SSP production.

All the processes in the production units use two types of energy: thermal
energy for heating, provided by steam, and electrical energy for pumping and
the milk atomizer in the drying process.

As in other food manufacturing processes, milk processing plants have
cleaning systems, called Clean-In-Place (CIP), which make use of hot clean-
ing solutions, usually caustic, combined with acid solutions. During the
production processes of milk/yogurt powder, proteins, organic materials and
other contaminants are deposited on the surface of vessels, pipework and
other associated equipment. The removal of these contaminants is critical
for producing an uncontaminated saleable product. In general, the CIP pro-
cess has its own set of rules, which depend of products to be produced. These
rules impose limits on the maximum hours of continuous operation. In the
case of evaporators, the optimal production period between CIP cycles is 24
hours and 120 hours for the towers. The duration of each CIP cycle is 4
hours.

After each shutdown, a start-up phase before production is required. The
start-up phase takes between 1 and 2 hours and consists in heating the ma-
chinery involved in the production process. When the operational tempera-



ture is reached, the production starts.

The factory receives periodically orders from customers. Table 1 shows
an example of the orders received where orderld identifies the order, prod
is the ordered product, m is the order volume, tr is the release date when
the order arrives to the company and td is the due date when the product
should be completed to deliver the order on time. Orders must be scheduled
at least two weeks in advance. The number of orders during this period is
between 80 to 120.

Table 1: Orders received.
orderId prod  Family tr m [kg] td
709365 7281 SSP 2/1/2014  16.900,00 10/3/2014
714985 7234 Yoghurt 20/1/2014  1.500,00 12/3/2014
724732 7282 SSP 17/2/2014  5.250,00 17/3/2014
723164 7253 Yoghurt 12/2/2014 = 2.250,00 7/3/2014
731127 6042 SVP 6/3/2014 7.172,00 14/3/2014

3.2. Problem statement

This research focuses on the production facility presented in the previous
section, but it can be easily adapted to other similar production processes.
Each order (Table 1) is described by the tuple

O = (orderlId,prod,tr,m,td) (1)

Let O = {Oy,...,On,} be the list of all N, orders to be scheduled. It is
assumed that these N, data are used to generate the production schedule for
a given period, in our case two weeks. It could happen that multiple orders
for a given product appear in this list.

The facility produces about N, different products belonging to a product
family set (F) defined as:

F={pfi,pf2, - 7Pfo,,}> (2)
with Ny, < N,,.

Each product family, pf; € F, is identified by a code (pCode) that has a
specific production recipe and is obtained by performing a set of activities (or
tasks). Each activity or raw material transformation (act) is supposed to use
one or more machines (machine) for a given time period or processing time
(pTime) and a given operation (pStage) in a given sequence. Each machine



has an identifier (machineld) and an associated cost weight (wCost). In
some machines, the processing time (pTime) depends on the product order
quantity. In that case, the resource is characterized by its processing flow
(pFlow) and material input characteristics or concentration (pConc). The
model of each process unit (U) is defined by the 10-tuple

U = (pf,pCode, act, pStage, machine, machineld, pFlow, pConc, pTime, wCost) .
(3)

Let U = {Uy,,---,Uy,} the list of all the N, activities to perform to
produce all products F.

The process unit characteristics, U, are presented in Table 2, where
wy, ..., w7 are the cost by hour associated to each machine and operation
path. Note that pFlow and pTivme are mutually excluded, if a machine
is characterized by pFlow the time duration pT'vme is not considered, and
conversely.

Table 2: Process unit’s characteristics.

