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Abstract

This paper studies a dynamic real-time optimization in the context of model-

based time-optimal operation of batch processes under parametric model

mismatch. In order to tackle the model-mismatch issue, a receding-horizon

policy is usually followed with frequent re-optimization. The main problem

addressed in this study is the high computational burden that is usually re-

quired by such schemes. We propose an approach that uses parameterized

conditions of optimality in the adaptive predictive-control fashion. The un-

certainty in the model predictions is treated explicitly using reachable sets

that are projected into the optimality conditions. Adaptation of model pa-

rameters is performed online using set-membership estimation. A class of

batch membrane separation processes is in the scope of the presented appli-

cations, where the benefits of the presented approach are outlined.
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1. Introduction

Optimization of operations of batch processes is a rich field of research.

One of the main goals is to reduce the variability among the produced batches

despite the present uncertainties and disturbances. This problem struck the

attention of many research groups (Nagy and Braatz, 2003; Srinivasan et al.,

2003a; Adetola et al., 2009; François and Bonvin, 2013; Lucia et al., 2013;

Mart́ı et al., 2015; Jang et al., 2016).

In this paper, we consider a real-time implementation of a control policy

under parametric plant-model mismatch that optimizes a batch process by

assigning dynamic degrees of freedom such that a certain performance index

is optimized. Similar problems were studied in many previous works using

on-line or batch-to-batch adaptation of the optimality conditions (François

et al., 2005; François and Bonvin, 2013), by mid-course correction (Yabuki

and MacGregor, 1997; Hosseini et al., 2013) or by design of robust controller

for tracking the conditions of optimality (Nagy and Braatz, 2003). Another

set of approaches to the problem uses advanced robust strategies in the frame-

work of model predictive control (Lucia et al., 2013). This paper proposes

an adaptation of these approaches to the problem of dynamic real-time opti-

mization of batch processes. This task is not straightforward because if one

uses a receding-horizon control strategy, the prediction horizons used need

to be quite long, because of the usual presence of terminal constraints, which

might compromise the real-time feasibility of the scheme.

We base the presented methodology on the parameterization of the op-

timal operation using the optimality conditions given by Pontryagin’s min-

2



imum principle. As the cost is usually insensitive w.r.t. a precise singular

control trajectory (Srinivasan et al., 2003a), the parameterization of the op-

timal policy makes the real-time decision problem to mainly boil down to

identification of switching times of the optimal control policy. Such approach

reduces computational burden while allowing for the use of sufficiently long

prediction horizons when projecting the parametric uncertainty in controller

performance and feasibility, particularly w.r.t. terminal time conditions. Ro-

bustness w.r.t. parametric uncertainty is addressed by taking into account

the imprecision of parameter estimates, which is projected into the uncer-

tainty of the switching times. In order to improve performance of such a con-

troller, i.e., to reduce conservatism introduced by uncertain switching times,

we use on-line parameter estimation. While having the optimal control policy

explicitly parameterized in the uncertain parameters, one can tailor the real-

time implementation of the optimal operation, e.g., in a way that minimizes

the number of on-line calculations.

The novelty of this paper lies foremost in an effective combination of

Pontryagin’s minimum principle and set-based techniques (set-membership

estimation and reachability analysis). This gives rise to a methodology ca-

pable of projecting the propagation of the uncertainty in model parameters

into uncertainty in the optimal operation of a plant. Using this methodology,

efficient and effective real-time optimization of a plant can be established.

The outline of the paper is as follows. Section 3 present preliminary the-

oretical knowledge on Pontryagin’s minimum principle (Pontryagin et al.,

1962) and on set-membership estimation (Schweppe, 1968; Fogel and Huang,

1982). The former is used to parameterize the optimality conditions of the
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dynamic optimization problem, while the latter technique is used for adapta-

tion of the model parameters based on the measured data along the process

run. Next we propose the implementation of the real-time optimization us-

ing parameter adaptation. Finally, we present a case study from chemical

engineering domain and discuss various aspects of the obtained results.

