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Abstract 

Multi-objective optimization (MOO) is frequently used to solve many practical problems 

of chemical processes but process designers only need a limited number of valuable solutions 

in the final results. In this study, an optimization strategy associated with an improved genetic 

algorithm was developed to search valuable solutions for stakeholders’ preference more 

purposefully. The algorithm was improved to reduce overlapping solutions as a result of the 

discrete variables in practical problems, and it allowed users to set a reference point or an angle 

associated with a reference point to make solutions converge into the preferred spaces. Three 

test functions and two practical problems were used to highlight that the proposed strategy 

could make designers optimize processes more efficiently. Especially, the angle-based 

algorithm could be more effective than the distance-based one on the tri-objective problems. 

Thus, the developed strategy is robust in the optimization of processes assisted with the 

designer's preference. 
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As the global energy consumption and environmental pollution are dramatically 

increasing, the improvement of industrial sustainability becomes more and more important. 

The reduction of energy consumption and waste discharge is a significant purpose of process 

optimization and product design. In practice, the process optimization or product design 

problem may involve more than one objective function, or even multiple conflicting objectives. 

Therefore, many researches have focused on the application of multi-objective evolution 

algorithms (MOEAs) to solve the MOO problems in industries (e.g. Beykal et al., 2018; Biegler 

and Grossmann, 2004; Datta et al., 2017; Garcia and You, 2015; Herring Iii and Eden, 2015; 

Khurana and Farooq, 2019). The advantage of MOEAs is that it can provide a solution set 

including more than one solution for process designers. It should be noted that the optimization 

of such problems in chemical engineering has its own characteristics different than in other 

fields. On one hand, the process designers’ experience and knowledge may affect their final 

choice of solutions and even benefit the efficiency of optimization (Wang et al., 2018). On the 

other hand, there may be a need to optimize the discrete decision variables with continuous 

variables for a chemical process simultaneously.  

There are many studies focusing on the applications of MOEAs for process optimization 

or product design. According to the decision-making order, Coello et al.(2007) classified the 

MOEAs into three categories: a priori, interactive and a posteriori techniques. Among them, 

the a posteriori techniques, in which the decision maker (DM) has to make the after choice 

based on the trade-offs observed in the set, are the most popular strategies in process 

optimization (Rangaiah, 2009). It is remarkable that the Non-dominant Sorting Genetic 

Algorithm (NSGA, Srinivas and Deb, 1994) and the improved edition namely NSGA-II (Deb 

et al., 2002) have been employed to solve many issues of chemical engineering (e.g. Habibi et 



al., 2018; He and You, 2015; Muñoz López et al., 2018; Parhi et al., 2019; Yan et al., 2016). In 

these studies, a number of the current optimization works assume that the DM would be 

interested in generating the entire Pareto set of a problem. Unfortunately, sometimes it is 

difficult and time-consuming to achieve all Pareto solutions in the a posteriori techniques. In 

the worst case, the finally obtained solutions are even far from the true Pareto set, since DMs 

could not foreknow the reasonable search space of variables or do a calculation without enough 

iterations. To avoid this unexpected possibility, the DMs often extend the search space of a 

practical problem and then take a longer computational time. However, perhaps only one 

solution can be adopted according to the DM’s preference at last. 

In most cases, DMs may have some intuition originated from their experience and 

knowledge, and may speculate their interesting search spaces (Branke et al., 2001). Therefore, 

some MOEA researchers (Coello, 2000; Greco et al., 2005) have incorporated the DM’s 

preference into the a posteriori techniques to speed up convergence. A new algorithm of the 

non-dominated sorting called “r-dominance” is introduced by Said et al. (2010), which has the 

ability to sort Pareto-equivalent individuals based on the DM’s preference. Xie et al. (2012) 

introduced an angle based dominance (A-dominance) relation for incorporating the DM’s 

preferences. Moreover, the interactive algorithms allow the DMs to adjust the optimization 

parameters while observing the changes in the solution set. More recently, some novel 

interactive strategies have been proposed to introduce the DM’s preferences for the higher 

efficiency. Bortz et al. (2014) proposed an efficient MOO strategy that allowed DMs to 

introduce and update their preferences interactively with a visual optimization tool. In such a 

case, the lower computational expenses are achieved because two scalarizations were 

combined to approximate the Pareto set and did not treat the process simulator as a black box. 



