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Abstract

Designing and analyzing algorithms with provable performance guarantees enables efficient optimization
problem solving in different application domains, e.g. communication networks, transportation, economics,
and manufacturing. Despite the significant contributions of approximation algorithms in engineering, only
limited and isolated works contribute from this perspective in process systems engineering. The current
paper discusses three representative, NP-hard problems in process systems engineering: (i) pooling, (ii)
process scheduling, and (iii) heat exchanger network synthesis. We survey relevant results and raise major
open questions. Further, we present approximation algorithms applications which are relevant to process
systems engineering: (i) better mathematical modeling, (ii) problem classification, (iii) designing solution
methods, and (iv) dealing with uncertainty. This paper aims to motivate further research at the intersection

of approximation algorithms and process systems engineering.
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1. Introduction

Both Theoretical Computer Science (TCS) and Process Systems Engineering (PSE) design efficient algo-
rithms for challenging optimization problems. But, although both areas consider mixed-integer [non-]linear

optimization, the two domains have several intellectual differences:

1. TCS often addresses worst-case instances whereas PSE typically solves challenging, practically-relevant
instances,

2. TCS analytically derives theoretical performance guarantees while PSE computationally proves global
optimality, e.g. using a mixed-integer [non-|linear optimization solver,

3. TCS uses bottom-up approaches, e.g. solving interesting problem special cases and determining polyno-
miality and inapproximability boundaries. Meanwhile, PSE more often employs top-down techniques,

e.g. problem decompositions such as Dantzig-Wolfe or Benders,
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4. TCS frequently concerns itself with near-optimal algorithms giving a provably-good feasible solution
while PSE is more interested in the deterministic global solution,
5. TCS focusses on polynomial tractability whereas PSE is more interested in practical computational

scalability for industrial instances.

The design and analysis of approzimation algorithms, i.e. heuristics with performance guarantees, is

well-established in TCS (Hochbaum)| [1996; [Schulz et al., [1997; [Vazirani, [2001; Williamson and Shmoysl,

[2011)). |Johnson| (1974) introduces approximation algorithms as a general framework for solving combinato-

rial optimization problems. (1977) presents an early tutorial of techniques. Approximation algorithms

compute feasible solutions that are provably close to optimal solutions. These approximation algorithms
are designed to have efficient, i.e. polynomial, running times. Approximation algorithms have been devel-
oped for optimization problems arising in application domains, including communication networks
let all 1996} |Goemans et all 1994} |Johnson et al., |1978; [Kleinberg| (1996} [Leighton and Raoj [1999), trans-
portation (Christofides, 1976} [Frederickson et al.l (1976} [Golden et al., 1980} [Kruskal, [1956; Laporte, |1992}
[Rosenkrantz et al., 1977), economics (Daskalakis et al., 2006, [2009; Lipton et al.,2003; |[Papadimitriou, 2014),
and manufacturing (Gonzalez and Sahni, |1978; |Graham, [1969; |Hall and Shmoys, 1989; [Jacksonl, |1955)). But

approximation algorithms have not received much attention in PSE. The PSE community is mainly inter-

ested in global optimization methods because suboptimal solutions may incur significant costs, or even be

incorrect (Grossmann| 2013). At a first glance, approximation algorithms do not fit the PSE preference

towards an exact solution. Furthermore, heuristics with performance guarantees cannot fully address the

very complex, highly inapproximable, industrially-relevant optimization problems in PSE.

This paper argues that, contrary to the aforementioned, surface-level distinctions, approximation
algorithms are deeply applicable to PSE. We substantiate our claims by offering applications
where approximation algorithms can be particularly useful for solving challenging process systems

engineering optimization problems.

In the last 30 years, there has been significant progress in designing approximation algorithms and

understanding the limits of proving analytical performance guarantees. Problems that sound simple, e.g.

makespan scheduling and bin packing, are believed to be hard (Garey and Johnson, [2002). Computational

complexity theory and NP-hardness provide a mathematical foundation for this belief. Under the widely
adopted conjecture P # AP, no algorithm can solve an NP-hard problem in polynomial worst-case running
time, e.g. scheduling n jobs in time proportional to some polynomial p(n) of n. Approximation algorithms
cope with NP-hardness by producing, in polynomial time, good suboptimal solutions. In particular, a p-
approximate algorithm for a minimization (resp. maximization) problem computes, for every input, a solution
of cost (resp. profit) at most (resp. least) p times the optimum. The performance guarantee p quantifies the
worst-case distance of an approximation algorithm’s solutions from being optimal, i.e. provides an optimality

gap for pathological optimization problem instances. But, in practice, an approximation algorithm may



produce a significantly better solution than the worst-case bound. From a complementary viewpoint, N P-
hardness specifies the limits in developing optimization algorithms with polynomial worst-case running times.
Meanwhile, hardness of approximation settles the limits of polynomial approximation algorithms, e.g. may
prove that designing p-approximation algorithm with small p is impossible.

The manuscript proceeds as follows: Section [2] introduces approximation algorithms. Section [3| presents
applications of approximation algorithms in PSE. The remainder of the paper provides a brief survey of
three major PSE optimization problems: Sections discuss pooling, process scheduling, and heat ex-
changer network synthesis, respectively. These sections present a collection of A/P-hard problems for which

approximation algorithms can be useful. Section [7] concludes the paper.

2. Approximation Algorithms

This section introduces the notion of an approrimation algorithm, i.e. a heuristic with a performance
guarantee (Vazirani, 2001} Williamson and Shmoys), 2011). Many optimization problems are A/P-hard and,
under the widely adopted conjecture P # NP, there is no polynomial algorithm solving an A/P-hard problem.
Approximation algorithms investigate the trade-off between optimality and computational efficiency for a
range of applications.

An approximation algorithm is a polynomial algorithm producing a near-optimal solution to an opti-
mization problem. Formally, consider an optimization problem, without loss of generality a minimization

problem, and a polynomial Algorithm A for getting a feasible solution (not necessarily the global optimum).

Definition 1 ((Johnson, 1974))). For each problem instance I, let C4(I) and Copr(I) be the algorithm’s
objective value and the globally optimal objective value, respectively. Algorithm A is p-approzimate if, for

every problem instance I, it holds that Ca(I) < p-Copr(I). Value p is the approximation ratio of Algorithm
A.

That is, a p-approximation algorithm computes, in polynomial time, a solution with an objective value at

most p times the optimal objective value. Since Copr(I) is the globally optimal objective value, we trivially
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note that p > 1. Theoretical computer scientists may seek constant p, e.g. p = %, since (i) the algorithm
will not degrade with growing problem size and (ii) a constant approximation ratio is significant progress in
solving an optimization problem efficiently.

In general, to prove a p-approximation ratio, we proceed as depicted in Figure For each problem
instance, we compute analytically a lower bound Cpp(I) of the optimal objective value, ie. Crp(I) <
Copr(I). One lower bounding method, replacing {0,1} binary variables with a fractional [0, 1] relaxation,
will be familiar to the PSE community from mixed-integer optimization. Other common lower bounding
methods include basic packing and covering (Chvatal, [1979; |Graham), [1969; [McNaughton, [1959), duality
(Cornuejols et al., [1977; [Held and Karpj, |1970), and semidefinite programming (Goemans, [1997; |(Goemans

and Williamson), [1995). The next step proves that an algorithm’s objective value is at most p times the



Cre Copr Ca p-CLB p-Copr

Figure 1: Analysis of an Approximation Algorithm

lower bound, i.e. C4x(I) < p- Crp(I). Therefore, proving a p-approximation is, in some sense, equivalent
to matching an upper objective bound with a lower objective bound. A p-approximation ratio is tight for
Algorithm A, if we can prove that there is no lower ratio.

Definition [2] introduces a well-known family of algorithms known as approzimation schemes.

Definition 2 ((Sahni and Gonzalez, 1976))). Algorithm A is an approximation scheme if, for every
problem instance I and input parameter ¢ > 0, it holds that Cx(I) < (1 + E)COPT(I)H. If the running
time of A is bounded by a polynomial in the instance size, then A is a polynomial-time approximation
scheme (PTAS). When A is also polynomial in 1/¢, then it is called a fully polynomial-time approximation

scheme (FPTAS).

