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Highlights 

 A new deterministic model for WDN optimization is proposed considering unknown flow 

directions. 

 The minimum WDN cost model considers a set of available commercial diameters. 

 No hydraulic simulator is used for calculating pressures and velocities. 

 Disjunctive programming is used in the model formulation. 

 Global optimum solutions were obtained. 
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Abstract 

Water Distribution Networks (WDN) are present in a large number of industrial 

processes and urban centers. Reservoirs, pipes, nodes, loops, and pumps compose 

WDN and their design can be formulated as an optimization problem. The main 

objective is the minimization of the network cost, which depends on the pipe diameters 

and flow directions known a priori. However, in the design of new WDN in real 

industrial problems, flow directions are unknown. In the present paper, a disjunctive 

Mixed Integer NonLinear Programming (MINLP) model is proposed for the synthesis of 

WDN considering unknown flow directions. Two case studies are employed to test the 

model and global optimization techniques are used in its solution. Results show that 

the global optima WDN cost with the correct flow directions is obtained for the studied 

cases without the necessity of using additional software to calculate pressure drops 

and velocities in the pipes. 

 

Keywords 

Water distribution networks, Optimization, MINLP, Flow directions, Disjunctive 

Programming 

 

1. Introduction 

Water Distribution Networks (WDN) are important systems in the industrial 

society, whose main objective is to deliver water to consumption nodes at an 

appropriate pressure and velocity. WDN can be constituted of one or more reservoirs, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

consumption nodes and pipes linking these nodes. Very frequently, some of these links 

can compose closed loops. Water movement can be provided by gravity or by using a 

pumping system.  

This important research field has had an increasing interest in the last decades, 

from the moment that WDN design started to be formulated as an optimization problem. 

Majority of WDN optimization works consider the minimization of the network cost, 

being the pipe diameters the optimization variables, while pipe lengths and flow 

directions are defined beforehand. Different approaches can be used to develop WDN 

optimization models involving integer or continuous variables. Most of these approaches 

lead to complex nonlinear and nonconvex problems and, because of this, global 

optimization techniques are not commonly used to solve the problem. 

Another important feature regarding this subject is that hydraulic calculations in 

pressurized and looped pipe networks are not an easy task. The presence of loops 

becomes an even more complex problem. From a mathematical point of view, it 

means, effectively, solving a system of non-linear equations to calculate pressure drops 

and velocities.  

When water is the fluid used in a looped network, Hazzen-Williams equation 

can be used: 

F L
P

C D



 


            (1) 

Where P is the pressure drop between two nodes, F is the volumetric flow 

rate, L is the pipe length, D is the pipe diameter, C is known as the rugosity coefficient 

of Hazzen-Williams and  and  are constants that depend on the unities system 

being used. 

As mentioned above, when loops are present, these calculations result more 

difficult and the nonlinear behavior of the equation is a problem. However, the hydraulic 

calculations can be done separately using specific software, instead of being part of the 
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optimization problem. In the majority of published papers in this area, as it is discussed 

in Section 2, hydraulic simulators are used to calculate pressure drops.  

In real industrial plants or urban centers, when a new WDN is designed, 

differently from the majority of papers published in the literature, flow directions are not 

known a priori and the optimization problem can become more difficult to solve.  In 

order to contribute to this research field, in the present paper, a Mixed Integer 

Nonlinear Programming (MINLP) optimization model is developed, considering the flow 

directions as optimization variables, jointly with the pipes diameters. A disjunctive 

reformulation is proposed and some logarithmic transformations are introduced in order 

to make the model more robust. The resulting model has a large number of linear 

terms. The exponential terms are the only non-linearities present and do not introduce 

numerical problems. However, the model is still non-convex. Two case studies are 

used to apply the developed approach and no additional software is used in pressure 

drop and velocity calculations, once these calculations are part of the MINLP model. 

 

2. State of the Art 

In the last five decades, important approaches have been published in Water 

Distribution Networks (WDN) design. Different approaches using deterministic and 

stochastic techniques were used and different models involving Linear Programming 

(LP) and Non Linear Programming (NLP), Mixed Integer Linear Programming (MILP) 

and Mixed Integer Non Linear Programming (MINLP) formulations have been used to 

tackle the problem. Obviously, Nonlinear Programming formulations are more realistic 

in real WDN design problems, due to the pressure drop and velocity calculation 

equations. Most of the studied cases are nonconvex problems and, in these cases, 

global optimal solutions are not ensured. 

Alperovits and Shamir (1977) proposed a Linear Programming Gradient (LPG) 

method to the optimal WDN design. The method has two steps: in the first stage an LP 

problem is solved for given feasible flow distribution and in the second stage a search 
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is conducted in the space of flow variables, based on the gradient of the objective 

function. One of the most know benchmark problems in this area, named Two Loop WDN, 

was proposed in this paper. Their approach was used by Goulter et al. (1986), who 

discussed the importance of head loss path choice in the optimization problem; Kessler 

and Shamir (1989), who presented an analysis of the LGP method and presented a 

matrix formulation for both stages using well-known graph theory matrices and Eiger et 

al. (1994), who presented a semi-infinite linear dual problem to develop an equivalent 

finite linear problem. The overall design problem was solved globally by a branch and 

bound algorithm, using non-smooth optimization and duality theory.  