Vallerio et al. (2015) proposed an interactive method based on geometric considerations to 

reduce the possibility that the extreme part of the Pareto set is overlooked. In this method, the 

DMs can actively choose the preferred part of the Pareto set to investigate. These interactive 

methods can introduce the DM’s preference in real-time at a low computational cost, which are 

highly significant to the dynamic process optimization. However, most process designers often 

pick out the preferred solutions in the final solution set rather than introduce their preferences 

into the optimization process using these algorithms. 

On the other hand, as the existing MOEAs often have mechanisms of diversity 

preservation, many overlapping solutions are not likely to exist in each population when they 

are applied to MOO problems with continuous decision variables and/or many objectives 

(Ishibuchi et al., 2005). Although all these algorithms had been validated on the non-constraint 

and continuous issues, they could show the low efficiency of optimization on the MOO 

problems involving discrete decision variables as the result of overlapping solutions (Ishibuchi 

et al., 2005; Wang et al., 2015). To some extent, all these studies are useful for the process or 

product designers to obtain the optimum solutions. However, the discrete variables and the 

preferred solution selection can hardly be avoided in the problems of chemical engineering, 

thus it is significant to improve the strategies and algorithms of MOO for chemical process. 

To solve the above-mentioned problems and inspired by the interactive methods, we 

developed a strategy that enables designers to optimize a process more purposefully and 

efficiently. The proposed method involves the application of a sensitivity analysis (SA) to 

formulate the reasonable search space, and an improved edition of NSGA-II from two aspects: 

the introduction of a designer’s preference and the detection/deduplication of overlapping 

solutions. Two preference-based algorithms, r-dominance and A-dominance, were employed 



to guide the convergence direction of solutions, while a mechanism checking and reducing 

overlapping solutions is proposed to improve the quality and efficiency of convergence. A 

workflow of the proposed strategy assisted with the improved algorithm is introduced and the 

details of the improved NSGA-II is also disclosed. Three case studies were employed to 

validate the strategy with the improved algorithm from two insights: the mathematical sense 

and the practical application on chemical processes. Hereinto, the benefits brought by the 

designer’s preference and the improved algorithm were discussed. In the first case study, three 

test functions are adopted to examine the improved NSGA-II. Afterwards, a case of the 

extractive distillation is employed to confirm the advantages of the proposed strategy compared 

to the original NSGA-II. Another more complex process is exemplified to validate the 

effectiveness of preference-based algorithm on tri-objective problem. The results of these case 

studies show the performance difference between r-dominance and A-dominance, and the 

reduction of overlapping solutions. Finally, the more efficient optimization is obtained by the 

improved algorithm. For ease of applying the proposed strategy, a MOO tool involved the 

improved NSGA-II is developed, in which a mechanism for error monitoring is also introduced.  

2. The strategy of MOO with the designer’s preference 

The process or product designers as the representative of the stakeholders/decision-

makers usually have different preferences on these optimization objectives. The search space 

of optimization model involving the constraints of design or operational variables was usually 

determined intuitively in the previous MOO problems. The SA could help designers to 

understand the relationships among objectives and variables, even pick out the optimal 

solutions (Yang et al., 2019b). As such, it is recommended that a SA should be implemented to 

formulate the MOO problem more reasonably. In this work, a strategy combining the improved 



NSGA-II with the SA was proposed to make the optimization more purposeful. 

In general, the optimization with the strategy can be divided into three stages (as presented 

in Fig. 1), and they are:  

(1) building the process model in the process simulator which should be converged on 

several initial parameters;  

(2) identifying the key operating and design variables for the less blindness of 

optimization, and the designers can find the rough search space through observing the 

changes of some important indicators using sensitivity analysis (SA);  

(3) establishing a MOO problem with reasonable constraints based on the SA results, 

where the designers as the DMs can introduce the preference settings (e.g. a reference 

point, objective weights and the threshold) according to their own knowledge and 

experience. Finally, the non-dominated solutions with a DM’s preference can be 

achieved when running hundreds of iterations. 