A PTAS, and in particular a FPTAS, is the best approximation result that one can hope for an N'P-
hard problem, unless P = NP. |[Schuurman and Woeginger| (2000) provide a tutorial for designing PTAS.
Despite their theoretical significance, PTAS are often not necessarily the most competitive algorithms for
real-world problem instances, e.g. in the Euclidean traveling salesman problem case (Johnson! 2012 |Johnson,
and McGeoch, |1997).

Obtaining PTAS or even constant performance guarantee in polynomial time might not be possible.
Hardness of approximation provides a toolbox of techniques for deriving such negative results (Goderbauer
et al.|2019). The best possible performance ratios for problems that do not admit a PTAS are typically O(1),
O(logn), or O(n®W). The standard big-O notation O(-) means that O(1) is some constant while O(logn)
and O(no(l)) indicate some function of n asymptotically upper bounded by a logarithmic and polynomial

function, respectively.

3. Applications of Approximation Algorithms in PSE

This section discusses ways of using approximation algorithms in PSE and presents examples of past

contributions motivating research in these directions.

3.1. Mathematical Modeling

PSE optimizes chemical, biological, and physical processes using systematic computer-aided approaches.
A significant part of the PSE literature is devoted to evaluating, verifying, refining, and validating mathe-

matical models capturing natural phenomena. These models quantitatively predict process outputs subject

LFor maximization problems, the performance bound becomes C4(I) > (1 — €)Copr(I).



to initial conditions. Frequently, dealing with PSE problems involves solving mixed-integer linear program-
ming (MILP) models. Modern MILP solver performance depends considerably on the underlying MILP
formulation . Critical MILP formulation aspects include the size and strength of the LP re-
laxation. The theory of approximation algorithms provides a methodology for evaluating relaxation quality
using worst-case analysis. Designing strong relaxations with analytically proven performance guarantees

(i) reveals meaningful insights for relaxations that are well-suited for a MILP instance and (ii) derives ef-

fective reformulations towards those structures (Cornuéjols, 2008). Structural combinatorial properties of

near-optimal solutions may strengthen MILP models, e.g. with valid inequalities and symmetry breaking

constraints (Margot], 2010)).

Example 1. Tight theoretical bounds show that the so-called PQ-formulation attains the best possible per-

formance guarantee (Dey and Gupte, |2015; |Tawarmalani and Sahinidis, |2002). Empirical evidence demon-
strates the computational superiority of the PQ-formulation compared to other formulations (Alfaki and
[Haugland, |20154d).

3.2. Problem Classification
PSE investigates different techniques, e.g. branch-and-bound, cutting planes, metaheuristics, and de-
compositions, for effectively solving a variety of MILP problems arising in engineering. A major goal is

developing general purpose solvers selecting the most appropriate solution method for each concrete MILP

instance. Heuristics are an essential tool in MILP solving (Berthold, 2014} [Fischetti and Lodi, [2010} [Schulz|

let al., 1997, Williamson and Shmoys, [2011)). Performance guarantees, which arise from the theory of ap-

proximation algorithms, evaluate and classify the computational performance of heuristics. Investigating the
approximation properties of A"P-hard problems involves (i) designing efficient approximation algorithms and
(ii) determining inapproximability results. Approximation algorithms exploit special structure and expose
tractable optimization problem subcases. Hardness of approximation classifies problems from a computa-
tional complexity viewpoint and determines the limits of efficient approximation. These directions contribute

to selecting and employing suitable solution methods for PSE problems.

Example 2. |Chen et al| (1998) and|Coffman et al| (2013) provide extensive reviews and classifications of

approzimation algorithms for scheduling and bin packing problems. These algorithm portfolios improve the

ability of solving such problems efficiently (Bischl et al., |2016).

3.3. Design of Solution Methods

PSE optimization methods can be broadly divided into global and local (nonlinear programming) (Gross-
. Global optimization has attracted substantial attention by the PSE community because it
overcomes the limitations of local optimization in generating solutions with guarantees of e-global optimal-
ity. On the other hand, local optimization can be particularly useful when dealing with PSE problems

of massive size. TCS provides a framework for designing algorithms attaining good trade-offs in terms of



solution quality and running time efficiency (Schulz et all [1997). An approximation algorithm computes

solutions quickly that are provably close to optimal. Furthermore, TCS offers a toolbox of techniques for
designing approximation algorithms including local search, dynamic programming, linear programming, du-
ality, semidefinite programming, and randomization. Hence, approximation algorithms are handy for very

large-scale PSE problem solving with certified distance from optimality.

Example 3. |Letsios et al| (2018) provide a collection of heuristics with proven performance guarantees for

solving large-scale instances of the minimum number of matches problem in heat recovery network design.

These heuristics obtain better solutions than commercial solvers in reasonable time frames.

3.4. Dealing with Uncertainty

Process operations exhibit inherent uncertainty such as demand fluctuations, equipment failures, and

temperature variations. The successful application of PSE optimization models in practice depends crucially

on the ability to handle uncertainty (Pistikopoulos| |1995)). A key challenge is to construct robust solutions

and determine suitable recovery actions responding proactively and reactively to variations and unexpected
events. Optimization methods under uncertainty yield suboptimal solutions with respect to the ones that may

be obtained with full input knowledge. Approximate performance guarantees are useful for characterizing

the structure of robust solutions (Bertsimas and Sim| 2004} Bertsimas et al., [2011} |Goerigk and Schébel,

2016). Recovery strategies improve robust solutions by making second-stage decisions after the uncertainty

is revealed (Liebchen et al., 2009). TCS approaches derive recovery methods attaining good trade-offs in

terms of final solution quality and initial solution transformation cost (Ausiello et al., 2011; [Schieber et al.

[2018; [Skutella and Verschae, 2016)).

Example 4. Past literature obtains useful structural properties of robust solutions for fundamental combi-

natorial optimization problems under uncertainty. |Monaci and Pferschy (2013) show that the number of

perturbed item weights does not affect the solution quality in the knapsack problem. |Letsios and Misener|

show that lexicographic optimization imposes optimal substructure for the makespan scheduling prob-

lem. |Schieber et al| (2018) present a framework designing reoptimization algorithms with analytically proven

performance quarantees and present a family of fully polynomial-time reapproximation schemes.

4. Pooling

Pooling is a major optimization problem with applications, e.g. in petroleum refining (Baker and Lasdon),
1985)), crude oil scheduling (Lee et al [1996} [Li et all, [2012)), natural gas production (Li et all, [2011} [Selot|
2008), hybrid energy systems (Baliban et al.,[2012)), water networks (Galan and Grossmann, [1998), and

a sub-problem in general mixed-integer nonlinear programs (MINLP) (Ceccon et al., 2016). The goal is to

blend raw materials in intermediate pools in order to produce final products, minimizing process costs while

satisfying customer demand and meeting final product requirements. Pooling is an NP-hard, nonconvex



nonlinear optimization problem (NLP) and variant of network flow problems. The challenge is to deal with

bilinear terms and multiple local minima (Haverly, [1978).

4.1. Brief Literature QOuerview

Algorithms for the pooling problem have evolved in tandem with state-of-the-art non-convex quadratically-

constrained optimization solvers (Audet et all 2004; Boukouvala et al., [2016; [Misener and Floudas, [2009)).

Early approaches rely on sparsity and tackle large-scale instances with successive linear programming (SLP),
i.e. efficiently solving a sequence of linear programs obtained by first-order Taylor approximations of bilinear

terms (Baker and Lasdon| [1985; DeWitt et al., |1989)). [Visweswaran and Floudas| (1990} 1993) investigate

global optimization methods using duality theory and Lagrangian relaxations, which are further explored

by [Adhya et al| (1999). A subsequent line of work develops strong relaxations with convex envelopes in-

cluding reformulation-linearization cuts (Meyer and Floudas, 2006; Quesada and Grossmann, (1995} |Sheralil
land Adams| [1999; [Sherali and Alameddine, [1992), McCormick envelopes (Al-Khayyal and Falk, [1983} [Foulds|
let al.l [1992} McCormick, [1976]), sum-of-squares (Marandi et al.|[2018)), multi-term and edge concave cuts
let al., 2009; Misener and Floudas| 2012; Misener et al.,2014). These approaches are employed in state-of-the-

art mixed-integer nonlinear programming software where piecewise-linear relaxations may further improve

solver performance on pooling problems (Gounaris et al. 2009; Hasan and Karimil 2010} Kolodziej et al.