2. Problem definition

In this paper, we consider a real-time implementation of a control policy

that optimizes a process by assigning dynamic degrees of freedom such that

a certain performance index is optimized:

min
u(t),tf

J (p) := min
u(t),tf

∫ tf

0

F0(x(t,p),p) + Fu(x(t,p),p)u(t) dt (1a)

s.t. ẋ(t,p) = f 0(x(t,p),p) + fu(x(t,p),p)u(t), (1b)

x(0) = x0, x(tf,p) = xf, (1c)

u(t) ∈ [uL, uU ], (1d)

where t is time with t ∈ [0, tf], x(·) is an n-dimensional vector of state vari-

ables, p is an m-dimensional vector of model parameters, u(t) is a (scalar)

manipulated variable, F0(·), Fu(·), f 0(·), and fu(·) are continuously differen-

tiable functions, x0 represents a vector of initial conditions, and xf are spec-

ified final conditions. We note here that an inclusion of multi-input and/or

state-constrained cases is a straightforward extension but it is not considered

in this study for the sake of simplicity of the presentation. We also note

that the specific class of input-affine systems is a suitable representation for

a large variety of the controlled systems (Hangos et al., 2006). For a general

nonlinear model, one may use simple manipulations to rearrange the model
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into input-affine structure (Sontag, 1998), which might though increase the

number states of the problem. In the domain of chemical engineering, it is,

however, very common to encounter input-affine problems (Amrhein et al.,

2010) (e.g., when the optimized variable is a reactor feed) or to reformulate

the model and arrive at the input-affine structure (Liou and Hsiue, 1995).

We will assume that the plant behavior is known qualitatively and that

the only source of uncertainty is present in the unknown values of model

parameters. Only a prior knowledge is assumed about the parameters, i.e.,

the true values of the parameters lie in the a priori known interval box P 0 :=

[pL0 ,p
U
0 ], where superscripts L and U denote the lower and upper bounds of

p. The nominal realization of the uncertainty will be assumed as pnom :=

mid(P ), where mid(·) indicates a mid-point of the interval box.

We will also assume that certain measurements are available from the

plant. Their corresponding model-based predictions are

y(t) = g(x(t,p),p), (2)

where g(·) is a continuously differentiable vector function.

3. Preliminaries

3.1. Conditions for Optimality

Pontryagin’s minimum principle can be used (Johnson and Gibson, 1963;

Srinivasan et al., 2003b; Paulen et al., 2012, 2015) to identify the optimal

solution to (1) via enforcing the necessary conditions for minimization of a
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Hamiltonian

H := µL(uL − u) + µU(u− uU) + F0 + λTf 0︸ ︷︷ ︸
H0(x(t,p),λ(t,p),p)

+
(
Fu + λTfu

)︸ ︷︷ ︸
Hu(x(t,p),λ(t,p),p)

u, (3)

where λ(·) is a vector of adjoint variables, which are defined through

λ̇(t,p) = −∂H
∂x

(t,p), λ(tf,p) = ν(p), (4)

and µL(t,p), µU(t,p), and ν(p) are the corresponding Lagrange multipliers.

The optimality conditions of (1) can then be stated as (Srinivasan et al.,

2003b): ∀t ∈ [0, tf],

∂H

∂u
:= Hu(x(t,p),λ(t,p),p)− µL(t,p) + µU(t,p) = 0, (5)

H(x(t,p),λ(t,p),p, u(t), µL(t,p), µU(t,p)) = 0, (6)

H0(x(t,p),λ(t,p),p) = 0, x(tf,p)− xf = 0. (7)

The condition H = 0 arises from the transversality, since the final time is

free (Pontryagin et al., 1962), and from the fact that the optimal Hamiltonian

is constant over the whole time horizon, as it is not an explicit function of

time. The condition H0 = 0 is the consequence of the former two conditions.

Since the Hamiltonian is affine in input (see (3)), the optimal trajectory of

control variable is either determined by active input constraints or it evolves

inside the feasible region.

Assume that for some point t we have Hu = 0 and uL < u(t) < uU .

It follows from (5) that the optimal control maintains Hu(·) = 0. Such

control is traditionally denoted as singular. Further properties of the singular

arc, such as switching conditions or state-feedback control trajectory can be

obtained by differentiation of Hu with respect to time (sufficiently many
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times) and by requiring the derivatives to be zero. The time derivatives of H

and H0 must be equal to zero as well. Earlier results on derivation of optimal

control for input-affine systems (Srinivasan et al., 2003b) suggest that it is

possible to eliminate λ(·) from the optimality conditions and thus to arrive

at analytical characterization of switching conditions between singular and

saturated-control arcs.