 

Fig. 1. The workflow of the proposed strategy for multi-objective optimization with a 

designer’s preference. 



    Within the strategy, a process simulator was used to build process models and carry out 

the SA, while the improved NSGA-II was enhanced by improving non-dominated sorting and 

inhabiting overlapping solutions.  

2.1. Mathematical formulation 

A multi-objective model which aims to simultaneously maximize/minimize two or more 

conflicting objectives with several decision variables and constraints can be firstly defined, as 

presented in Eq. (1a) - (1d): 

Maximize/Minimize 1( )f x  2 ( )f x  ( )Nf x   (1a) 

Subject to: 

xL ≤ x ≤ xU      (1b) 

h(x) = 0       (1c) 

g(x) ≤ 0       (1d) 

where, decision variables can be either continuous or discrete with a lower and upper 

constraints (xL and xU) explicitly. Other constraints presented by equalities or inequalities 

implicitly (h(x) and g(x)) can be determined in the process models commonly. The number of 

equalities and inequalities constraints can be zero, a few or a lot depending on the specific 

problem. For the MOO of a certain process, the equalities, such as the balance of mass and 

energy, are easily formulated and determined in process simulators. In contrast, it is usually 

difficult to formulate the inequalities (e.g. the requirement of product purity) in a process 

simulator directly. As such, the inequalities are often converted to an equality with the design 

specification in a simulator. Despite this conversion is effective in most cases, it narrows the 

search spaces of decision variables and objectives. Another way (Segovia-Hernández and 

Gómez-Castro, 2017) penalizing the solutions outside the constraints is implemented when the 



objective functions are calculated. It is easy to realize the penalization method within the 

external solver such as the optimization toolbox in MATLAB®, but the constraint-handling 

method of the specific MOEA will not work.  

On the other hand, the formulation of a MOO problem is also related to the preferences, 

knowledge and experience of designers who often defines intuitively a decision space at the 

initial stage of optimization. Nevertheless, it might be blind to choose the decision space 

subjectively, which could result in some problems. For example, the solutions are still 

unsatisfying or impracticable when the boundaries of decision variables are reached. To reduce 

the uncertainty caused by the subjectivity, the SA is applied in the proposed strategy for the 

formulation of MOO problems. Although the reasonable search space is helpful to achieve a 

whole Pareto-optimal set of solutions, the designers’ preference cannot be easily considered at 

the model formulation of a practical issue. Hence, the improved NSGA-II with the modified 

non-dominant sorting was introduced into the strategy. 

2.2. The constrained NSGA-II with the user’s preference 

In the original edition of the constrained NSGA-II, a procedure of binary tournament 

selection was used to compare two random individuals in the population and then choose the 

optimal individual to fill the mating pool. Generally, there may be at most three possibilities 

for the two individuals: 1) both individuals are feasible; 2) one is feasible and the other is not; 

and 3) both are infeasible. The criteria of feasible individuals in the MOO problem were 

summarized in Table 1. In detail, the dominant relationships between them were as follows: 

(1) If one individual is feasible while the other is not feasible, the feasible one will be 

chosen; 

(2) Once both are infeasible, the individual with smaller overall constraint violation will 



be selected; and 

(3) When both two individuals are feasible, the better one will be picked out. In short, the 

selected individual dominates the other one. 

Table 1 The feasible criteria of individuals for different constraints 

Constraints Content Feasible criteria Setting 

position 

Equalities Mass and energy 

balance 

Other balance 

equalities 

The process model in simulators is 

converged 

simulator 

 User-specified 

equalities 

The tolerance values are smaller than the 

specified ones 

simulator 

Inequalities User-specified 

inequalities 

The values of variables are within lower 

and upper bounds 

MOO 

solver 

Obviously, there are not any preferences of DMs considered in the binary tournament 

selection of the constrained NSGA-II. Hence, two preference-based dominant relationships (i.e. 

r-dominance (Said and Bechikh, 2010) and A-dominance (Xie et al., 2012)) were employed to 

modify the dominant relationships as illustrated in Fig. 2. Unlike a priori techniques, these two 

algorithms sort a Pareto non-dominated set in obedience to a strict partial order instead of 

relying on the aggregation functions.  