of pCode act pStage machine machineld pFlow pConc pTime wCost

fo/h] (%] (] [cost/h]
SMP 1 E 1 ED1wl 1 6,8 30 w1
SMP 1 E 1 ED2 2 22 9 wa
SMP 1 D 2 TW2 3 4 44 w3
SVP 2 E 1 ED1wl 1 5,8 30 wy
SVP 2 E 1 ED2 2 19 9 Wa
SVP 2 D 2 TW2 3 4 44 w3
SSP 3 E 1 ED1wl 1 11 9 wy
SSP 3 E 1 ED2 2 16 9 W
SSP 3 D 2 TW2 3 4 44 w3
Yoghurt 4 E 1 ED1w2 1 11 9 Wy
Yoghurt 4 E 1 ED2 2 13 9 wy
Yoghurt 4 P 2 Past. 5 8 21 ws
Yoghurt 4 F 3 Fermt. 6 21 ) We
Yoghurt 4 D 4 TW2 3 3,4 21 w3
Yoghurt 4 D 4 TWI1 4 0,5 21 wy
Quark 5 E 1 ED1w2 1 11 9 Wy
Quark 5 E 1 ED2 2 13 9 Wa
Quark 5 P 2 Past. 5 8 21 ws
Quark 5 F 3 Fermt. 6 21 15 We
Quark 5 D 4 TW2 3 3,4 21 w3
Quark 5 D 4 TW1 4 0,75 21 wr
UF-Quark 6 P 2 Past. 5 8 21 ws
UF-Quark 6 F 3 Fermt. 6 21 18 We
UF-Quark 6 D 4 TW2 3 3,4 21 w3
UF-Quark 6 D 4 TW1 4 0,75 21 wr

Machinery must be cleaned periodically, using the corresponding CIP
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procedure. During CIP, machinery can not be used for production tasks.
Each machine has its own cleaning period requirement (cipPeriod), cleaning
duration time (cipTime) and cleaning cost (cipCost) as can be seen in Table
3. Thus, the model of each machine cleaning operation (C) is defined by the
4-tuple:

C' = (machine, cipPeriod, cipT'ime, cipCost) . (4)
Let C = {C},, -+ ,Cn,,} be the list of all the V,, machines with the CIP

information.

Table 3: Process unit’s characteristics.
machine  cipPeriod [h] cipTime [h] cipCost [cost/h]

ED1 24 4 wW1g
ED2 24 4 w11
TW1 120 4 w12
TW2 120 4 (R}
Past 120 4 W14
Fermt 120 4 w15

The optimal scheduling problem is formulated to minimize energy and
cleaning costs while satisfying the customer’s delivery due data. The schedul-
ing problem considered in this paper is defined as follows. Given

e a time horizon,

the available process units (machines) and their capacities,

the production recipe,

e the material orders with the delivery data and product family,

sequence-depending production activities,

plant wide cleaning duration and requirements,
determine

e the optimal sequence, grouping and timing of all active production
activities,

e the timing of cleaning activities minimizing the number,

e minimizing the electrical and thermal consumption of each process unit.
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4. Proposed solution

In this section, the proposed approach to solve the scheduling problem
formulated in the previous section is presented.

The use of the constraint programming approach entails two relatively
distinct activities:

e Problem Representation. A problem representation consists of the dec-
laration of the unknown (decision) variables and the constraints of the
problem constraining them. This representation is specific to the prob-
lem domain under consideration and requires a very expressive pro-
gramming language to capture that specificity.

e Solution Search. Solving the problem consists of selecting a value in
the domain of each constrained variable, so that all the constraints are
satisfied. In many cases, it also is necessary to search for a solution that
optimizes a given criterion thus combining the constraint programming
approach with optimization, as proposed in this paper.

These two activities are described in the next subsections for the consid-
ered case study.

4.1. Problem representation

The representation of the scheduling problem presented in Section 3.2 is
based on the development of two models, namely, the task and the machine
models.

On the one hand, the task model is a list with the collection of all opera-
tions (tasks) required for producing each ordered product including the CIP
tasks. Each task is characterized by the 6-tuple

T = (taskld,orderld, stepNumber, releaseDate, deliveryDate, cip) . (5)

where taskId corresponds to a task identifier, the value stepNumber corre-
sponds to the production step, releaseDate and deliveryDate provide the
manufacturing range, and the variable cip € {0, 1} is used to indicate if it is
a CIP task (cip = 1) or a production task (cip = 0).