As the optimality conditions obtained by the differentiation w.r.t. time

are linear in the adjoint variables, the differentiation of Hu (or H0) can be

carried out until it is possible to transform the obtained conditions to a pure

state-dependent switching function S(x(t),p). It is usually convenient to use

a determinant of the coefficient matrix of the equation system Aλ = 0 for

this. The singular control us(x(t),p) can be found from differentiation of

switching function w.r.t. time as

dS

dt
=

∂S

∂xT
dx

dt
=

∂S

∂xT
(f 0 + fuus) = 0

⇒ us(x(t,p),p) =− ∂S

∂xT
f 0

/
∂S

∂xT
fu. (8)

The resulting optimal-control policy is then given as a step-wise strat-
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egy (Paulen et al., 2015) by

u∗(t,π) :=



uL, t ∈ [0, t1), S(x(t,p),p) > 0,

uU , t ∈ [0, t1), S(x(t,p),p) < 0,

us(x(t,p),p), t ∈ [t1, t2), S(x(t,p),p) = 0,

uL, t ∈ [t2, tf], S(xf,p) < 0,

uU , t ∈ [t2, tf], S(xf,p) > 0,

(9)

xf = x(t2,p) +

∫ tf

t2

f 0(x(t,p),p) + fu(x(t,p),p)u∗(t,π) dt, (10)

where π := (pT , t1, t2, tf)
T is the vector that parameterizes the optimal con-

trol strategy. Note that the presented optimal-control strategy determines

implicitly the switching times t1, t2 and the terminal time tf as functions of

model parameters p.

In case that the use of the minimum principle turns out to be too com-

plex (e.g., many derivatives are needed to characterize the solution), a nu-

merical identification of the control arcs (Schlegel et al., 2005; Schlegel and

Marquardt, 2006) or a recently presented parsimonious input parameteriza-

tion (Aydin et al., 2018; Rodrigues and Bonvin, 2019) can be used.

3.2. Set-membership estimation

In order to estimate the model parameters, we will make use of plant

outputs (measurements), whose predictions are expressed as in (2). We will

assume that the true output of the plant yp(t) is corrupted with a (sensor)

noise that is bounded with a known magnitude σ. Thus, the measured output

ym(t) is such that

|ym(t)− yp(t)| ≤ σ, (11)
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where the absolute value is understood component-wise. In turn, the set-

membership constraints for predicted output y(t) apply in the form:

|ym(t)− y(t)| ≤ σ. (12)

We are interested in the determination of parametric bounds such that

P k ⊆ P k−1 ⊆ · · · ⊆ P 1 ⊆ P 0, (13)

where k is the ordinal number of a measurement taken. The parametric

bounds can be determined through solution of a series of optimization prob-

lems as (Gottu Mukkula and Paulen, 2017; Walz et al., 2018):

pLk,j/p
U
k,j := min

p∈P 0

/max
p∈P 0

pj (14a)

s.t. ẋ(t,p) = f 0(x(t,p),p) + fu(x(t,p),p)u(t), ∀t ∈ [0, tk], (14b)

x(0,p) = h(p), (14c)

y(ti,p) = g(x(ti,p),p), ∀i ∈ {1, . . . , k}, (14d)

− σ ≤ y(ti,p)− ym(ti) ≤ σ, ∀i ∈ {1, . . . , k}, (14e)

for given u(t), where j ∈ {1, . . . , np} indicates the jth element of a vector.

4. Dynamic real-time optimization

As the optimal control structure is a function of uncertain parameters,

the uncertainty should be taken into account when devising a real-time im-

plementation of the optimal control of the plant.

4.1. Projection of parametric uncertainty into solution strategy

Given the structure of the optimal-control policy (9), one can project the

parametric uncertainty into uncertainty of the switching times and singular
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Figure 1: Illustration of the switching function evolution under uncertainty using (set-

based) reachability analysis with nominal uncertainty realization (green dashed line) and

extreme realizations (dash-dotted red and solid blue lines).

control as (∀p ∈ P )

tl(p) ∈ [tLl (P ), tUl (P )] =: Tl, ∀l ∈ {1, 2, f}, (15a)

us(t,p) ∈ [uLs (t,P ), uUs (t,P )] =: Uopt(t),∀t ∈ [t1(p), t2(p)]. (15b)

This can be achieved either by using some set-theoretic techniques for cal-

culating reachable sets (Chachuat et al., 2015) or by sampling approaches.