 In Hansen et al. (1991) a successive linear programming algorithm with a local 

search approach was proposed to solve the WDN design optimization problem. Sarbu 

and Borza (1997) obtained good results using an improved LP model for the optimal 

design of new WDN as well as for the extension of existing WDN. Costa et al. (2001) 

and Morsi et al. (2012) presented mixed integer linear programming (MILP) models in 

solving WDN optimization problems using, to achieve the solutions, Branch and Bound 

method. Páez et al. (2014) combined Mixed Integer Programming (MIP) and energy use 

in finding near-optimal solutions with reduced amounts of time in WDN design with 

pressure-driven models. 

Considering NLP formulations for the design of optimal WDN, the first work was 

published by Shamir and Howard (1968). Newton-Raphson method was used to solve the 

system of equations. Five years later, Watanatada (1973) also presented an NLP 

formulation for the WDN optimal design. The problem constraints considered mass and 

energy balances and physical limits. The inequality constraints were eliminated by a 

transformation of Box, from which Haarhoff and Buys' method for equality constraints 

was used to solve the remaining part of the problem.  

Mixed Integer NonLinear Programming models were also proposed in the 

literature. Bragalli et al. (2008) proposed a nonconvex continuous NLP relaxation and a 

MINLP search. Authors used different solvers, like Ipopt, MIINLP_BB, and Bonmin, in 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the environment AMPL. D’Ambrosio et al.  (2015) surveyed mathematical programming 

approaches in WDN and overviewed on the more specific modeling aspects in each 

case, developing a MINLP model to described water dynamics in pipes and used 

spatial branch and bound and piecewise linear relaxations. 

The majority of published papers, however, use nondeterministic approaches 

to solve the problem. The most used approaches are based on Genetic Algorithms 

(GA), as can be seen in the papers of Goldberg and Kuo (1987), Simpson and Goldberg 

(1994), Dandy et al. (1996), Savic and Walters (1997), Abebe and Solomatine (1998), 

Montesinos et al. (1999), Gupta et al. (1999), Vairavamoorthy and Ali (2005), Reca 

and Martínez (2006), Kadu et al. (2008), Van Dijk et al. (2008), Krapivka and Ostfeld 

(2009), Haghighi et al. (2011), Bi et al. (2015) and Zheng et al. (2013).  

Other meta-heuristics were used, such as Ant Colony Optimization (ACO), a 

meta-heuristic approach based on ant behavior and its pheromone ways, used by 

Maier et al.  (2003) and Zecchin et al. (2006).  

Geem et al. (2001), Geem et al. (2002), Geem (2006) and Geem (2009) 

proposed an interesting meta-heuristic technique known as Harmony Search (HS), 

based on the improvisations used by jazz musicians.  

In the works of Suribabu and Neelakantan (2006), Montalvo et al.  (2008), 

Ezzeldin et al.  (2014), Qi et al.   (2015) and Surco et al. (2017), Surco et al. (2018) 

and Surco et al. (2019), Particle Swarm Optimization (PSO) was used to solve the 

optimization problem. 

Loganathan et al. (1995) and Cunha and Sousa (1999) proposed a Simulated 

Annealing (SA) approach. De Corte and Sorensen (2016) reviewed the metaheuristic 

techniques used in the optimal design of WDN. It is very interesting to note that most of 

the works published in the literature applying meta-heuristic techniques use also 

hydraulic simulators to solve pressure drop and velocity equations.  EPANET (Rossman, 

2000) is the most used WDN simulation model.  

In the present paper, a MINLP optimization model is proposed to solve the 
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optimal design of WDN, without using additional software for hydraulic calculations 

and considering flow directions as optimization variables. The model development is 

presented in the next section. 

 

3. Optimization model development 

The design of WDN can be treated as an optimization problem described as it 

follows: Given is a set of reservoirs and demand points (nodes), with fixed distances 

and proper elevations, with the possibility of loops existence between nodes, the 

network total cost ($), given by the summation of the product between pipes diameters 

and its lengths, must be minimized. The optimization variables are nodes pressures, 

pipes velocities, and diameters, which must belong to a set of available commercial 

diameters with specific costs and rugosities. Hazzen-Williams equation is used in 

hydraulic calculations and pressure in nodes and fluid velocities in pipes must obey a 

minimum limit. It can be also considered the possibility of using pumping systems if 

only gravity is not enough to ensure water movement. 