[2013} Misener et al. 2011; Misener and Floudas, [2012; [Wicaksono and Karimi|, 2008). Further valid linear

and convex inequalities are derived from nonconvex restrictions of the pooling problem (Luedtke et al., [2018).

Parametric uncertainty in the pooling problem has recently been considered using stochastic programming

and robust optimization approaches (Li et all [2012] [2011} [Wiebe et al.l [2019).

Exact MINLP methods exhibit exponential worst-case behavior, so designing heuristic approaches with
analytically proven performance guarantees is useful for (i) finding provably good solutions on a fast time

frame and (ii) solving very large scale instances where.

4.2. Problem Definition

A pooling problem instance is a directed network 7' = (N, A), where N is the set of vertices and A is the
set of arcs. Figure[2]illustrates a pooling network. The set of nodes can be partitioned into the sets ITULU.J,
where I is the set of input or source nodes, L is the set of pool nodes, and J is the set of output or terminal
nodes. The directed arcs A are a subset of X UY UZ, where X = I x L, Y =LxJ,and Z=1xJ. A
solution to the pooling problem can be viewed as a flow of materials in the network 7. Input nodes introduce
raw materials, pool nodes mix raw materials and produce intermediate products, while output nodes export

final products. Let z;; be the flow exiting input node ¢ € I and entering pool ! € L. Then, >._; z;; units of

iel

flow enter pool [ € L. Similarly, denote by ¥; ; and z; ; the flow transferred from pool [ € L to output node
p Yy Y Yi,j \J p p

j € J and the bypass flow routed directly from input node i € I to terminal node j € J, respectively. Then,

Y icr Vg + D icr %,y units of flow enter output node j € J. Flow conservation enforces that the amount

> ic1 iy of entering raw materials is equal to the amount >, ;y; of exiting intermediate product, for



Input;

Figure 2: Pooling network T' = (N, A) with (i) input, (ii) pool, and (iii) output nodes. Straight arcs represent input-to-pool
and pool-to-output flow. Dashed arcs illustrate bypass input-to-output flow.

each pool [ € L. The total quantity of raw material ¢ € I and final product j € J are subject to the box
constraints A <>, @iy < AV and Df <37 cp w4+ Yier ziy < DY, respectively. Moreover, pool I € L
has flow capacity S;. presents the notation for the pooling problem.

Pooling problem monitors a set K of quality attributes, e.g. concentrations of different chemicals, for
each raw material, intermediate, and final product. Raw material ¢ € I has attribute k¥ € K value C; i.
The intermediate and final product attribute values are determined assuming linear blending. Specifically,

the attribute £ € K value p;; in pool | € L satisfies p; ZjeJyl,j =Y .7 %i1Cik. On the other hand,

iel
the attribute & € K value of end product j € J is ZleL DLEYL; T+ Ziel 2;,;C; k. Final product j € J is
constrained to admit attribute k € K value in the range [ij k> P;{k]. The goal is to optimize raw material
costs and sales profit. In particular, let ¢; and d; be the unitary cost of raw material 7 and the unitary profit

of end product j. Then, the pooling problem minimizes ;. c;iv; — ZjeJ d;y;.

4.3. Mathematical Models

This section provides the standard P- and PQ-formulations (Ben-Tal et al.,[1994; Haverly| 1978} |Quesada)

land Grossmann), [1995; Tawarmalani and Sahinidis, 2002)) for modeling the pooling problem. For simplicity,

these formulations are presented assuming the pooling network is complete, i.e. contains all possible arcs,

but can be easily extended to arbitrary networks.

4.8.1. P-formulation
The P-formulation (Haverly] [1978)) uses the Section [£.2] arc flow and intermediate product attribute
variables and can be stated using Equations . The resulting quadratic programming formulation includes

bilinear terms due to linear blending.



min Z CiTi | — Z djyl,j — Z (dj — Ci)Zi,j (1&)

SR nex LeY (i)ez

AP <> w4+ )z < AY iel (1b)
leL jeJ

dDu;<S lel (1c)

jeJ

DE<S> "y j+> 2 ,;<DY jed (1d)
leL iel

Zmi,z=zyl,j lel (Le)

i€l jeJ

D> Cikii =Pk Y UL leLke K (1f)

icl jed

S opkv i+ Cikzi g = PEO u i+ z5) jeEJkeK (1g)

leL i€l leL el

Zpl,kyl,j+zci,kzi,j SPJ?k(Zyz,j-l-ZZi,j) jeJkeEK (1h)

leL iel L€l el

Zi, 1Y, 55 %i,5 = 0 iel,leL,jeJ (1i)

Pk 20 leLke K (1j)

Expression optimizes raw material costs and final product profits. Constraints - impose
bounds on the raw material quantities, pool sizes, and final product quantities, respectively. Constraints
ensure material balances. Constraints model linear blending. Constraints - enforce quality
specifications. Constraints - ensure that all variables are non-negative.

4.3.2. PQ-formulation

The PQ-formulation (Quesada and Grossmann, 1995; Tawarmalani and Sahinidis, 2002) extends the

Ben-Tal et al.| (1994) pooling problem Q-formulation and replaces the P-formulation variables z; ; with

path flow variables v; ; ; and proportion variables ¢; ;, for i € I, [ € L, and j € J. Specifically, v; . ;
represents the flow transferred from input node ¢ € 7 to output node j € J via pool node ! € L and g¢; ;
corresponds to the proportion of total flow entering pool [ € L that originates from input node i € I, i.e.
Ti = Qi1 Zje,] y,; and 0 < ¢; 1 < 1. The PQ-formulation can be stated using Equations and results
in a tighter McCormick relaxation compared to the P-formulation. The P@Q-relaxation can be strengthned
by appending valid constraints derived with the reformulation linearization (RLT) technique
[Alameddine, [1992)).




i o (ci—divia i+ Y (ei—dj)z (2a)

(i,,j)EIXLXJ (i,5)€Z
AP < DT v+ Yz < AY i€l (2b)
L,5)ey jeJ
ST v <S8 lel (2¢)
(i,)€Z
DF< > v+ > 2, <DY jeJ (2d)
()EX i€l
Vi, 1, = i, 19,5 iel,jeJlel (2e)
Zqi,lzl leL (2f)
iel
D Vi = leLjeY (28)
iel
> (Cik—PF)vi i+ > (Ciok— PRz ; >0 jeJ (2h)
(i,))EX iel
Z (Ci,k — Pfk)vz‘,z,j + Z(Cz’,k - Pf{k)zi,j <0 jeJ (2i)
(i,)ex i€l
Yi,5-%i,5 =0 iel,leL,jeJ (2j)
0<¢,1 <1 iel,leL (2k)

Expression minimizes the total cost. Constraints (2b)) - (2d]) enforce bounds on the raw material
quantities, pool sizes, and final product quantities, respectively. Constraints - express material
balances. Constraints (2h]) - impose quality specifications. Constraints - (2k)) ensure non-negativity

of flow variables and fraction bounds.

4.4. Computational Complexity and Approzimation Algorithms

This section discusses the known computational complexity and approximation algorithms for the pooling
problem. Table |1] additionally summarizes the computational complexity results discussed in this section.

When there are no quality constraints, i.e. |[K| = 0, or Pfk = 0 and Pj(,jk = +oo for each j € J and
k € K, pooling becomes an instance of the well-known minimum cost flow problem which is polynomially
solvable. Pooling is also a tractable LP when there are no intermediate pools and the problem is referred to
as blending. In the more general case with both quality constraints and intermediate pools, Table [1| reports
state-of-the-art computational complexity results for subproblems with (i) set cardinality restrictions, (ii)
special network structure and (iii) supply/demand/capacity restrictions.