 
Fig. 2. A classification of dominant comparison between two individuals in non-dominated 

sorting. 

r-dominance algorithm 

The preferred solutions are closer to the reference point with the weighted Euclidean 

distance calculated by Eq. (2d) in the algorithm. When the constrained NSGA-II is combined 

with r-dominance (Said and Bechikh, 2010), the definition of domination between two 

individuals A and B is presented as below. 

Definition 1: Assuming a population of individuals P, a reference point r, and a weight 

vector w, an individual A is said to dominate an individual B (denoted by A ≺ B, the “≺” is a 

dominant comparison operator) if one of the following statements holds true (Said and Bechikh, 

2010): 

(1) A and B are both feasible: 

a) A dominates B in the Pareto sense;  

b) A and B are Pareto-equivalent and D(A, B, r) < -δ, where δ∈[0, 1] and 

max

( , ) ( , )
( , , )

min

Dist A Dist B
D A B

Dist Dist

−
=

−

r r
r        (2a) 

max ( , )z PDist Max Dist z= r          (2b) 



min ( , )z PDist Min Dist z∈= r          (2c) 
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− 
 

r
r   (2d) 

δ is termed the non-r-dominance threshold.  

(2) A is a feasible solution but B is infeasible. 

(3) A and B are both infeasible:  

  a) A has a smaller overall constraint violation. 

  b) A has an equivalent overall constraint violation to B while A has the better fitness values. 

A-dominance algorithm 

 The algorithm is angle-based binary tournament that adopts the angle α∈[0, π/2] control 

the preferred region near a reference point r (see Fig. S1 in the Supporting Information). The 

related definitions of A-dominance (Xie et al., 2012) are shown as follows:  

Definition 2 (Ideal Point): One individual X∈P, the ideal point b is defined as bi = 

Min( fi(x)), ∀f(x)∈Pareto front, where the symbol x means the vector of decision variables for 

an individual X. 

Definition 3 (Near Point): The near point g is defined as:  

g = {g|∀ h∈P, Dist (g, r) < Dist (h, r)}, where r is the reference point, h is a set of points 

near the reference point r. The symbol g refers to a set of points including a point g that has the 

shortest distance from the reference point r.  

Definition 4 (Individual Angle): Any two individuals X, Y∈P, Angle(X, Y) = acos 

((i*j)/(|i|*|j|)). Where 

max min max min max min

1 1 1 –= (( ) / ( ),..., ( ) / ( ),..., ( ) / ( ))– – – – –1 ii i i i m m m mx b f f x b f f x b f f   (3a) 

max min max min max min

1 1 1 –= (( ) / ( ),..., ( ) / ( ),..., ( ) / ( ))– – – – –1 ij i i i m m m my b f f y b f f y b f f  (3b) 

The fi represents the i-th fitness function while the bi is the theoretical optimal value of i-



th fitness function. Meanwhile, the superscript “max” indicates the maximum value of fi in the 

current population, and the superscript “min” means the minimum value of fi.  

Definition 5 (A-dominance):  

Any two individuals X, Y∈P , X is said to A-dominate Y (denoted by X ≺ Y) if and only 

if one of the following statements holds true:  

   (1) X and Y are both feasible: 

a) X dominates Y in the Pareto sense.  

b) X and Y are Pareto-equivalent and Angle (Y, g)－Angle (X, g) > α, where α∈[0, π/2]. 

   (2) X is a feasible solution but Y is infeasible. 

   (3) X and Y are both infeasible: 

a) X has a smaller overall constraint violation. 

b) X has an equivalent overall constraint violation to Y, but X has the better fitness values. 