Let T ={T},,--- ,Tn,} be the task model that includes the list of all the
N, tasks to be scheduled. This list is built combining the set of customers
orders O, the set of product families IF, the unit model U and the machine
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Algorithm 1: Model task T

input : The set of customers orders O, the set of product families
F, the unit model U and the machine cleaning model C

output: The task model T

set 1 =1and j = 1;

// Task model corresponding to production activities

while prod; € O! = 0 do

choose in I the family of prod; and set pfld; = family (prod;);

choose the subset Uy, € U with the same pf but different pStage;

set ng = mazx (Uy);

for k£ < 1 to n, do

write a task identificator named taskld,

set reliasDate = tr; — di;

set deliveryDate = td; — di;

set T; = {taskld,orderld;, k,reliaseDate, deliveryDate, 0};

set 1 =1+ 1;
end
set 1 =7+ 1;

end

// Task model corresponding to CIP activities

set j=1;

while machine; € C! = () do

set ncip; = ceil ((df — di) /cipPeriod;);

for k < 1 to ncip; do

write a task identificator named taskId,

write a CIP task codification named pd;

set releaseDate = k x cipPeriod;;

set T; = {taskld, pd, 1, releaseDate, release Date, 1};

set 1 =1+ 1;
end
set j =7+ 1;

end
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cleaning model C. The pseudocode of the algorithm for obtaining the task
model T is presented in Algorithm 1, where di is a given scheduling initial
time.

On the other hand, the machine model (M) is a list of IV,,, elements with
all the resources or machines needed to perform each task, M = {My,--- , My, }.
Each machine is characterized by the 4-tuple

M = (taskld, machineld, duration, cost) , (6)

where machineld identifies the machine used to carry out each task, duration
is the time needed to perform the task which is computed using the informa-
tion presented in Table 2 as in (7) and cost is the cost related to the machinery
use as in (8) where w; the cost associated to the machine operation.

duration = (100 > m/pConc) /(1000 x pFlow) if pFlow # ) (7)
pTime if pFlow =10’
cost = duration X w;, ®)

The machine model is built using Algorithm 2.
Both models, T and M, directly provide the information needed for the
constraint programming/optimization solver.

4.2. Constraint Programming/Optimization Approach

As discussed in Section 3.2, the goal is to determine the optimal schedul-
ing of customer orders with the aim of minimizing energy and cleaning costs
while maximizing the production taking into account the task and machine
models, T and M respectively, by using the Optimization Programming Lan-
guage (OPL) (IBM ILOG, 2015).

The OPL model developed has the following components: data declara-
tion, decision variables declaration, objective function, constraints and script
statement.

The declaration of the data allows the user to easily name them in the
model. In the developed OPL model three data elements are used: machines
is a bounded integer (9a) (we have six machines according to Figure 1) and
T and M are data structures constructed from the tuples (9b) and (9c¢),
respectively.
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Algorithm 2: Machine model M

input : The set of customers orders O, the set of product families
F, the unit model U and the machine cleaning model C

output: The machine model M

set 1 =1and j = 1;

// Machine model corresponding production activities

while prod; € O! = 0 do

choose in I the family of prod; and set pfld; = family (prod;);

choose the subset U, € Ulpfld; == pf and set n,, = max (U,,);

for k + 1 to n,, do

write a task identificator named taskId,;

write a machine identificator named machineld;

compute duration using equation (7);

compute cost usign equation (8);

set M; = {taskld, machineld, duration, cost};

set 1 =1+ 1;
end
set 1 =7+ 1;

end

// Machine model corresponding to CIP activities
set j=1;

while machine; € C! = () do

for k < 1 to ncip; do

write a task identificator named tasklId,

write a CIP task identificator named cipld;

set duration = cipTime;;

set cost = cipCost;;

set M; = {taskld, cipld,duration, cost};

set 1 =1+ 1;
end
set j =7+ 1;

end

14



range machines = 1..6; (9a)
tuple TY (9b)
key string taskld,

key int orderld;

key int stepNumber;

int releaseDate;

int deliveryDate;

int cip;

};

tuple MY (9¢)
string taskld;

int machineld,

int duration;

int cost;

h

In the constructions, of the OPL model for solving the scheduling problem
three decision variables (dvar in OPL language) have been considered: tasks,
modes and mchs, the first two are defined as interval decision variables,
dvar interval, and the last as dvar sequence

dvar interval tasks[t in T]in 0..10000000;
dvar interval modes|md in M]optional size md.duration;
dvar sequence mchs|m in machines]

in all (md in M :md.machineld == m) modes[md];