Alfaki and Haugland| (2013b)) show that pooling is strongly NP-hard even in the special case with a
single pool, i.e. |L| = 1, through a reduction from the independent set problem. The problem remains
NP-hard for instances with a single quality attribute, i.e. |[K| = 1, via a reduction from Exact Cover by
3-Sets (Boland et al., [2017)). On the other hand, in the singleton cases with a single input or output, i.e.
min{|I|,|J|} = 1, pooling can be easily formulated as an LP and is therefore polynomially solvable (Dey

and Gupte, 2015). These findings have motivated further investigations on pooling with set cardinality

10



Table 1: Pooling Problem Computational Complexity Results

Subproblem Complexity Reduction
Singleton subproblems

[Il=1 P -

[J] =1 P -

IL|=1, Z=0 NP-hard Independent Set
|K|=1 NP-hard Exact Cover by 3-Sets
Other cardinality-restricted special cases

Ll =1, [J|=0(1), Z=0 P .

Ll =1, K| = 0(1), Z=10 P .

=2, |[K|=1 NP-hard Exact Cover by 3-Sets
[J] =2, |[K|=1 NP-hard Exact Cover by 3-Sets
=2, |J=2, |K|=1 NP-hard Partition
Special network structure

min{A9Ut, Aln} =1 P -

A;?‘” <2, A;’“t <2 NP-hard Maximum Satisfiability
A <2, A}" <2 NP-hard Minimum Satisfiability
Supply, demand, and pool capacity restrictions

IL| =1, [K|=1, A} =0,AY =0, §; =00, DF = DY P -

restrictions. For instances with a single pool with no input-output arcs where the number of inputs (Boland
et al., [2017)), outputs (Alfaki and Haugland| 2013b)), or attributes (Alfaki and Haugland) 2013b; [Haugland,
2014) is bounded by a constant, i.e. min{|I|,|J|, |K|} = O(1), the problem can be solved in polynomial time
using a series of LPs. In the case |K| = 1 with a single quality attribute where there are either two inputs, or
two outputs, i.e. min{|I|, |J|} = 2, the problem is still AP-hard by a reduction from Exact Cover by 3-Sets.
Finally, when |I| = |J| = 2, pooling is known to be weakly N'P-hard through a reduction from Partition.

Haugland| (2016]) shows that pooling is A'P-hard for problem instances with sparse network structure.
Let A" and A" be the out-degree, i.e. number of outgoing arcs, of input 7 € I and pool | € L, respectively.
When every out-degree is at most two, i.e. max{A"* A?"} < 2 Haugland| (2016)) presents an A"P-hardness
reduction from maximum satisfiability. Denote by A" and Aijn the in-degree, i.e. number of ingoing arcs, of
pool ! € L and output j € J, respectively. When each in-degree does not exceed two, i.e. maX{A}”, Aij“} <2,
pooling is A'P-hard through a reduction from minimum satisfiability (Haugland| [2016)). However, in the
case where each pool has either in-degree or out-degree equal to one, i.e. min{ A", A%n} = 1, the problem
is polynomially solvable (Dey and Gupte, [2015; |Haugland and Hendrix, [2016)). Finally, for instances with
a single pool and attribute, unlimited supplies/pool capacities and fixed demands, the pooling problem is
strongly-polynomially solvable (Baltean-Lugojan and Misener, 2018]).

The only known theoretical performance bounds for pooling are an O(n)-approximation algorithm and
an Q(n'~¢) inapproximability result, for € > 0, by |Dey and Gupte| (2015). The proposed algorithm solves
the relaxation obtained by applying piecewise linear McCormick envelopes to the bilinear terms of the PQ-
formulation (Gupte et al., [2013] |2017)). Overestimators and underestimators are computed by partitioning
the domain of proportion variables to a finite MILP-representable set. For the negative result, Dey and

Gupte| (2015]) present an approximation-preserving reduction from independent set.

11



Prod. 1

o

Feed A Hot A 40%  Int. AB 10%

: ()
Q—» Heating W 0% Reac. 1 0%

60% Impure E

0
Int. BC Q—» Separation
Feed B 80% 90%
O Fae]
50%

Feed C Prod. 2

50% 20%

Figure 3: Network structure for the state-task network by Kondili et al.QKondili et al.l, |1993D

5. Process Scheduling

Scheduling process operations, a.k.a. batch scheduling, is crucial in different application areas including
chemical manufacturing, pharmaceutical production (Lainez et al) 2012), food industry
[1997), and oil refining (Harjunkoski et al), [2014). Process scheduling problems are the topic of many fruitful
investigations in the PSE literature (Castro et al., 2018} |[Floudas and Linl 2004; [Harjunkoski et al., |2014}
[Méndez et all [2006; Wiebe et all [2018). The goal is to efficiently allocate the limited resources, e.g.

processing units, of manufacturing plants to tasks and decide the product batch sizes so as to construct
multiple intermediate and final products satisfying the customer demand. These products are often based

on recipes in the form of state-task networks where each task receives raw materials and intermediate products

to generate new products (Kondili et al., 1993} [Shah et all [1993). State-task networks may model general

batch processes including material mixing, splitting, recycling, as well as different storage policies (Kallrath
2002). Fig. |3| presents an example of a state-task network. Typically, process scheduling involves solving
NP-hard, mixed-integer linear programming problems which require algorithms exploiting the state-task

network’s structure.

5.1. Brief Literature Overview

Scheduling is a relatively recent area in PSE (Mauderli and Rippin, |1979; Reklaitis, 1982) and has received

considerable attention after the seminal work by [Kondili et al.| (1993) who introduced the state-task network

framework for modeling mixing and splitting of material batches. [Pantelides (1994)) extended the state-task

network to the notion of a Resource-Task Network (RTN) for incorporating multiple resources in a unified
setting. Process scheduling problems include a variety of aspects that need to be considered, such as different
production stages, storage policies, demand patterns, changeovers, resource constraints, time constraints, and
uncertainty. Furthermore, they require optimizing different objective functions, e.g. makespan, production

costs, or sales profit. There is significant work providing surveys and problem classification for process



scheduling (Castro et al.l 2018} [Floudas and Lin|, |2004; [Harjunkoski et al. 2014} [Li and Ierapetritou, |2008}
[Maravelias| 2012} [Méndez et al., [2006).

Significant literature solves process scheduling problems using MILP, this work is supported by the

significant progress in CPU speed and algorithms in the last two decades. State-of-the-art mathematical

modeling develops discrete-time and continuous-time formulations (Maravelias and Grossmann, 2003blal).

These approaches are strengthened by reformulation and tightening methods (Ierapetritou and Floudas|

[1998; |Schilling and Pantelides| 1996; Sundaramoorthy and Karimi, [2005; [Velez and Maravelias, [2013b).

Branch-and-cut, decomposition, constraint programming, metaheuristic, hybrid approaches, and satisfiabil-

ity modulo theories are also explored (Castro et all [2011; Kopanos et al., 2009; Maravelias and Grossmann),

[2004; [Mistry et all, |2018; [Till et al., [2007; [Velez and Maravelias, [2013a; [Wu and Ierapetritou, [2003). Re-

cently, generalized-disjunctive programming has emerged as a novel framework for effectively solving process

scheduling problems using big-M and convex hull reformulations (Castro and Grossmann, 2012). In addition,
rescheduling has been used as a tool for mitigating the effect of disturbances under uncertainty (Gupta et al.
[2016} |Gupta and Maravelias| [2019).