Figure 1 provides an illustration, where the reachable sets are shown over

time for the switching function S(·).

Formally, the problem of determination of (15) can be cast as a set-

inversion problem (Jaulin and Walter, 1993). As an example, let us consider

10



that S(x(0,p),p) > 0, ∀p ∈ P 0. The interval T1 can then be defined as:

T1 :=

t1
∣∣∣∣∣∣∣∣∣

∃p ∈ P ,∀t ∈ [0, t1] :

x(0,p) = h(p), S(x(t1,p),p) = 0,

ẋ(t,p) = f 0(x(t,p),p) + fu(x(t,p),p)uL

 . (16)

The rest of the uncertain intervals and controls can be defined and deter-

mined analogously. Efficient set-inversion techniques exist (Paulen et al.,

2016) and can be used herein. The problem might also be reformulated

to a bound-determining optimization problem, similarly to the estimation

problem in (14). Using such a reformulation, it is also possible to merge

the problems of reachability analysis and set-membership estimation and to

formulate the reachability-analysis problem directly over the collected data.

This way several possible deficiencies (such as those arising from outbounding

the parameter set by a box) can be eliminated.

Figure 2 illustrates the parameterization (15) for a simple case, where

the singular control is constant. Note that the parameterization reveals time

intervals (i.e., [0, tL1 (P )], [tU1 (P ), tL2 (P )], and [tU2 (P ), tLf (P )]), which are parts

of the optimal solution for any realization of uncertain parameters and are

thus invariant to the presence of uncertainty.

A particular technical advantage can be exploited for determination of the

switching intervals i.e., that the integration in (10) can be done backwards

in time from the final condition. As the batch processes exhibit inherently

unstable dynamics, their backward integration is stable (Cao et al., 2003).

Such a feature can readily be exploited by modern reachability analysis ap-

proaches for parametric ordinary differential-algebraic equations (Villanueva

et al., 2015).
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Figure 2: Illustration of the parameterization of the optimal control policy under uncer-

tainty with nominal policy (green dashed line) and extreme-case realizations (dash-dotted

red and solid blue lines).

4.2. Robust approach to real-time optimization

The result (15), in practice, establishes a parametric solution to the real-

time optimization problem. Its implementation can be performed in a robust

fashion to determine the parameters of the optimal-control structure that lead

to the best performance in the worst case. We can then solve

min
us(t,p)∈Uopt(t),∀t∈[t1(p),t2(p)]

tl∈Tl, ∀l∈{1,2,f}

max
p∈P 0

‖J (p)− J (pnom0 )‖22 s.t. (1b), (9), (10), (17)

for a given x(0) = x0 and P 0. Here we propose to minimize the variance of

the objective w.r.t. nominal scenario under the worst-case realization of p ∈

P , which can also be modified to ‖J (p) −minpopt∈P 0 J (popt)‖22. Note that

this goal goes in line with the efforts of practical batch process control, where

the reduction of the batch-to-batch variability is one of the main targets of

decision making.
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4.3. Robust adaptive approach to real-time optimization

In order to reduce conservatism of a robust scheme, parameter estimation

can be used for exploitation of data gathered along the process run. The em-

ployed parameter estimation scheme should take into account the presence of

noise in the measurements. Here we propose to use set-membership strategy

outlined in Section 3.2.

The problem (17) can then be resolved with the initial state conditions

x(k) = xk and with updated parameter bounds P k in a shrinking-horizon

fashion. Computational efficiency of this real-time optimization scheme can

be achieved by exploiting the fact that the re-optimization does not need to be

done at each sampling time of the plant (i.e., when new measurements become

available) but can be scheduled before a consecutive switching event must be

realized. As an example, consider Fig. 2, where one can start the operation

on the lower-bound of the input variable and estimation of parameter bounds

and re-optimization can be scheduled in the sampling instant of the plant just

before minimal value of the time t1, t
L
1 (P ). The re-optimization with updated

bounds on parameters would then update (possibly increase) the value of

tL1 (P ). Further re-optimizations can then follow based on this scheme.