An interval decision variable represents an unknown of a scheduling prob-
lem, in particular an interval of time where an activity is carried out. An
interval sequence decision variable is defined on a set of interval variables
where the value of an interval sequence variable represents a total ordering
of the interval and that are used to represent the batch schedule Laborie

(2009).
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From the problem statement and task/machine model, the following con-
straint programming/optimization model is formulated in the following using
OPL language (see Appendix for details about the meaning of the keywords).

minimize(a J1 + agds + asJs3)

Ji = max(end0f (task [t;])),V(t; € T), tj.cip=0 (11a)

Jy = (Z presence0f (modes [md)) * md.cost),¥(md € M) (11b)

Js=Y (2+E),Y(t; €T), tj.cip=1 (11c)
subject to

startAtstart(task [t;], task [t;] ,dt), Vit t; €T,
tj.stepNumber + 1 = t;.stepNumber, tj.orderld = t;.orderld (11d)
alternative(task [t], (modes [md],¥Ymd € M, md.taskld = t.taskId),

V(teT) (11e)
noOverlap(mchs[m|) Vm € machine (11f)
tj.start > tj.releaseDate Vt; € T, tj.cip=0 (11g)
tj.end < tj.deliveryDate Vt; € T, tj.cip=0 (11h)
tj.start > (tj.releaseDate —g;) Vt; € T, tj.cip=1 (11i)
tj.end < (tj.deliveryDate +€;) Vt; € T, tj.cip=1 (11j)

The optimization criteria include three objectives:

- Jj defined in (11a) aims to minimize the production span. The function
endO0f (task [t]) returns the end time of a given interval variable task[t].

- Jy defined in (11b) computes the cost of resource md required by each
processing task. The expression presence0f is true if the interval vari-
able modes [md] is present in the solution, either is false.

- J;3 defined in (11c) aims to mimimize the relaxation in the starting ()
and ending time (g) of the CIP tasks according to the rules established
by each machine.

Weight tuning (oy,i = 1,---,3) allows to prioritize and establish the
trade-off between the different objectives (Deb and Deb, 2014). In this paper,
the tuning procedure presented in Logist et al. (2011) based on computing
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the Pareto front is used. This procedure is based on defining the desired
management point and determine the weights that find the solution of the
Pareto front closest to the management point.

On the other hand, the constraints describe the production rules to be
fulfilled. Following the nomenclature presented in Zeballos et al. (2011), ¢;
models the processing of task j described in T and md; models the product
process ¢ described in M. The problem has been solved considering seven
kinds of constraints that are obtained from the production rules:

- Constraint (11d) defines the production sequence according to the type
of product. As our process is semi-continuous, it is not necessary that
one task finishes before starting the next one. The subsequent task can
start with a given time delay dt, which, in our case, has been considered
of 1 hour. This constraint is enforced with startAtstart constraint.

- In the studied process, it is possible to produce one product using
alternative machines. The allowed alternatives are formulated in (11e)
using alternative constraint. The process has six machines which can
work simultaneously but only on one task at a time. This is avoided
thanks to the noOverlap constraint (11f).

- Constraints (11g) and (11h) place the lower and the higher bounds
regarding when a specific task should be performed. The first one does
not allow any task to start before the time assigned (the creation date
of the consumer order). The second constraint enforces the end of
processing activity (the delivery date agreed with the consumer).

- Constraints (11i) and (11j) allow starting and ending the CIP activity
in the interval of [, ] hours around the predetermined time according
the CIP rules of each machine. The relaxation values (¢ and &) are
introduced to allow a small degree of freedom when scheduling the
production tasks allowing to initiate the CIP tasks a bit later or earlier
of the pre-established regular cleaning times according the production
needs.

5. Results

In this section, we present the results obtained in real production planning
scenarios in the considered milk/yogurt powder production plant described
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in Section 3.1. The production time horizon considered in this example was
an uninterrupted period of 15 full days where demand quantities and due
dates are based on real sequences of product orders.

To illustrate how the proposed approach facilitates the adaptation of the
optimization objectives to the practical situations (as discussed in the intro-
duction), the effect of changing the electrical and thermal consumption cost
of the units operating in parallel (evaporators ED1 and ED2, see Figure 1)
will be presented.