5.2. Problem Definition

A process scheduling problem instance consists of a state-task network specifying a recipe for generating
chemical products from raw materials. Formally, a state-task network is a directed bipartite graph N =
(SUI, A) with a partition of nodes into a subset S corresponding to states, i.e. raw materials, intermediate,
and final products, and a subset I representing tasks. The network N is bipartite, i.e. the set A=A~ U AT
of arcs consists of consumption arcs A~ C S x I and production arcs AT C I x S. Arc (s,i) € A~ implies
that task ¢ € I consumes a positive amount of state s € S. Analogously, arc (i,s) € A" indicates that task
i € I produces a positive amount of state s € S. There is a set J of processing units for executing tasks.
Each unit may process at most one task per unit of time. Denote by J; C J the subset of units that may
perform task i € I and by I; = {i: (j € J;) A (¢ € I)} the set of tasks that may be performed by unit j € J.
Moreover, let £ be the time horizon length and T = [0, ¢]. If task ¢ € I begins execution on unit j € J; at time
t € T, then it may process a variable amount b; ;¢ of material, a.k.a. batch size, for p; ; units of time, and

U

completes at time t+p; ;. Let b£ ; and b7 ; be the minimum and maximum capacity, respectively, of unit j € J

when processing task ¢ € I. Continuous variable b; ;; is allowed to take any value in the interval [bfj, bgj].
Denote by f; and f;‘s the material fraction entering and exiting processing, respectively, as state s € S
when task i € I is processed. If S; = {s: ((s,i) € A7) A (s € S)} and S = {s: ((i,5) € AT)A (s € S)}
are the consumables and products of task ¢ € I, respectively, then task i consumes fijsbﬁj,t portion of state
s € S; and produces f;'b; ;¢ quantity of state s € S;". Suppose that IJ = {i : ((i,s) € AT) A (i € I)}
and I; = {i: ((s,4) € A7) A (i € I)} are the sets of tasks producing and consuming, respectively, state
s€S. Then, > i+ D ey Doser [ bijt—p, ; amount is produced and Y-, - Y jer 2uter fisijt quantity
is consumed for state s € S at t € T. presents the notation for process scheduling.
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The goal of process scheduling is to satisfy a demand d; for each state s € S. Denote by y,; the amount
of s € S at time slot ¢ € T. Without loss of generality, we assume that ys o = 0, i.e. there is initially zero
amount of state s € S. When the time horizon completes, the obtained solution must satisfy ys, > d,
for each s € S. The objective is to schedule the tasks on the units and decide the batch sizes so that the

makespan z, i.e. the time at which the last task completes, is minimized.

5.3. Mathematical Models

The main approaches for formulating process scheduling problems as MILP problems are typically clas-

sified as (i) discrete-time (Kondili et al., 1993; Shah et all 1993), or (ii) continuous-time (Maravelias and;
|Grossmann, [2003b)). [Floudas and Lin| (2004) and Méndez et al.| (2006) provide thorough discussions on

the advantages of each. Discrete-time formulations partition time into a large number of time intervals.
Continuous-time formulations (i) use a small number of event points resulting in fewer variables, and (ii)
express inventory and backlog costs linearly. However, continuous-time formulations generally tend to be
nonlinear. Mixed-time representations utilize both the discrete-time and continuous-time models
[Maravelias] 2018} [Maravelias), [2005]).

5.83.1. Discrete-Time Formulation

Discrete-time formulations partition the time horizon into a set T = {1,...,¢} of equal-length slots.
Integer variable z; ;: indicates whether task ¢ € I is executed by unit j € J starting at time ¢t € T.
Continuous variable b; ;+ specifies the corresponding batch size. Continuous variables y,; denote the stored
amount of state s € S at time t € T. Finally, continuous variable z computes the makespan. Process

scheduling can be modeled using the Eq. MILP formulation.

min z (3a)

z > x4 5t (t+ pig) iel,je J;j,teT (3b)
t
> > migw<l jeJteT (3¢)
V€I ¢/ =t—p; ;+1
@i j,ebi; < bige < @i by i€l,jeJ,teT (3d)
Ys,t = Ys,t—1 + Z Z fisbi,j,tfpiyj+l - Z Z fz‘jsbi,j,t sesteT (36)
ierf J€Ji ier; 3€J:

Ys,k > d57ys,1 =0 seS (3f)
i g € {0, 1} iel,jedi,teT (3g)
2,b; 5.¢,Ys;t >0 icl,jeJ,scS,teT (3h)

Expression (3a)) minimizes makespan. Constraints (3b]) define the makespan. Constraints ensure
that each unit processes at most one task at each point in time. Constraints and express unit

capacities and material conservation, respectively. Constraints enforce that the demand is statisfied.
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Finally, constraints - (Bh)) impose that integer and continuous variables are binary and non-negative,

respectively.

5.8.2. Continuous-Time Formulation

Continuous-time formulations divide the time horizon into a set of slots, similarly to discrete-time formu-
lations. The number of slots is fixed, but the slots are not necessarily of equal length. The slot boundaries
are determined by a set T of £ variable time points. Continuous variable t;, specifies the rightmost time point
k € T of one slot and the leftmost time point of the subsequent slot. Furthermore, each job’s starting and
completion time is mapped to a time point. Binary variables xf . and xf i express whether task ¢ € I begins
and completes, respectively, at time point k € T. To match time points with task starting and completion
times, continuous variables tf . and tf . compute the start and finish time of task ¢ € I beginning at time
point k € T'. Continuous variables p; ;, and b; j, correspond to the processing time and batch size of task i € 1
starting at time point £ € T'. Finally, continuous variable y,  models the amount of state s € S at time point
k € T. Without loss of generality, we assume that |J;| = 1 for each i € I, i.e. tasks i can only be executed by
a single unit. To model the case |J;| > 1, we may add multiple occurrences of the same task. Furthermore,
we note that continuous-time formulations may easily incorporate variable task durations. Specifically, we
suppose that task ¢ € I has a variable duration a; that depends on the batch size, in addition to a fixed

duration ;. Then, variable p; ; denotes the processing time of job i € I starting at time point k € T'.

min 2z (4a)
2>t +pik i€LkeT (4b)
Pik = aizly, + Bibly ielkeT (4c)
)y <tk +H(1—a7y) i€LkeT (4d)
9y >t — H(L—a7y) ielLkeT (4e)
th <tx+pip+ H1—27)) i€LkeT (4f)
th >t +pie — HQ—af)) iclkeT (4g)
th, —th 1 < Haiy ieLkeT\{1} (4h)
th 1 <te+H(1—2F)) iel,keT\ {1} (4i)
e >t — HQ —xf)) ielkeT\{1} (4j)
t1=0,tp—1 < t,tg =H keT\{1} (4k)
Do @ —al) <1 jedkeT (41)
i€l k' <k
Z %Sk = Z Uﬁfk el (4m)
keT keT
z bl < by < 2P by iel,keT (4n)
Yok = Ysh1+ D [ibik—1— Y fibik s€ S, ke T\ {1} (40)

ierd icly

Ys,0 2 ds sESkET (4p)
ol wig € 10,1} ielLkeT (4q)
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tkvt;s:kvtfkapl,kvbz,kvys20 ZeI,k‘eT7SES (41’)

Expression minimizes makespan. Constraints are the makespan definition. Constraints
calculate the job processing time. Binary activation constraints - @ map continuous time variables
to time points. Constraints impose time horizon boundaries and the non-decreasing order of time
points. Constraints enforce that each unit processes at most one task per time. Constraints ensure
that every task that begins processing must also complete. Constraints incorporate unit capacities.
Constraints express mass balance. Constraints model storage capacities. Finally, constraints @D

- ensure that continuous and integer variables are non-negative and binary, respectively.

5.4. Computational Complexity and Approzimation Algorithms

Process scheduling problems are frequently characterized as computationally challenging (Floudas and
|2004; Harjunkoski et all 2014)). However, computational complexity investigations are limited and

isolated. To our knowledge, Burkard et al. (1998)) have only work in this direction. Burkard et al. (1998)

observe that process scheduling (i) is strongly NP-hard as a generalization of the job shop scheduling
problem, and (ii) remains AP-hard even in the special case with two states through a straightforward
reduction from knapsack. Heuristics have been reported as a tool for solving large-scale process scheduling

instances (Harjunkoski et al. [2014; Méndez et al. |2006; Panwalkar and Iskander, [1977). Nevertheless,

only few early works in the area develop heuristics exploiting the problem’s combinatorial structure, e.g.

greedy layered (Blomer and Gunther, 2000) and discrete-time relaxation rounding (Burkard et al.l [1998]).