Once the optimal value of the objective function of (17) reaches ‖J (P )−

J (pnomk )‖22 < ε, where ε > 0 represents user-defined tolerance for the worst-

case cost variation, the calculated control actions can be implemented until

the end of the batch, e.g., with a feedback scheme (François and Bonvin,

2013), until the terminal conditions are met.

Note that because of the switching nature of the optimal control strat-

egy, the proposed problem might show discontinuity when the set of active
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constraints changes. This can be remedied by the adaptation of continuous-

formulation technique presented in de Prada et al. (2011).

A pseudo-algorithm can be devised at this point to summarize the pro-

posed approach:

1. Given the problem setup (Eqs. (1) and (2)), identify the solution struc-

ture using Pontryagin’s minimum principle (as shown in Section 3.1).

2. Given P 0, use reachability analysis to project the uncertainty in the

parameters to uncertainty about the solution structure (as shown in

Section 4.1).

3. Apply the optimal policy until the next uncertain switching time and

collect the measurements along.

4. Solve problem (14) to determine new interval box P and re-calculate

the uncertain solution structure.

5. If significant reduction in the uncertainty of the switching time is achieved,

go to Step 3. Else solve problem (17) to determine the switching times.

Apply the first switching in the control, collect the data along and go

to Step 4.

5. Case study

We demonstrate the findings of this study on an example of time-optimal

control of a batch diafiltration process (Cheryan, 1998). This is a membrane-

based separation process designed for a simultaneous concentration of valu-

able products in the liquid solutions (referred to as macro-solutes) and a

wash-out of the impurities (referred to as micro-solute).
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Figure 3: Schematic representation of a generalized diafiltration process.

A simplified scheme of the plant is shown in Fig. 3. After the separated

solution with initial volume (V0) comprising a macro-solute (high molecu-

lar weight component) and a micro-solute (low molecular weight component)

with initial concentrations c1,0 and c2,0, respectively, is transferred to the feed

tank, the operation of the process is launched. Solution containing diluant

(solvent), micro-solute and macro-solute is taken from the feed tank to the

membrane module. The installed membrane is designed in a way to allow

passage of micro-solute and to retain macro-solute. Permeate stream then

leaves the system with the flow rate q which is specific for a given membrane,

operating conditions and is often a function of actual concentrations of sep-

arated species. Retentate stream is then introduced back into the feed tank.

Once the final conditions, which are the prescribed final concentrations of

the species c1,f and c2,f, are met, the process is terminated and the solution

is withdrawn from the system. During the operation, the transmembrane

pressure is controlled at a constant value. The temperature of the solution

is maintained around a constant value using a heat exchanger (not shown in
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Fig. 3 for the sake of simplicity). The manipulated variable u(t) is the ratio

between fresh water inflow into the tank and the permeate outflow q.

In our study, the outflow q is measured at intervals of one minute and its

model is given by

q(c1(t), c2(t)︸ ︷︷ ︸
c(t)

, γ1, γ2, γ3︸ ︷︷ ︸
γ

) = Aγ1 ln

(
γ2

c1(t)c
γ3
2 (t)

)

= Aγ1 [ln(γ2)− ln(c1(t))− γ3 ln(c2(t))] ,

q(c(t), p1, p2, p3︸ ︷︷ ︸
p

) = p1 − p2 ln(c1(t))− p3 ln(c2(t)). (18)

Here the parameters γ1, γ2, and γ3 can be related to phenomenological con-

stants; γ1 stands for the mass-transfer coefficient, γ2 is the limiting concentra-

tion of the macro-solute, and γ3 is a dimensionless non-ideality factor. This

model is proposed in Rajagopalan and Cheryan (1991) as a generalization

of a limiting-flux model, which originates from film-theory of mass trans-

fer (Fick, 1855) and where γ3 = 0. We study situations where the permeate

flux at the plant obeys either one of these models.

As Eq. (18) suggests, an equivalent re-parameterization of the model is

possible, which gives the model linear in parameters p1, p2, and p3. This

is convenient for parameter estimation. In this work, we will assume that

the concentrations c1(t) and c2(t) can be measured perfectly (i.e., their mea-

surement sensors are noise-free). As the values of state variables are known

exactly, the dynamic equations can be eliminated from the problem (14).

Hence, the problem of estimating bounds of the model parameters (14) boils

down to a problem of linear programming, since dynamics can be excluded

and since the re-parameterization of the model yields linear-in-parameters
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structure of the model. The measurement noise associated with q is assumed

to be bounded σ = 0.1L/h and the measurements are available each second.