Using real data obtained from the real plant, the electrical and thermal
consumption costs of each evaporator has been determined. Table 4 shows
the mean values of the energy and water consumptions of the evaporators in
production and in CIP operation. Note that the consumption of electrical
energy is bigger in ED1 while the consumption of thermal energy is bigger in
ED2. Thermal energy is obtained from steam which is produced by a steam
generator based on a gas boiler. However, since the price of gas and electricity
can vary with time according the market, three cases are considered according
the relative costs of both evaporators

- Scenario 1: Both evaporators present the same cost (w; = wy)
- Scenario 2: The cost of ED1 is larger than the cost of ED2 (w; > wy)

- Scenario 3: The cost of ED2 is larger than the cost of ED1 (w; < wy)

This allows to assess that the optimization of the production scheduling
using the proposed approach is able to adapt according the energy prices.
In all these scenarios, the weights for objectives (11a)-(11c) are respectively
a; = 10, ap = 1 and a3 = 1, i.e., the minimization of the time span of the
production is prioritized with respect to the energy costs and relaxation of
the starting/ending of the CIP tasks. As already discussed in Section 4,
the tuning of these weights has been done using the procedure proposed in
Logist et al. (2011) by establishing the desired trade-off among the considered
objectives.

Figures 2, 3 and 4 show machine task assignment of the resulting optimal
scheduling corresponding to the Scenarios 1, 2 and 3, respectively. In these
figures, the machine used by each task, the starting time (start), the ending
time (end) as well as the processing time are presented. Colors blue and green
are used in alternative manner to better distinguish to consecutive tasks.
Note that when both evaporators have the same cost (Scenario 1), they are
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Table 4: Energy and water consumption of ED1 and ED2 in both operation states: pro-
duction and CIP.

Electrical energy | Thermal energy | Water consumption
Prod. CIP Prod. CIP CIP
[kWh]  [kWh] [kWh]  [kWh] [to/h]

ED1 | 91,2 106,7 345,6  551,5 4,2

ED2 | 72,7 81,5 2063,2 1274,0 8,9

used in balanced way, each one processing 45 tasks. However, when the cost
of one of them is larger than the other (Scenario 2 or 3), the most used is
the cheaper one, as expected. Figures 3 and 4 show that in Scenario 2 ED1
performs 27 tasks and ED2 performs 63 tasks while in Scenario 3, the results
are reversed. The remaining machines are distributed in the scheduling time
as needed to produce all the customer orders giving in the three scenarios
the same distribution.

Table 5 presents a part (because of space limitations) of the optimal
solution obtained in the three considered scenarios. This table shows how
the orders presented in Table 1 have been scheduled sorted by the variable
modes#. Note that the orders that belong SSP or SVP family only have two
stages: the first one can be assigned to the machine 1 (ED1) or 2 (ED2),
depending of the scenario, while the second one can only be done in machine
3 (TW2). In contrast, the orders that belong to the yogurt family have four
stages. The first one can be assigned to the machine 1 (ED1) or 2 (ED2),
depending of the scenario, the second and the third ones to be machines
5 (Pasteurization) and 6 (Fermentation) respectively, while the last one to
machines 3 (TW2) or 4 (TW1), depending on occupation of each one of
the machines. deliveryDate, start and stop are relative time in hours with
respect the scheduling initial time, in our case it is one o’clock of May, 1st.
Each task is associated to a mode#: where ¢ = 0---N; which is used to
identify the task in the scheduling graph. Note that in all these results
end < deliveryDate is satisfied.

Figure 5 shows the accumulated electrical consumption of ED1 and ED2
in normal operation in the 3 scenarios. These results are related with the
evaporator activities presented in Figures 2, 3 and 4. As expected, the con-
sumption is related with the hours of usage of each evaporator. A more
interesting analysis is the electrical and thermal power consumption of the
evaporators both in normal operation and CIP phase (see Figure 6). Note
that in Scenario 2 the electrical energy consumption decreases about 7.25%
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Figure 2: Optimal scheduling for Scenario 1 (w; = ws).
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Figure 3: Optimal scheduling for Scenario 2 (w1 > ws).
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Figure 4: Optimal scheduling for Scenario 3 (w1 < wy).
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Table 5: Scheduling comparison in the three Scenarios of the orders provided in Table 1.