Furthermore, there is lack of analytically proven performance guarantees.
The above observations are opposed to the tremendous contributions of computational complexity and

approximation algorithms in scheduling theory. A classical scheduling problem may be defined using the

three-field notation which incorporates (Graham et al., [1979): (i) a machine environment, (ii) job character-

istics, and (iii) an objective function. The goal is to decide when and where to execute the jobs, i.e. at which
times and on which machines, so that the objective function is optimized. Single stage machine environments
include: identical, related, and unrelated machines. Multistage machine environments can be: open shops,
flow shops, or job shops. Examples of job characteristics are: release times, deadlines, and precedence con-
straints. Objective functions include: makespan, response time, tardiness, throughput and others. Despite
the commonalities between process scheduling and classical scheduling theory, there is a striking absence
of connections between the two fields. Their synergy constitutes a particularly interesting future direction
and has strong potential for successfully solving open process scheduling problems. To this end,
and |The Scheduling Zoo| (2016]) provide an extensive survey of results for fundamental scheduling
problems. Brucker] (2006); [Leung] (2004) and [Pinedo| (2012) present a collection of algorithms and techniques

for effectively solving such problems.
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6. Heat Exchanger Network Synthesis

Heat exchanger network synthesis is one of the most extensively studied problems in chemical engineering
(Biegler et al.,[1997; [Escobar and Trierweiler, [2013; [Furman and Sahinidis| [2002; (Gundersen and Naess), [1988;
2000). Major heat exchanger network synthesis applications include energy systems producing liquid
transportation fuels (Floudas et al., [2012; Niziolek et al., |2015)), natural gas refineries (Baliban et al [2010;
2017)), refrigeration systems (Shelton and Grossmann|, [1986), batch processes (Castro et al [2015}

[Zhao et al.[1998), and water utilization systems (Bagajewicz et al.,[2002). Heat exchanger network synthesis

minimizes the total investment and operating costs in chemical processes. In particular, heat exchanger
network synthesis: (i) improves energy efficiency by reducing heating utility usage, (ii) optimizes network

costs by accounting for the number of heat exchanger units and area physical constraints, and (iii) improves

energy recovery by integrating hot and cold process streams (Elia et al.| [2010}; [Floudas and Grossmann, [1987)).

The goal is designing a heat exchanger network matching hot streams to cold streams and recycling residual
heat, by taking into account the nonlinear nature of heat exchange and thermodynamic constraints. Heat
exchanger network synthesis is an A/P-hard, MINLP instance with (i) nonconvex nonlinearities for enforcing
energy balances, and (ii) discrete decisions for placing heat exchanger units. This section investigates the
nonlinear and integer heat exchanger network synthesis parts individually by considering the multistage

minimum utility cost, and minimum number of matches problems separately.

6.1. Brief Literature QOuverview

Optimization methods for heat exchanger network synthesis can be classified as: (i) simultaneous, or (ii)
sequential. Simultaneous methods produce globally optimal solutions. Sequential methods do not provide

any guarantee of optimality, but are useful in practice. Simultaneous methods formulate heat exchanger

network synthesis as a single MINLP, e.g. [Papalexandri and Pistikopoulos| (1994)). |Ciric and Floudas| (1991))

propose the hyperstructure MINLP formulating heat exchanger network synthesis without decomposition

based on the stream superstructure introduced by [Floudas et al. (1986). |Yee and Grossmann| (1990) develop

the multistage MINLP (a.k.a. SYNHEAT model) using a stagewise superstructure. Because the multistage
MINLP assumes isothermal mixing at each stage, the nonlinear heat balances are simplified and performed
only between stages. Sequential methods decompose heat exchanger network synthesis into three distinct
subproblems: (i) minimum utility cost, (ii) minimum number of matches, and (iii) minimum investment
cost. These subproblems are more tractable than simultaneous heat exchanger network synthesis. In par-

ticular, (Cerda and Westerburg (1983)); [Cerda et al| (1983); Papoulias and Grossmann| (1983)) suggest the

transportation and transshipment models formulating the minimum utility cost problem as LP and the

minimum number of matches problem as MILP. Floudas et al. (1986) propose the stream superstructure

formulating the minimum investment cost problem as an NLP. Other heat exchanger network synthesis
approaches exploit the problem’s thermodynamic nature, and mathematical and physical insights in order

to design more efficient algorithms. (Ahmad and Linnhoff, |1989; /Ahmad and Smith, 1989; |Gundersen and|
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Grossmann), [1990; [Gundersen et all, [1997; [Kouyialis and Misener, 2017} [Leitold et all, 2019; [Linnhoff and
[Ahmad] [1989; Linnhoff and Flower] 1978} [Linnhoff and Hindmarsh] [1983; [Masso and Rudd] [1969} [Mistry

land Misener}, 2016; [Pho and Lapidus, [1973; Polley and Heggs|, [1999).

6.2. Problem Definitions

A heat exchanger network synthesis instance consists of a set H of hot streams to be cooled down and
a set C' of cold streams to be heated up. Each hot stream i € H and cold stream j € C' is associated with
an initial, inlet temperature T;", T}", target, outlet temperature T, T9"*, and flow rate heat capacity Fj,
F}, respectively. The temperature of hot stream ¢ € H must be decreased from Tim down to TP, while the
temperature of cold stream j € C has to be increased from T]i»’ﬂ up to Tj‘?“t. For each ¢ € H and j € C, flow
rate heat capacities F; and Fj specify the quantity of heat that a stream releases and absorbs, respectively,
per unit of temperature change. That is, hot stream i € H supplies F;(T/® — T°") units of heat, while cold
stream j € C demands F;(T9"* —T"") units of heat. presents the notation for heat exchanger

network synthesis.

6.2.1. Multistage Minimum Utility Cost

In multistage heat exchanger network synthesis, heat transfers between streams occur in a set S of £
different stages. Hot streams flow from the stage 1 to stage ¢, while cold streams flow, in the opposite
direction, from stage ¢ to stage 1. When a hot, respectively cold, stream enters stage k € S, it is split into
substreams each one exchanging heat with exactly one cold, respectively hot, stream and these substreams
are merged back together when the stream exits the stage. Figure [ illustrates splitting and mixing. For
k € S, denote by t; ;, the temperature of hot stream ¢ € H when exiting and entering the stages k and k£ +1,
respectively. Similarly, let ¢; ;, be the initial and last temperature of cold stream j € H at stages k and k+1,
respectively, for £ € S. The multistage minimum utility cost problem decides how to split the streams in
each stage. The substream of i € H exchanging heat with j € C' at stage k € S gets flow rate heat capacity

H

[i5 k- Similarly, the substream of j € C' exchanging heat with ¢ € H at stage k € S is assigned flow rate

?

heat capacity fC; ;. It must be the case that Y-, ff = Fyand Y,y & = Fj, forall ke S. If i€ H

H

is matched with j € C at k € S, the corresponding substream of i and j results with a temperature ik

and tiC:L > Tespectively, when the stage completes. At stage k € S, hot stream 7 € H and cold stream j € C
have final temperatures t; ; and ¢; 1 such that Fit;, = 3 ;¢ SR and Fitj ey =Ygy f5 4885 k-
The total heat exchanged between ¢ and j at k is ¢; j x = ffj,k(ti,k - tijk) and ¢; j, = fZ%’k(tfj’k —t k), Le.
there is heat conservation. A hot and cold utility may provide or extract heat at unitary costs ¢’V and ¢“V.
The cold utility exports QSY = F;(t; o — TP") units of heat from hot stream i € H. Analogously, the hot
utility supplies Qf U= Fj(T]‘?”t —tj,0) units of heat to cold stream j € C. The goal is to exchange heat and
reach the target temperature for each stream so that the total utility cost > ., CCUQiCU + Zjec cHUQ;LIU

is minimized.
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ti k-1 ti k+1

Stage k Stage k+1

Figure 4: Illustration of multistage heat exchanger network synthesis. Hot stream ¢ € H across multiple stages in increasing
order of their indices. At stage k € S, stream 1 is split into substreams.