For the development of the WDN Water Distribution Networks disjunctive 

mathematical model, we define the following index sets: 

Nodes   { i | i is a node}; 

DI   { k | k is a possible diameter for the pipe}; 

,i jR   There is a pipe connecting node i with node j; 

The following parameters are used: 

ih   Elevation of node i (m); 

iDemand   Water demand for node i (m3/h); 

kD   Set of diameters available for each pipe (m).   

iEnt   i is a reservoir node. Ent makes reference to the flow entering 

from that node to the network (m3/h); 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

,i jL   Length of pipe connecting node i and node j (m); 

kCostD   Unitary cost ($/m) of pipe i-j if we select diameter k; 

, ,i j kC   Rugosity coefficient of pipe i-j if we select diameter k in the 

Hazen-Williams equation; 

max min,V V   Maximum and minimum values for water velocity in pipe i-j (m/s); 

and  Hazzen-Williams equation parameters (depend on the unities 

system being used). 

The following variables are considered n the model: 

Continuous Variables 

ijV   Water velocity in pipe i-j (m/s) 

ij   ln(V) Natural logarithm of velocity [ln(m/s)] 

,i jF   Volumetric flow rate in pipe i-j (m3/h) 

,i jf   ln(Fi,j) Natural logarithm of the volumetric flow rate [ln(m3/h)] 

1
,i jF   Equal to flow f if the water flows from node i to node j 

2
,i jF  Equal to flow f if the water flows from node j to node i 

iP   Excess of pressure of node i over the elevation hi (m) 

iEpump   Pump in pipe i-j. Eventually, it can become in a variable, in that 

case, a cost must be given to each pump (m);  

,i jP   Pressure drop in pipe i-j 

,i jp  ln(Pi,j) Natural logarithm of pressure drop in pipe i-j 

1
,i jP   Pressure drop in the pipe if the water flows from node i to node j 

2
,i jP  Pressure drop in the pipe if the water flows from node j to node i 

Boolean /Binary Variables 
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We use capital letters for Boolean variables and small letters to binary 

variables: 

, , , ,/i j k i j kY y   True (1) if in the pipe i-j the diameter k is selected. False (0) 

elsewhere. 

1 1
, ,/i j i jW w   True (1) if the water flows in direction i-j 

2 2
, ,/i j i jW w  True (2) if the water flows in direction j-i 

The model is formed by the following equations 

Mass balance in each node: 

, ,

1 2 1 2
, , , ,( ) ( )

j i i j

j i j i i i j i j i
j R j R

F F Ent F F Demand i Nodes
 

           (1) 

The left-hand side of equation (1) is the sum of all the flows entering to node i 

from node j. Note that in the set R we have reversed the order indicating that we are 

considering all pipes entering to node i. The major difficulty is that into the loops we do 

not know, a priori, in which direction is flowing the water, so we express the flow as the 

difference of two terms. The term with superscript ‘1’ indicates that the water is flowing 

in the direction defined by the set R. The superscript ‘2’ indicates that the water is 

flowing opposite to that direction. For example, if we define the set «R1,2» then we 

assume that 1
1,2F  will take a positive value if actually the water flows from node 1 to 

node 2, and 2
1,2F  will take a positive value if the water is flowing from node 2 to node 1. 

The velocity in a pipe depends on the flow and on the diameter that is 

circulating in that pipe. It can be written using the following disjunction:  

, ,

,
,

,
2

( , )

4

i j k

i j
i j

i jk DI

k

Y

F i j RV

D


 
 

   
 
  

       (2) 

The difference of pressures into two nodes in a pipe can be written as follows: 

1 2
, , , ,( , )i i i j i j i j j j i jP h P P Epump P h i j R              (3) 
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1
,i jP  is the pressure drop when the water flows from node i to node j, in another case it 

must be zero. 2
,i jP  is the pressure drop when the water flows from node j to node i. In 

another case it must be zero. 

To calculate the pressure drop in a pipe it is used the Hazen-Williams equation, 

which depends on the selected diameter. It can be written using the following 

disjunction: 

 

, ,

,( , )

i j k

i j
k DI

Y

i j RF L
P

C D



 




 
   
  
  

       (4) 

To force the flows ( 1 2
, ,,i j i jF F  ) and pressure drops ( 1 2

, ,,i j i jP P  ) to take a value 

different from zero (between their lower and upper bounds) if the flow is going in the 

direction i-j (or j-i) we introduce two new Boolean variables. The first one is 1
,i jW , which 

takes the value of ‘True’ if the water flows from node i to node j and zero otherwise. 

The second one is 2
,i jW , which takes the value of ‘True’ if the water flows from node j to 

node i, and zero otherwise: 

1 2
, ,

1 2
, , , ,

1 2
, , , , ,

, , , ,, ,

, , , ,, ,

( , )

i j i j

i j i j i j i j

i j i j i j i j i j

Up UpLo Lo
i j i j i j i ji j i j

Up UpLo Lo
i j i j i j i ji j i j

W W

F F F F

P P P P i j R

F F F F F F

P P P P P P

   
   

    
   

           
   

      
   
               

   (5) 

The cost of a pipe depends also on the diameter. Therefore, we can write the 

following disjunction: 

, ,

,
, ,

( , )
i j k

i j
k DI i j i j k

Y
i j R

Cost L CostD

 
   

 
     (6) 

The objective function to be minimized is the total cost: 

,

,
( , )

min :

i j

i j
i j R

Cost

          (7) 
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Note that disjunctions (2), (4) and (6) could be grouped in single disjunction, but 

we maintain the separation just for the sake of clarity. The final model is, then, formed 

by equations (1-7). It is possible to reformulate the model either using a Big M 

approach or a Hull reformulation, as proposed by Sawaya and Grossmann (2017) and 

Trespalacios and Grossmann (2015). However, the resulting model is highly non-linear 

and nonconvex and it is really difficult just simply find a single feasible solution. 