In the simulation studies below, the realization of noise will be taken from a

uniform distribution U(−σ, σ).

The objective is to find u(t), which guarantees the transition from the

given initial (c1,0 and c2,0) to final (c1,f and c2,f) concentrations in minimum

time. This problem can be formulated as:

min
tf,u(t)

∫ tf

0

1 dt, (19a)

s.t. ċ1(t) =
c21(t)q(c(t),p)

c1,0V0
(1− u(t)), c1(0) = c1,0, c1(tf) = c1,f, (19b)

ċ2(t) = −c1(t)c2(t)q(c(t),p)

c1,0V0
u(t), c2(0) = c2,0, c2(tf) = c2,f, (19c)

q(c(t),p) = p1 − p2 ln(c1(t))− p3 ln(c2(t)), (19d)

u(t) ∈ [0,∞). (19e)

The parameters of the problem are c1,0 = 50 g/L, c1,f = 150 g/L, c2,0 =

50 g/L, c2,f = 0.05 g/L, V0 = 20 L, and A = 1 m2. Note that the extremal

values of u(t) in (19e) stand for a mode with no water addition, when u(t) = 0

and pure dilution, i.e., a certain amount of water is added at a single time

instant, u(t) =∞.

The parameterized optimal control of this process can be identified using

Pontryagin’s minimum principle (Pontryagin et al., 1962) as (9) where the

singular control and the respective switching function can be found explic-

17



itly (Paulen et al., 2012) as

us(c(t,p),p) :=
1

1 + γ3
=

p2
p2 + p3

, (20)

S(c(t,p),p) := Aγ1 (ln(γ2)− ln(c1)− γ3 ln(c2)− γ3 − 1) ,

:= p1 − p2 ln(c1)− p3 ln(c2)︸ ︷︷ ︸
q(c(t),p)

−p2 − p3. (21)

The structure of the optimal-control policy clearly reveals that the singular

arc condition gives a constant value for the permeate flux (equal to p2 + p3)

and that the singular control is a constant that depends on the value of γ3 =

p3/p2. This shows that if one devises a feedback-based real-time optimization

scheme, precise estimation of parameters p2 and p3 is of paramount interest.

For the simulation-based studies on the implementation of the outlined

optimal-control policy, we will assume that the nominal values of the param-

eters are γ1 = 3 × 10−2 L/h, γ2 = 1000 g/L, and γ3 = 0.1. Similar values

of the parameters were observed to validate the model against experimental

data in Sharma et al. (2019). The uncertainty at the initial point in time

(P 0) will be assumed as ±10% of the nominal values. The true realization

of the parameter values will be taken randomly from a uniform distribution

U(pL0 , p
U
0 ). As we deal with a time-minimization problem and the sampling

time of the plant is 1 second, we naturally select the ε = 1 s2. For this sim-

ple example, the reachability analysis can be performed explicitly using the

expressions for switching times provided in Paulen and Fikar (2016).

5.1. Plant under limiting-flux conditions

We first study the case when the plant is under limiting-flux conditions,

i.e., the flux obeys Eq. (18) with γ3 = p3 = 0. Based on the values of initial
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conditions and range of uncertainty in the parameters, the optimal-control

policy boils down to three arcs:

1. Use u(t) = 0 until t1, when c1(t1) = γ2/e.

2. Use u(t) = us(t) = 1 until c1(t2)/c2(t2) = c1,f/c2,f.

3. Dilute the solution (use u(t) =∞ instantaneously) to arrive at the final

concentrations.

Taking into account that we measure both concentrations precisely, the only

uncertainty in this case lies in the switching times t1, where t1 depends on

the value of γ2.

The implementation of the scheme, where one is aware of the true value of

γ2, results in topt1 = 2.515 h and toptf = 8.284 h. The worst-case minimization

of the batch variability (methodology described in Section 4.2) coincides in

this case with the nominal strategy, where one takes γ2 = γnom2 . When

applied to the plant, this strategy results in trob1 = tnom1 = 2.625 h and trobf =

tnomf = 8.327 h. The adaptive real-time dynamic optimization (described in

Section 4.3) results in tadapt1 = 2.533 h and tadaptf = 8.301 h, which is only a

slight improvement compared to the robust (and nominal) strategy.