Order Scenario 1 Scenario 2 Scenario 3

taskld Name Product release  delivery | machineld start end | machineld start end | machineld start end

modes#i Date [h]  Date [h] [h] [h] [h] [h] [h] [h]
709365-1 #1 SSP 0 216 1 199 209 2 159 169 2 196 206
709365_2 #2 SSP 0 216 3 200 210 3 160 170 3 197 207
714985_1 #18 YOGURT 0 264 2 207 209 2 137 139 2 137 139
7149852 #21 YOGURT 0 264 5 208 209 5 138 139 5 138 139
714985_3 #22 YOGURT 0 264 6 209 214 6 139 144 6 139 144
7149854 #20 YOGURT 0 264 3 210 213 3 140 143 3 140 143
7247321 #106 SSP 0 216 1 212 215 2 49 52 1 155 158
72473222 #107 SSP 0 216 3 213 216 3 50 53 3 156 159
7231641 #76 YOGURT 0 144 1 59 62 2 59 65 1 59 62
7231642 #79 YOGURT 0 144 5 60 62 5 60 62 5 60 62
7231643 #80 YOGURT 0 144 6 61 63 6 61 66 6 61 66
7231644 H#717 YOGURT 0 144 4 63 66 4 62 83 4 62 83
7311271 #205 SVP 120 312 2 293 306 2 250 263 1 158 171
7311272 #204 SVP 120 312 3 294 307 3 251 264 3 159 172

and the thermal energy consumption increases by 21% while on Scenario 3
the electrical energy consumption increases by 3.5% and the thermal energy
consumption decreases by 35.5%.

6. Conclusions

In this the paper, the optimal batch scheduling of a milk/yogurt powder
production plant is addressed by means of a combined constraint program-
ming/optimization approach. The motivation for using a constraint pro-
gramming approach lies in the fact that it dissociates the representation of
the problem from the search algorithms used to solve it. First, the process
and production rules are modeled using a set of constraints. To this aim and
to facilitate the creation of constraints, two algorithms have been developed
that allow to generate the constraints associated to the task and machine
models. Then, an objective function that includes the process optimiza-
tion criteria (a trade-off between time span and economic cost) is defined.
The constraint programming/optimization problem has been formulated and
solved using the IBM ILOG CPLEX Optimization Studio. A set of scenarios
based on a set real orders are presented to illustrate the validity and perfor-
mance of the proposed approach. As a future work, the proposed solution
will be integrated in the production management system of the dairy plant
to be tested in real operation.
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Figure 5: ED1 and ED2 electrical energy consumption in the three scenarios.
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Figure 6: Electrical and themal energy consumption of evaporators in the three scenarios.
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Appendix A. Notation list

Variables Description
orderId Order identifier
prod ordered product
m  ordered volume
tr release data
td due data
pf product family
pCode product family identification
act raw material transformation
machine machines
plime processing time
pStage a given operation
machineld machine identifier
wC'ost  machine cost
pFlow processing flow
pConc naterial input concentration
cipPeriod cleaning period
cipl'tme cleaning duration time
cipCost  cleaning cost
taskId Task identifier
stepNumber Production step
releaseDate Numerical indicator of the order release
date relative to initial shqueduling
deliveryDate Numerical indicator of the order dur
date relative to initial shqueduling
cip Boolean cleaning machine indicator
machineld Numerical machinery identificator
duration Time needed to perform a task
cost  The cost of the machinery use to per-
form one task
Sets  Description
O List of the orders to be sheduledr
F List of family products
U List of the activities needed to perform
the products
C List of the machines cleaning opera-
tions
T List of all the task to be scheduled
M List of all the Machines needed to per-

form a task



Appendix B. Overview of IBM ILOG CPLEX Commands

Command Description

minimize staticLex (dexpr, dexpr) Used by CP Optimizer in models with
a multi-criteria objective
max The maximal value from a list
dexpr int end0f Returns the end of an interval (schedul-
ing)
boolean presence0f (dvar interval) Specifies that an interval must be
present (scheduling)
startAtstart Constraint on start times of intervals
(scheduling)
alternative Create an exclusive alternative
amongst intervals (scheduling)
noOverlap Restricts intervals from overlapping in
a sequence (scheduling)
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