Instead, we proposed a new reformulation. First, we take logarithms in the non-linear 

terms of disjunctions (2 and 4): 

, ,

,2
, ,

( , )
( ) ( )

4

i j k

i j
k DI i j i j k

Y

i j R
Ln F Ln V Ln D




 
        
    

    (8) 

       
, ,

,

, , , , ,

( , )
i j k

i j
k DI i j i j i j i j k k

Y
i j R

Ln P Ln L Ln F Ln C D  

 
   

     

  (9) 

Now we define the following new variables: 

  

, ,

, ,

, ,

( )

( )

( )

i j i j

i j i j

i j i j

v Ln V

f Ln F

p Ln P





  

       (10) 

If we use the new variables in disjunctions (8), (9) all the terms in the equations 

are linear, because of pipe lengths and diameters, as well as Hazzen-Williams rugosity 

coefficients, are known values. The Hull reformulation of disjunctions (6), (8) and (9) 

with the change of variables and introducing the binary variables yi,j,k is: 

 

2
, , , , ,( , )

4
i j i j k i j k i j

k DI

f v Ln D y i j R




   
      

   
   

    , , , , , ,, , ( , )i j i j i j i j k i ji j k k
k DI

p Ln L f Ln C D y i j R  


        (11) 

 , , , , , , ,( , )i j i j k i j i j k i j
k DI

Cost CostD L y i j R


     

, , ,1 ( , )i j k i j
k DI

y i j R


     
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The last equation in (11) comes directly from the disjunction and indicates that 

for each pipe i-j only one diameter can be chosen. Note that all equations in (11) are 

linear. Now we also have to reformulate disjunction (5). Using the hull reformulation: 

1 2
, , ,

1 1
, , ,

1 1
, ,,

2 2
, , ,

2 2
, ,,

1 2
, , ,

1 1
, , ,

1 1
, ,,

2 2
, , ,

2 2
, ,,

1 2
, , 1

i j i j i j

lo
i j i j i j

Up
i j i ji j

lo
i j i j i j

Up
i j i ji j

i j i j i j

lo
i j i j i j

Up
i j i ji j

lo
i j i j i j

Up
i j i ji j

i j i j

F F F

F F W

F F W

F F W

F F W

P P P

P P W

P P W

P P W

P P W

W W

 


 


 


 



     

  

  

  

  

 

,( , ) i ji j R




 












       (12) 

In order to explicitly relate variables F  with f  and P  with p , we must 

explicitly include the following equations: 

, , ,

, , ,

exp( ) ( , )

exp( ) ( , )

i j i j i j

i j i j i j

f F i j R

p P i j R

  

    
       (13) 

The only nonlinear (and nonconvex) equations are those in equation (13). If we 

are able to provide tight bounds global solvers like BARON are able to solve the 

problem to global optimality for medium-size problems.  

Therefore, the complete model can be written as follows:  
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 

,

, ,

,
( , )

1 2 1 2
, , , ,

, , , , , ,

1 2
, , ,

2
, , , ,

,

min :

. .

( ) ( )

4

i j

j i i j

i j
i j R

j i j i i i j i j i
j R j R

i j i j k i j i j k
k DI

i i i j i j i j j j

i j i j k i j k
k DI

i j

Cost

s t

F F Ent F F Demand i Nodes

Cost CostD L y

P h P P Epump P h

f v Ln D y

p





 





      



      

   
     

   





 





  , , , ,, ,

, ,

1 2
, , ,

1 1
, , ,

1 1
, ,,

2 2
, , ,

2 2
, ,,

1 2
, , ,

1 1
, , ,

1 1
, ,,

2
,

( )

1

i j i j i j ki j k k
k DI

i j k
k DI

i j i j i j

lo
i j i j i j

Up
i j i ji j

lo
i j i j i j

Up
i j i ji j

i j i j i j

lo
i j i j i j

Up
i j i ji j

i j

Ln L f Ln C D y

y

F F F

F F W

F F W

F F W

F F W

P P P

P P W

P P W

P

  




  



 









    

  

  







,

2
, ,

2 2
, ,,

1 2
, ,

, ,

, ,

( , )

1

exp( )

exp( )
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In the previous model, the two last equations are the only non-linear. 

 

4. Case studies 

Two case studies are chosen from the literature in order to apply the developed 

approach. In both cases, the flow directions were considered variables to be optimized, 

together with the pipes diameters and the total WDN cost. 

4.1 Case study 1 

This case study is the WDN originally presented by Alperovits and Shamir (1977). 