6.2.2. Minimum Number of Matches Problem

In the minimum number of matches problem, heat transfers occur similarly to standard network flow
problems (Ahuja et al., [1993)). A problem instance only consists of streams. The utilities are considered
as streams whose parameters, i.e. flow rate heat capacities, inlet and outlet temperatures, are computed
by solving a minimum utility cost LP to ensure heat conservation. Specifically, hot stream i € H exports
hi = Fi(T}* — T{") units of heat, cold stream j € C receives ¢; = Fj(T/" — T;") units of heat, and
Dienhi =2 jec G A minimum heat approach temperature AT,;, accounts for the energy lost by the
system. We may assume that ATy, = 0, because any problem instance can be transformed to an equivalent
one satisfying this assumption. Let Ty > 13 > --- > T, be all discrete inlet and outlet temperature
values. The temperature range is partitioned into a set T' = {[T},Ti—1] : 1 < t < r} of consecutive
temperature intervals. In temperature interval ¢ € T, hot stream i € H exports o, = F;(T;—1 — T;) units
if [Ty, Ty—1] C [T, Ti"], and o0, + = 0 otherwise. Likewise, cold stream j € C receives 00 = Fj(Tio1 — Tt)
units of heat if [T}, Ty 1] € [T}, T™], and 6;, = 0 otherwise. A feasible solution specifies a way to transfer
the hot streams’ heat supply to the cold streams, i.e. an amount g; s ;+ of heat exchanged between hot stream
i € H in temperature interval s € T and cold stream j € C in temperature interval ¢ € T. Heat may only
flow to the same or a lower temperature interval, i.e. g; 5+ = 0, for each ¢ € H, j € C' and s,t € T such
that s > ¢. A hot stream ¢ € H and a cold stream j € C are matched, if there is a positive amount of heat
exchanged between them, i.e. Zs,teT Qi,s,5,t > 0. The objective is to find a feasible solution minimizing the

number of matches (i, j).

6.3. Mathematical Models

This section presents a quadratic programming (QP) formulation for the multistage minimum utility cost

problem and an MILP formulation for the minimum number of matches problem.

6.3.1. Multistage Minimum Utility Cost Problem

In the Eq. QP formulation, continuous variables Q¢Y and Qf U compute the heat transferred from
hot stream ¢ € H to the cold utility and from the hot utility to cold stream j € C'. Continuous variables t; j
and ¢ ;, correspond to the temperature of hot stream ¢ € H and cold stream j € C' when exiting and entering

stage k € S, respectively. Continuous variables tf{J i and tfj, . express the exiting temperature of hot stream
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Temperature interval t Temperature interval ¢

o1,t 01,t h1 c1
Tit
01,t+1 h; Cj
T t41 05 t41
O, t+1 Om,t+1 hn Cm
Temperature interval t+41 Temperature interval t+41
(a) Transportation Model (b) Transshipment Model

Figure 5: In the transportation model (]Cerda and WesterburgL |1983D, each hot stream ¢ supplies o; ; units of heat in temperature
interval ¢ which can be received, in the same or a lower temperature interval, by a cold stream j which demands ¢, ; units of
heat in ¢t. In the transshipment model (Papoulias and Grossmann) 1983), there are also intermediate nodes transferring residual
heat to a lower temperature interval. This figure is adapted from [Furman and Sahinidis| (2004)).

i € H and cold stream j € C in heat exchanger (4, j, k), respectively. Continuous variables f ik fe Jj. model
the flow rate heat capacity of the hot and cold substream in heat exchanger (i, j, k). Auxiliary continuous

variables ¢; ; , are the heat exchanged via heat exchanger (4, j, k).

min Y cCUQEY 4+ 37 HUQIHY (5a)
1€H jec
QY = Fitie — ™) icH (5b)
QY =F, (T?’ut —t50) jec (5¢)
Sh= i€ HkeS (5d)
jec
S k= jeECkeS (5¢)
i€H

_ fH H . .
@i,k = Fig6®ik—1 — ;1) 1€H,jeCkeS (51)
Qg = £t 1 — tik) i€eHjeCkesS (5)
Fitige =Y 75t icHkeS (5h)
jec
Fitjp—1 = Z f,J,k 0,5,k jeCkes (51)
i€EH

tik—1 <tk i€HkeS (5)
tik—1 <tjk jeCkesS (5k)
T =tio > tig > TP i€H (51)
T > tj0 > tj e =T)" jeEH (5m)
tiko ik trg gt i =0 i€eHjeCkeS (5n)
FE e 1800 @i, QY. QY > 0 i€eHjeCkeS (50)
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Expression minimizes the total heating utility cost. Constraints and compute the heat
absorbed by cold utilities and the heat supplied by hot utilities. Constraints and divide the flow
rate heat capacity of each stream fractionally to its corresponding substreams. Constraints and
compute the heat load exchanged between each pair of streams and enforce heat conservation. Constraints
and compute temperature of each stream by mixing substreams. Constraints and enforce
temperature monotonicity. Constraints and assign initial temperature values and impose final
temperature bounds. Finally, Constraints and ensure that all variables are non-negative.

6.3.2. Minimum Number of Matches Problem

The minimum number of matches can be formulated as an MILP using either the transportation, or
the transshipment model in Figure |5 The former model represents heat as a commodity transported from
supply nodes to destination nodes. For each hot stream i € H, there is a set of supply nodes, one for each
temperature interval s € T" with o; s > 0. For each cold stream j € C, there is a set of demand nodes,
one for each temperature interval ¢ € T with 6;; > 0. There is an arc between the supply node (¢, s)
and the destination node (j,t) if s < t, for each i € H, j € C and s,t € T. Continuous variable ¢; s
specifies the heat transferred from hot stream i € H in temperature interval s € T to cold stream j € C in
temperature interval ¢ € T'. Binary variable y; ; indicates whether streams ¢ € H and j € C are matched.
Big-M parameter U; ; bounds the amount of heat exchanged between every pair of hot stream ¢ € H and

cold stream j € C, e.g. U; j = min{h;,c;}. Then, the problem can be modeled with formulation @

min Z Z Yi,j (6a)

i€H jeC

Z Z Qi,s,j,t = Oi,s 1€ H,seT (6b)
JECLET

SO st =051 JECtET (6c)
i€H seT

Z Gi,s,,t < Uij Yij ieH,jeC (6d)
s,teT
Qi,s,j,t =0 t€EH,jeC,s,teT: s>t (6e)
Yi,j €{0, 1}, i,s,5,6 2 0 i€H,jEC, s,teT (6)

Expression , the objective function, minimizes the number of matches. Equations (6b)) and ensure
heat conservation. Equations enforce a match between a hot and a cold stream if they exchange a
positive amount of heat. Equations are big-M constraints. Equations ensure that no heat flows to

a hotter temperature.

6.4. Computational Complezity and Approximation Algorithms

Furman and Sahinidis| (2001) show that minimum number of matches problem is strongly N P-hard,

even in the special case with a single temperature interval, through a reduction from 3-Partition (Garey
land Johnson, [2002). [Letsios et al| (2018) present an NP-hardness reduction from bin packing.
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[and Sahinidis| (2001)) demonstrate that the more general hyperstructure, multistage, and sequential heat

exchanger network synthesis are all strongly AP-hard as they can be reduced to the minimum number of
matches problem. On the positive side, the minimum utility cost problem in sequential heat exchanger
network synthesis can be formulated as an LP and is, therefore, polynomially solvable. The complexity of

the multistage minimum utility cost problem is an intriguing open question.

[Furman and Sahinidis| (2004) initiate the design of approximation algorithms for heat exchanger network

synthesis problems. In particular, they investigate the approximability of the minimum number of matches
problem and propose (i) a collection of greedy and relaxation rounding heuristics, (i) an O(r)-approximation

algorithm, where r is the number of temperature intervals, and (iii) a 2-approximation ratio for the single

temperature interval subproblem. Letsios et al| (2018) classify the heuristics for the minimum number of

matches of problem into relaxation rounding, water filling, and greedy packing. For the general problem,
they show (i) an Q(n) bound on the approximation ratio of deterministic LP rounding, (ii) an (k) bound
on the approximation ratio of greedy water filling, and (iii) a positive O(logn/e) ratio for greedy packing.

For the single temperature interval subproblem, they propose an improved 1.5-approximation algorithm.