Figure 4 presents performance of the estimation (in terms of estimated

parameter bounds) throughout the run of the batch. It is clear that the

bounds on both parameters are dramatically reduced around the time point

of 2 h, which precedes the time point topt1 , when the switch in the control input

should be executed. The bottom plot of Fig. 4 also shows the evolution of

the uncertainty in t1, which is projected using interval-based calculations (as

discussed in Section 4.1). It should be noted here that the adaptive approach

is successful mainly since the applied control input in the first arc coincides
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Figure 4: Results of the set-membership estimation over time (top and middle plots) with

projection of the uncertainty in the parameters on the switching time t1 (bottom plot).

The true (optimal) values are shown as solid lines, the bounds are represented using dashed

lines. The vertical line in the bottom plot indicates the optimal switching time.
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Figure 5: A box plot with the statistical information (the median, the 25th and 75th

percentiles and the outliers) about the performance of the different control strategies on

the plant under limiting-flux conditions. The bottom plot shows a zoom of the top plot.

with an input that would result from a dynamic optimal-experiment design

study. Here, u(t) = 0 ensures the fastest possible increase of concentration

c1(t), which reveals the most informative measurements about γ2.

Finally, we evaluate a statistical performance of the presented dynamic

real-time optimization schemes. This is realized by running 1,000 simulated

batches with different true values of parameters. The resulting statistics is

shown in Fig. 5. One can clearly notice here that the robust and nominal

strategies perform very well on average and even the standard deviations of

their performance are not significantly increased compared to the optimal

performance. On the other hand, distributions of the final batch times of

the nominal and robust strategies have long tails, which points towards the

existence of rare cases where the batch time obtained by application of robust

dynamic real-time optimization increases significantly compared to the truly
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optimal solution. This behavior corresponds to the situations, where the

first step (with u(t) = 0) over-concentrates the solution too much so that

the subsequent diafiltration step (with u(t) = 1) requires long time to reach

the desired condition (c1(t2)/c2(t2) = c1,f/c2,f). This study reveals that the

strategy, which uses estimation of parameter bounds, has a clear merit as it

does not show this type of inconsistency in the performance (long tails) and

it results overall in the batch times very close to the optimal ones.

Drawing a comparison in the computational time, robust and nominal

strategies only require a single optimization before the batch starts. Adap-

tive strategy uses only a single re-optimization (scheduled just before tnom1 )

in this case, which shows a significant reduction in computational burden

w.r.t. receding-horizon strategies. Due to explicit nature of the optimal con-

trol strategy, the computation of this re-optimization mostly lies in the es-

timation step. As the estimation problem can be boiled down to an LP, its

solution is available in order of milliseconds using MATLAB’s linprog routine.

Due to only a single re-optimization, one can also interpret this scheme as a

mid-course correction (Yabuki et al., 2002) with optimally timed adaptation.

5.2. Plant under generalized limiting-flux conditions

Based on the values of initial conditions and range of uncertainty in the

parameters, the optimal-control policy again boils down to three arcs:

1. Use u(t) = 0 until t1, when (21) is zero.

2. Use u(t) = us(t) = 1/(1 + γ3) until c1(t2)/c2(t2) = c1,f/c2,f.

3. Dilute the solution (use u(t) =∞ instantaneously) to arrive at the final

concentrations.
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The uncertainty is in this case extended even on the value of singular control

input and it is clear that one needs good estimates of both the values of γ2

(which mostly influences the switching time t1 as in the previous case) and

γ3 (which influences the quality of the singular control) to achieve a good

performance. Knowledge of the a precise value of the parameter γ1 is of

minor importance as this parameter can be factored out of the optimality

conditions.

We use the same values of the uncertain parameters γ1 and γ2 as in the

previous case. The performance of the studied schemes is as follows:

• Optimal strategy: topt1 = 2.501 h, toptf = 9.254 h

• Adaptive strategy: tadapt1 = 2.510 h and tadaptf = 9.271 h

• Nominal strategy: tnom1 = 2.561 h and tnomf = 9.277 h

• Robust strategy: trob1 = 2.417 h and trobf = 9.269 h

We can observe a similar differences between the strategies as in the previous

case. Robust strategy performs on an acceptable level and even marginally

outperforms the nominal and the adaptive strategy, which results from the

fact that the plant parameters coincide with the worst-case parameters.