Figure 1 presents the WDN topology. The WDN has one reservoir, eight 1,000 length 
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m pipes, seven nodes, and two loops. It is supposed that the minimum pressure 

required in each node is 30 m. Water velocity must be bounded between 0.3 m/s and 3 

m/s. Hazen-Williams dimensionless roughness coefficient C is 130 for all links and the 

Hazzen-Williams equation parameters are  = 10.667,  = 4.871 and  = 1.852. A set 

of commercial diameters, in m, is available and is composed by 14 elements: D = 

{0.0254, 0.0508, 0.0762, 0.1016, 0.1524, 0.2032, .02540, 0.3048, 0.3556, 0.4064, 

0.4572, 0.5080, 0.5588, 0.6096}. The cost for these specified diameters and nodes 

elevation and demand are presented in Table 1 and the flow directions are not known a 

priori and are optimization variables. The problem was solved using BARON, in GAMS. 

Calculated flow directions, pressure drops and velocities for each pipe are presented in 

Table 2. In Table 3 it is presented a comparison among single pipe different 

approaches to solve the problem. As can be seen, the best value found was the WDN 

cost of $ 419,000. This is the global optimum and was also obtained by other 

researchers, like Surco et al. (2017), Zhou et al. (2016) and Ezzeldin et al. (2014).  

In all works used for comparison, flow directions are considered fixed a priori and 

the values calculated by the proposed approach in the present paper are showed in the 

last column of Table 2. 

 

Figure 1 – Two loop WDN topology 
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Table 1 – Diameters cost and nodes elevation and demand - Two Loop WDN 

Diameter (m) Cost ($/m)  Node Elevation (m) Demand (m3/h) 

0.0254 2  1 210 - 1120 
0.0508 5  2 150 100 
0.0762 8  3 160 100 
0.1016 11  4 155 120 
0.1524 16  5 150 270 
0.2032 23  6 165 330 
0.2540 32  7 200 160 
0.3048 50     
0.3556 60     
0.4064 90     
0.4572 130     
0.5080 170     
0.5588 300     
0.6096 550     

Table 2 –Two Loop WDN calculated pressure drops and velocities 

Pipe Velocity (m/s) Pressure drops (m) 
Flow directions 

Origin Node Destination Node  

1 1.9 6.76 1 2 

2 1.85 12.79 2 3 

3 1.46 4.80 2 4 

4 1.12 14.65 4 5 

5 1.14 3.00 4 6 

6 1.1 4.90 6 7 

7 1.3 6.66 3 5 

8 0.31 6.75 7 5 

Table 3 – Optimal diameters (m) comparison 

Pipe 
Suribabu 
(2012) 

Ezzeldin et 
al. (2014) 

Zhou et al. 
(2016) 

Surco et al. 
(2017) 

Present work 

Approach 
heuristic 
based  

particle 
swarm 

optimization 

discrete 
state 

transition 

particle 
swarm 

optimization 

disjunctive 
mathematical 
programming 

BARON 

1 .5080 .4572 .4572 .4572 .4572 
2 .2540 .2540 .2540 .2540 .2540 
3 .4064 .4064 .4064 .4064 .4064 
4 .0254 .1016 .1016 .1016 .1016 
5 .3556 .4064 .4064 .4064 .4064 
6 .2540 .2540 .2540 .2540 .2540 
7 .2540 .2540 .2540 .2540 .2540 
8 .0254 .0254 .0254 .0254 .0254 

Cost ($) 420,000 419,000 419,000 419,000 419,000 
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4.2. Case Study 2 

This case study was proposed by Fujiwara and Khang (1990) and is known as 

Hanoi WDN. In Figure 2 it is presented the network topology and the streams flow 

direction are, as in Case Study 1, considered unknown. In this network, water is fed by 

gravity and the reservoir (node 1) has an elevation of 100 m and all demand nodes are 

at level zero. It has 32 nodes, 3 loops, and 34 pipes. The minimum required pressure is 

30 m for all nodes. A set with 6 commercial diameters is available. The Hazen-Williams 

roughness coefficient C equal to 130 for all pipes and 3 different situations were 

considered, for distinct Hazzen-Williams equation parameters (,  and and 

different global optima were obtained for these situations. This choice was made just to 

show how sensitive is this problem with respect to the pressure drop calculations 

equation parameters. Table 5 presents the set of available commercial diameters with 

its respective costs. Table 6 presents nodes demand and pipes length and Table 7 the 

calculated flow directions, which are the same for all 3 situations. 