7. Concluding Remarks and Future Directions

This paper discusses ways of using approximation algorithms for solving challenging PSE problems and
reports state-of-the-art examples motivating this line of work. We outline applications in: (i) mathematical
modeling, (ii) problem classification, (iii) design of solution methods, and (iv) dealing with uncertainty. In
order to exemplify the proposed investigations, we consider three fundamental PSE optimization problems:

pooling, process scheduling, and heat exchanger network synthesis. There are many other possible PSE

applications, e.g. in at the intersection between scheduling and control (Pistikopoulos and Diangelakis| 2016;

[Dias et al., 2018; Daoutidis et al., |2018} Dias and Ierapetritou, |2019; Etesami, [2019; Tsay et al., 2019), which

provide additional and interesting challenges.
This paper presents formal problem descriptions, standard mathematical programming formulations, brief
literature surveys, and prepares the ground for investigating three fundamental PSE optimization problems

from an approximation algorithms perspective. Some future challenges we see in this area are as follows:

1. Pooling remains NP-hard when each raw material supply, final product demand, and quality attribute
must be equal to a fixed value. In these fixed-value cases, pooling is a variant of standard multicom-
modity flow problems, which are among the most extensively studied combinatorial objects in TCS.

Extensions of the well-known min-cut max-flow theorem to the multicommodity flow setting result in

tight relaxations and dual multicut bounds (Garg et al.| [1996; [Leighton and Raol [1999).

Can we derive strong algorithms for large-scale instances via connections to multicommodity flow?
2. Pooling becomes more tractable in the case of sparse instances. Furthermore, discretization enables

efficient pooling solving with exact methods.
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Using the quality of sparse and discrete relazations, can we compute problem classifications to develop
useful trade-offs between solution quality and running time efficiency?
3. Process scheduling involves tasks with variable processing times to determine the batch sizes. Schedul-

ing with controllable processing times is an active operations research area dealing with this setting

(Shabtay and Steiner} 2007; Shioura et al., 2018). In TCS, analogous investigations have taken place

in the context of speed scaling where a processing unit may modify its speed to save energy and task

processing times are decision variables (Albers| [2010; [Albers et all [2017} [Angel et al [2019; [Bampis|
et al. [2015] |2016} |2018} Bansal et al., 2007; [Yao et al., [1995).

Can we apply techniques for obtaining algorithms with analytically proven performance guarantees,
including network flows, conver relaxations, and submodular optimization for solving PSE problem
instances?

4. State-task network problems are strongly related to precedence-constrained, shop, and resource-constrained

project scheduling (Bampis et al., 2014; Hall and Shmoys, 1989; Koné et al., 2011).

Could the different relaxations developed for these scheduling variants result in stronger mathematical
modeling strategies for process scheduling?

5. Determining the computational complexity of the multistage minimum utility cost problem is an in-
triguing future direction. Because of stream mixing, the problem exhibits commonalities with pooling.
However, no hardness reduction formalizes this insight of domain experts.

Could efficient approzimation algorithms for the multistage minimum utility cost problem assist in
solving simultaneous heat exchanger network synthesis at industrial scales?

6. The minimum number of matches problem remains a major bottleneck in heat exchanger network
synthesis. The problem can be considered as a special two-dimensional packing where the vertical and
horizontal axis correspond to temperature and flow rate heat capacity, respectively.

Could we take advantage of this packing nature to derive stronger formulations?
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Appendix A. Nomenclature

Appendiz A.1. Pooling Problem
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Type Name Description

Sets 1 Inputs nodes, raw materials
L Pool nodes, intermediate products
J Output nodes, end products
X Input-to-pool arcs
Y Pool-to-output arcs
Z Input-to-output arcs
K Quality attributes
Indices i Input
l Pool
J Output
k Attribute
Parameters ¢; Raw material unitary cost
d; End product unitary profit
AL AV Raw material supply bounds
S Pool capacity
DjL , D]U End product demand bounds
Cik Raw material quality attribute
Pf > Pfk End product quality attribute range
A AP Tnput, pool node out-degree
in, Aijn Pool, output node in-degree
Variables T4l Input-to-pool flow
Y, j Pool-to-output flow
Zi,j Bypass input-to-output flow
Vi, 1,5 Path flow
di,1 Input-to-pool fractional flow
Dl k Intermediate product quality attribute
Appendixz A.2. Process Scheduling
Type Name Description
Sets S States
1 Tasks
A State-task network arcs
At, A=  Production, consumption arcs
J Units
T Time slots, time points
I; Tasks that unit j may execute
J; Units capable of performing task ¢
S, Sj States consumed, produced by task 4
I, I} Tasks consuming, producing state s
Indices s State
1 Task
J Unit
t,t Time, time slot
k Time point
Parameters p; ; Processing time of task ¢ on unit j
b{j > bg Minimum, maximum processing capacity of unit j for task 4
fis fiis ~ Material fraction entering, exiting as state s for task i
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9 s Fraction of material for task ¢ entering as state s

ds Demand for state s

l Time horizon, number of time slots or time points
Variables z Makespan

Tyt Indicates whether task 7 begins processing on unit j at time ¢

bi ¢ Batch size of task ¢ starting on unit j at time ¢

Ys,t Stored amount of state s at time ¢

17 Time point k

xls k> arf . Indicate whether task ¢ begins, finishes at time point k

tfk, tfk Starting, finishing time of task i starting at time point &

Pik Processing time of task ¢ starting at time point k

bik Batch size of task i starting at time point &

Ys,k Amount of state s at time point k

Appendiz A.3. Heat Exchanger Network Synthesis

Type Name Description
Sets H Hot streams
C Cold streams
S Stages
T Temperature intervals
Indices i Hot stream
J Cold stream
k Stage
s,t Temperature interval
Parameters 1), T Hot stream i inlet and outlet temperature
T]i-“, e Cold stream j inlet and outlet temperature
F;, F; Flow rate heat capacity of hot stream ¢ and cold stream j
CHU,CCU Heating and cooling utility unitary cost
l Number of stages
r Number of temperature intervals
T; t-th greatest discrete inlet / outlet temperature value
h; Heat load of hot stream ¢
cj Heat load of cold stream j
Tis Heat supply of hot stream ¢ at temperature interval s
0j.¢ Heat demand of cold stream j at temperature interval ¢
Ui, Upper bound on heat exchanged between hot stream 7 and cold stream j
AT min Minimum heat approach temperature
Variables tik Final temperature of hot stream 4 at stage k
tik Initial temperature of cold stream j at stage k
tiH " tlcg:k Temperature of heat exchanger (i, 7, k) in the hot and cold side
fix fisj  Flow rate heat capacity of heat exchanger (i, 7, k) in the hot and cold side
Qi Gk Heat transferred via heat exchanger (4, j, k)
Q¢Y Cold utility heat load from hot stream i
[ Hot utility heat load to cold stream i
Yi,j, Binary indicating whether hot stream ¢ is matched with cold stream j
Qis,j,t Heat exchanged between hot stream 7 at temperature interval s and cold

stream j at temperature interval ¢

35



	1 Introduction
	2 Approximation Algorithms
	3 Applications of Approximation Algorithms in PSE
	3.1 Mathematical Modeling
	3.2 Problem Classification
	3.3 Design of Solution Methods
	3.4 Dealing with Uncertainty

	4 Pooling
	4.1 Brief Literature Overview
	4.2 Problem Definition
	4.3 Mathematical Models
	4.3.1 P-formulation
	4.3.2 PQ-formulation

	4.4 Computational Complexity and Approximation Algorithms

	5 Process Scheduling
	5.1 Brief Literature Overview
	5.2 Problem Definition
	5.3 Mathematical Models
	5.3.1 Discrete-Time Formulation
	5.3.2 Continuous-Time Formulation

	5.4 Computational Complexity and Approximation Algorithms

	6 Heat Exchanger Network Synthesis
	6.1 Brief Literature Overview
	6.2 Problem Definitions
	6.2.1 Multistage Minimum Utility Cost
	6.2.2 Minimum Number of Matches Problem

	6.3 Mathematical Models
	6.3.1 Multistage Minimum Utility Cost Problem
	6.3.2 Minimum Number of Matches Problem

	6.4 Computational Complexity and Approximation Algorithms

	7 Concluding Remarks and Future Directions
	Appendix A Nomenclature
	Appendix A.1 Pooling Problem
	Appendix A.2 Process Scheduling
	Appendix A.3 Heat Exchanger Network Synthesis