Figure 6 presents performance of the estimation (in terms of estimated

parameter bounds) throughout the run of the batch. Similarly to the previous

case, the estimation performed in the first control arc helps in determination

of the value of the first switching time before the optimal switching instant

occurs. Here the determining parameter is p2, whose estimation performance

was discussed in the previous case and the same conclusions hold here.
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Figure 6: Results of the set-membership estimation over time (top three plots) with pro-

jection of the uncertainty in the parameters on the switching time t1 and on the value

of us (bottom plot). The true (optimal) values are shown as solid lines, the bounds are

represented using dashed lines. The vertical line in the bottom plot indicates the optimal

switching time.
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Figure 7: A box plot with the statistical information (the median, the 25th and 75th

percentiles and the outliers) about the performance of the different control strategies under

generalized limiting-flux conditions. The bottom plot shows a zoom of the top plot.

When the controller applies u(t) = 0, the parameter γ3 (or p3) is unidenti-

fiable as the concentration c2(t) remains constant. This can be seen in Fig. 6

as the bounds on p3 remain constant from the beginning of the operation

until the time when control input is switched to singular. It is also shown

that the uncertainty in p3 results in a relatively small uncertainty in the value

of the singular control, so a precise knowledge of p3 is not paramount for the

application of the optimal control policy.

When the statistical performance is evaluated, we can first conclude that

all the strategies perform almost identically on average. The biggest differ-

ences arise when one evaluates the outliers of the distribution of the achieved

batch times. It is evident that the nominal strategy achieves the worst per-

formance and that the robust strategy reduces the batch variability to a

good extent (given the wide range of the uncertainty). The adaptive strat-
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egy is clearly superior here as it reduces the batch variability much further,

compared to the robust scheme, and the achieved performance is practically

indistinguishable from the truly optimal one.

6. Conclusion

We have presented a methodology for dynamic real-time optimization

of batch processes via parameterization of the optimal controller using Pon-

tryagin’s minimum principle. The employed parameterization greatly reduces

the computational burden to guarantee feasibility of the operation compared

to receding-horizon strategies. In order to address parametric plant-model

mismatch issue, we have suggested a robust approach, which consisted in

projection of the plant uncertainty into optimality conditions using reach-

ability analysis. This again greatly reduces on-line computational burden

as one can exploit the uncertainty in the switching to schedule the on-line

re-optimization. As the uncertainty in parameters can greatly affect the

optimality of the batch, we have proposed an adaptive scheme that makes

use of parameter estimation and, as shown in the case study, can greatly

assist in reducing variability in the batch performance subject to paramet-

ric uncertainty. The adaptive scheme turned out to be key in reduction of

batch-to-batch variability. The future work will consider implementation of

the proposed strategy on a laboratory plant.
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Notation

t time [h]

x vector of state variables

p vector of model parameters

u manipulated variable

J objective functional

F0 constant-in-control part of the Lagrange term

Fu multiplier of linear-in-control part of the Lagrange term

f 0 constant-in-control term of the model

fu multiplier of linear-in-control term of the model

P interval box

H Hamiltonian (function)

H0 constant-in-control term of the Hamiltonian

Hu multiplier of linear-in-control term of the Hamiltonian

µ Lagrange multiplier of bound on manipulated variable

ν Lagrange multiplier of final conditions
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λ(·) vector of adjoint variables

S state-dependent switching function

π vector parameterizing the optimal control strategy

g measurement function

y vector of predicted plant outputs

yp(t) vector of true outputs of the plant

ym(t) vector of measured outputs

σ magnitude of measurement noise

mid mid-point of the interval box

ε user-defined tolerance

A membrane area [m2]

V volume of the processed solution

c1 macro-solute concentration

c2 micro-solute concentration

q permeate flux, flow rate through the membrane

γ1 mass-transfer coefficient

γ2 limiting concentration of the macro-solute

γ3 dimensionless non-ideality factor

γ parameters of the original permeate-flux model

p1, p2, p3 parameters of the reparametrized permeate-flux model

U(a, b) uniform distribution bounded by a and b

Subscripts

0 initial, control-independent

u linear-in-control part

k sampling instant of the plant
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f final

s singular

Superscripts

L lower bound

U upper bound

opt optimal

nom nominal

adapt adaptive

rob robust
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