 

Figure 2 – Hanoi WDN 

Table 5 – Hanoi WDN available diameters and respective cost  
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Diameter (m) Cost ($/m) 

0.3048 45.73 

0.4064 70.40 

0.5080 98.39 

0.6096 129.33 

0.7620 180.75 

1.016 278.28 

Table 6 – Hanoi WDN nodes demand and pipes length 

Node/Pipe 
Node 

Demand 
(m

3
/h) 

Pipe 
Length 

(m) 

 
Node/Pipe 

Node 
Demand 
(m

3
/h) 

Pipe 
Length 

(m) 

1 - 19940 100  18 1345 800 

2 890 1350  19 60 400 

3 850 900  20 1275 2200 

4 130 1150  21 930 1500 

5 725 1450  22 485 500 

6 1005 450  23 1045 2650 

7 1350 850  24 820 1230 

8 550 850  25 170 1300 

9 525 800  26 900 850 

10 525 950  27 370 300 

11 500 1200  28 290 750 

12 560 3500  29 360 1500 

13 940 800  30 360 2000 

14 615 500  31 105 1600 

15 280 550  32 805 150 

16 310 2730  33  860 

17 865 1750  34  950 

 

Table 7 – Calculated pipes flow direction 

Pipe Origin node Destination node  Pipe Origin node Destination node 

1 1 2  18 19 18 

2 2 3  19 3 19 

3 3 4  20 3 20 

4 4 5  21 20 21 

5 5 6  22 21 22 

6 6 7  23 20 23 

7 7 8  24 23 24 

8 8 9  25 24 25 

9 9 10  26 26 25 

10 10 11  27 27 26 

11 11 12  28 16 27 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 12 13  29 23 28 

13 10 14  30 28 29 

14 14 15  31 29 30 

15 15 16  32 30 31 

16 17 16  33 32 31 

17 18 17  34 25 32 

Table 8, 9 and 10 present the results achieved by the current work and a 

comparison with other papers, for the three different situations, considering different 

Hazzen-Williams parameters, for diameters pipes and nodes pressures (between 

parenthesis).  

As can be seen in Table 8, in this situation, the parameters used in the 

Hazzen-Williams equation are  = 10.6668,  = 1.852 and  = 4.871. The results 

obtained by the proposed model, in the present paper, correspond to the global 

optimum and are exactly the same of the papers of Suribabu (2010), who used a 

Differential Evolution algorithm to solve the optimization problem and Surco et al. 

(2017), who used a PSO approach in finding the optimum value for the WDN total cost. 

In both papers authors used EPANET as the auxiliary hydraulic simulator. 

Table 8 - Hanoi WDN, with  = 10.6668,  = 1.852 and  = 4.871 
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Pipe / Node Suribabu (2010) Surco et al.   (2017) Present paper 

1 1.0160 (100.00) 1.0160 (100.00) 1.0160 (100.00) 
2 1.0160 (97.14) 1.0160 (97.14) 1.0160 (97.14) 
3 1.0160 (61.67) 1.0160 (61.67) 1.0160 (61.67) 
4 1.0160 (56.92) 1.0160 (56.92) 1.0160 (56.92) 
5 1.0160 (51.02) 1.0160 (51.02) 1.0160 (51.03) 
6 1.0160 (44.81) 1.0160 (44.81) 1.0160 (44.81) 
7 1.0160 (43.35) 1.0160 (43.35) 1.0160 (43.35) 
8 1.0160 (41.61) 1.0160 (41.61) 1.0160 (41.62) 
9 1.0160 (40.23) 1.0160 (40.23) 1.0160 (40.23) 
10 0.7620 (39.20) 0.7620 (39.20) 0.7620 (39.20) 
11 0.6096 (37.64) 0.6096 (37.64) 0.6096 (37.64) 
12 0.6096 (34.21) 0.6096 (34.21) 0.6096 (34.22) 
13 0.5080 (30.01) 0.5080 (30.01) 0.5080 (30.01) 
14 0.4064 (35.52) 0.4064 (35.52) 0.4064 (35.52) 
15 0.3048 (33.72) 0.3048 (33.72) 0.3048 (33.72) 
16 0.3048 (31.30) 0.3048 (31.30) 0.3048 (31.30) 
17 0.4064 (33.41) 0.4064 (33.41) 0.4064 (33.41) 
18 0.6096 (49.93) 0.6096 (49.93) 0.6096 (49.93) 
19 0.5080 (55.09) 0.5080 (55.09) 0.5080 (55.09) 
20 1.0160 (50.61) 1.0160 (50.61) 1.0160 (50.61) 
21 0.5080 (41.26) 0.5080 (41.26) 0.5080 (41.26) 
22 0.3048 (36.10) 0.3048 (36.10) 0.3048 (36.10) 
23 1.0160 (44.52) 1.0160 (44.52) 1.0160 (44.53) 
24 0.7620  (38.93) 0.7620 (38.93) 0.7620 (38.93) 
25 0.7620 (35.34) 0.7620 (35.34) 0.7620 (35.34) 
26 0.5080 (31.70) 0.5080 (31.70) 0.5080 (31.70) 
27 0.3048 (30.76) 0.3048 (30.76) 0.3048 (30.76) 
28 0.3048 (38.94) 0.3048 (38.94) 0.3048 (38.94) 
29 0.4064 (30.13) 0.4064 (30.13) 0.4064 (30.13) 
30 0.3048 (30.42) 0.3048 (30.42) 0.3048 (30.42) 
31 0.3048 (30.70) 0.3048 (30.70)  0.3048 (30.70) 
32 0.4064 (33.18) 0.4064 (33.18) 0.4064 (33.18) 
33 0.4064 0.4064 0.4064 
34 0.6096 0.6096 0.6096 

Cost ($ 10
6
) 6.081 6.081 6.081 

Table 9 presents the second situation, with values of  = 10.5088,  = 1.85 and 

 = 4.87. The values achieved with the approach proposed in the present paper were 

compared with the papers of Savic and Walters (1997), who proposed a Genetic 

Algorithm approach and with Cunha and Souza (1999), who used a Simulated 

Annealing approach for the optimization problem and a Newton search method was 

used to solve the hydraulic network equations. Our global optimum cost is the same as 

the result found by Cunha and Souza (1999). However, in their paper, the authors 

related pressures below the minimum value of 30 m. These values are identified by the 

signal (*) and it can be seen in nodes 13, 16, 17, 27, 29 and 30. This violation occurred 

also in the work of Savic and Walters (1997), in nodes 13 and 30. 
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Table 9 - Hanoi WDN with  = 10.5088,  = 1.85 and  = 4.87 

Pipe / Node Savic and Walters 
(1997) 

Cunha and Sousa 
(1999) 

Present paper 

1 1.0160 (100.00) 1.0160 (100.00) 1.0160 (100.00) 
2 1.0160 (97.14) 1.0160 (97.14) 1.0160 (97.17) 
3 1.0160 (61.63) 1.0160 (61.63) 1.0160 (61.99) 
4 1.0160 (56.83) 1.0160 (56.82) 1.0160 (57.28) 
5 1.0160 (50.89) 1.0160 (50.86) 1.0160 (51.32) 
6 1.0160 (44.62) 1.0160 (44.57) 1.0160 (45.07) 
7 1.0160 (43.14) 1.0160 (43.10) 1.0160 (43.61) 
8 1.0160 (41.38) 1.0160 (41.33) 1.0160 (41.85) 
9 1.0160 (39.97) 1.0160 (39.91) 1.0160 (40.44) 

10 0.7620 (38.93) 0.7620 (38.86) 0.7620 (39.40) 
11 0.6096 (37.37) 0.6096 (37.30) 0.6096 (37.85) 
12 0.6096 (33.94) 0.6096 (33.87) 0.6096 (34.43) 
13 0.5080 (29.72*) 0.5080 (29.66*) 0.5080 (30.24) 
14 0.4064 (35.06) 0.4064 (39.94) 0.4064 (35.49) 
15 0.3048 (33.07) 0.3048 (32.88) 0.3048 (33.44) 
16 0.3048 (30.15) 0.3048 (29.79*) 0.3048 (30.36) 
17 0.4064 (30.24) 0.4064 (29.95*) 0.4064 (30.51) 
18 0.5080 (43.91) 0.5080 (43.81) 0.5080 (44.29) 
19 0.5080 (55.53) 0.5080 (55.49) 0.5080 (55.90) 
20 1.0160 (50.39) 1.0160 (50.43) 1.0160 (50.89) 
21 0.5080 (41.03) 0.5080 (41.07) 0.5080 (41.58) 
22 0.3048 (35.86) 0.3048 (35.90) 0.3048 (36.42) 
23 1.0160 (44.15) 1.0160 (44.24) 1.0160 (44.73) 
24 0.7620 (38.84) 0.7620 (38.50) 0.7620 (39.03) 
25 0.7620 (35.48) 0.7620 (34.79) 0.7620 (35.34) 
26 0.5080 (31.46) 0.5080 (30.87) 0.5080 (31.44) 
27 0.3048 (30.03) 0.3048 (29.59*) 0.3048 (30.15) 
28 0.3048 (35.43) 0.3048 (38.60) 0.3048 (39.19) 
29 0.4064 (30.67) 0.4064 (29.64*) 0.4064 (30.21) 
30 0.4064 (29.65*) 0.3048 (29.90*) 0.3048 (30.47) 
31 0.3048 (30.12) 0.3048 (30.18) 0.3048 (30.75) 
32 0.3048 (31.36) 0.4064 (32.64) 0.4064 (30.20) 
33 0.4064 0.4064 0.4064 
34 0.5080 0.6096 0.6096 

Cost ($ 10
6
) 6.073 6.056 6.056 

*
Pressure nodes violation (values smaller than 30 m) 

In the third situation (Table 10), the values used for the Hazzen-Williams 

parameters were  = 10.9031,  = 1.852 and  = 4.871, and the results found by the 

model presented in the present paper were compared to the works of Savic and 

Walters (1997), cited before, in the first situation, and Liong and Atiquzzaman (2004), 

who used a Shuffled Complex Evolution optimization approach and EPANET as 

hydraulic simulator. The results achieved by the proposed method in the present paper 

correspond to the global optimum and the WDN cost is better than the results obtained 

in the cited papers from the literature.  
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Table 10 - Hanoi WDN with  = 10.9031,  = 1.852 and  = 4.871 

Pipe / Node Savic and Walters (1997) Liong and 
Atiquzzaman (2004) 

 
Present paper 

1 1.0160 (100.00) 1.0160 (100.00) 1.0160 (100.00) 
2 1.0160 (97.14) 1.0160 (97.14) 1.0160 (97.08) 
3 1.0160 (61.63) 1.0160 (61.67) 1.0160 (60.82) 
4 1.0160 (57.26) 1.0160 (57.54) 1.0160 (56.27) 
5 1.0160 (51.86) 1.0160 (52.43) 1.0160 (50.64) 
6 1.0160 (46.21) 1.0160 (47.13) 1.0160 (44.73) 
7 1.0160 (44.91) 1.0160 (45.92) 1.0160 (43.37) 
8 1.0160 (43.40) 0.7620 (44.55) 1.0160 (41.77) 
9 0.7620 (42.23) 0.7620 (40.27) 1.016 0(40.52) 

10 0.7620 (38.79) 0.7620 (37.24) 0.7620 (39.61) 
11 0.7620 (37.23) 0.7620 (35.68) 0.6096 (38.02) 
12 0.6096 (36.07) 0.6096 (34.52) 0.6096 (34.52) 
13 0.4064 (31.86) 0.4064 (30.32) 0.4064 (30.22) 
14 0.4064 (33.19) 0.3048 (34.08) 0.3048 (32.76) 
15 0.3048 (32.90) 0.3048 (34.08) 0.3048 (30.49) 
16 0.4064 (33.01) 0.6096 (36.13) 0.3048 (30.46) 
17 0.5080 (40.73) 0.7620 (48.64) 0.5080 (43.51) 
18 0.6096 (51.13) 0.7620 (54.00) 0.6096 (51.49) 
19 0.6096 (58.03) 0.7620 (59.07) 0.6096 (57.62) 
20 1.0160 (50.63) 1.0160 (53.62) 1.0160 (49.29) 
21 0.5080 (41.28) 0.5080 (44.27) 0.5080 (39.74) 
22 0.3048 (36.11) 0.3048 (39.11) 0.3048 (34.46) 
23 1.0160 (44.61) 0.7620 (38.79) 1.0160 (42.89) 
24 0.7620 (39.54) 0.7620 (36.37) 0.7620 (37.29) 
25 0.7620 (36.40) 0.6096 (33.16) 0.7620 (33.74) 
26 0.5080 (32.93) 0.3048 (33.44) 0.6096 (32.00) 
27 0.3048 (32.18) 0.5080 (34.38) 0.3048 (30.39) 
28 0.3048 (36.02) 0.6096 (32.64) 0.3048 (34.81) 
29 0.4064 (31.38) 0.4064 (30.05) 0.4064 (30.67) 
30 0.4064 (30.47) 0.4064 (30.10) 0.4064 (30.21) 
31 0.3048 (30.95) 0.3048 (30.35) 0.3048 (30.36) 
32 0.3048 (32.24) 0.4064 (31.09) 0.4064 (31.89) 
33 0.4064 0.5080 0.4064 
34 0.5080 0.6096 0.6096 

Cost ($ 10
6
) 6.195 6.220 6.183 

 It is important to report that in all tested cases, Case Study 1 and Case Study 2, 

with the three distinct situations, all the works in the papers considered for comparison 

with our results use flow directions fixed a priori. Also, no pumps were considered in 

these case studies, but it is not a problem once it is considered in the MINLP model. In 

all cases, the computational time was about 10 min. If the flow directions are fixed or 

known a priori, this time decreases to about 2 seconds, using a computer with a 3.50 

GHz Intel® Core™ i5-4690 processor with 8.00 GB of RAM. 

 

5. Conclusions 
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In the present paper, a MINLP optimization model for the design of looped 

water distribution networks was developed, considering unknown flow directions. 

Strategies for avoiding nonlinearities in the equations were proposed and the resulting 

model has only two nonlinear equations. These strategies allow the use of the global 

optimization solver BARON in GAMS. Two case studies from the literature are used 

and global optima are obtained for the cases studied in all situations. 

 The proposed model also avoids the use of additional software to solve 

hydraulic equations once the pressure drops and velocities are calculated 

simultaneously with the network design. It is important to consider that the Hazzen-

Williams equation is highly dependent on its parameters ,  and . Small variations in 

its values can lead to very different global optima, in terms of the network cost. The 

second case study was chosen with the objective of showing these discrepancies.  

 The optimal design of WDN is a complex problem and when the flow directions 

are not known a priori, this complexity is increased. However, with appropriate 

techniques, it is possible to linearize nonlinear equations and to avoid unnecessary 

complexities. In the current paper, all equations resulted linear, excluding two, which 

have exponential behavior and are well bounded, allowing the difficulties present in the 

Hazzen-Williams equation and the use of deterministic mathematical programming 

techniques, with the achievement of global optimal solutions. Also, it is important to 

remark that it is possible to solve hydraulic equations simultaneously in the optimization 

model. 
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