The two algorithms, r-dominance and A-dominance, integrating the DM’s preferences 

cause the partial selection pressure “stronger” than the Pareto dominance one. Additionally, 

the modifications in the non-domination principle do not change the computational complexity 

of NSGA-II. The rest of NSGA-II implementations as described earlier can be utilized as usual.  

2.3. Reducing the overlapping solutions  

As mentioned before, the overlapping individuals may exist in the evolution populations 

because the MOO problems in chemical engineering often include discrete variables. 

Intuitively, the unaccepted and redundant solutions may waste the time of optimization and 

debase the availability of the solution set for making a decision (Zhu et al., 2009). Before the 

introduction of the following algorithm, the definition of the overlapping individuals is shown 

as: 



Definition 6 (overlapping individuals): 

Any two individuals X, Y∈P, the symbols, x and y, are defined as the decision variables 

of X and Y respectively. The fi represents the i-th fitness function. An individual X is said to 

overlap another individual Y if and only if one of the following statements holds true:  

(1) The values of all decision variables are equal (x1=y1, x2=y2, …, xi=yi). 

(2) The values of all objective functions are equal (f1(x)= f1(y), f2(x)= f2(y), …, fi(x)= fi(y)).  

Notably if two individuals have the identical values of objective function, it is possible 

that they have different values of decision variables. In other words, the two individuals are 

considered as two overlapping individuals but not the exactly same individuals in this study. 

The mechanism for reducing the number of redundant solutions as shown in Fig. 3 includes 

two operations to improve the constrained NSGA-II: one is to deduplicate the overlapping 

individuals from the merged population, and another one refers to extra mutation for 

suppressing the generation of individuals with the same decision variables. In the first 

operations, duplicate copies of individuals were removed in the decision and objective spaces 

before the non-dominant sorting. After the non-dominant sorting was finished, two individuals 

were randomly sampled as parents from the optimal solution set and then used to reproduce 

two children using crossover or mutation. However, there is a possibility to generate two 

identical children in the variable space, thus the extra mutation based on the normal distribution 

is used to bring small variations in the chromosome of one child. As the varied variables are 

still kept around the original variable values of parent, the second operation are named “weak 

mutation” that aims to ensure that the overall search direction is not changed substantially. In 

addition, the strength of the weak mutation can be adjusted by two parameters: the standard 

deviation σ controlling the dispersion of a chromosome, and the sampling number Ns describing 



the number of random data points sampled from the normal distribution. If the weak mutation 

is activated, each chromosome of a child will be assigned one new value from a list of Ns values 

randomly. The new value is the closest one to the original value of a decision variable. It is 

noted that the crossover and mutation of the original NSGA-II are still remained in the 

improved edition. In this work, the simulated binary crossover (SBX) (Deb et al., 2002) was 

employed as the crossover operator while the polynomial mutation is used as the main mutation. 



 

Fig. 3. The flowchart of the improved NSGA-II. 

3. The multi-objective optimization system 

A system named NAS214 with the improved NSGA-II was developed to applied as a 

solver in the proposed strategy. Several parameters representing the user’s preference such as 



the reference point, threshold and objective weights can be defined in the developed tool. The 

architecture of the system shown in Fig. 4 includes three parts: a graphic user interface (GUI), 

a process simulator and MOEAs. Among them, the process simulator is considered as an 

opaque operator similar to the black box which is only responsible for calculating a process 

model. Herein, Aspen Plus® was employed as the process simulator providing a node tree for 

accessing the internal variables and some modules (e.g. unit operations, calculators and design 

specifications) to calculate the values of user-defined equalities and inequalities.  

 

Fig. 4. The scheme of the NAS214 tool for multi-objective optimization 

In the MOO of a chemical process, the MOEAs repeatedly call the process simulator. 

However, there exists some possibilities that the process simulator crashes occasionally causing 

the optimization to be interrupted. As such, A wrapper for controlling and monitoring the 

process simulator was implemented in the program, which includes a mechanism presented in 

Fig. 5 to maintain the uninterrupted operation of simulators. 



 

Fig. 5. The procedure of monitoring and controlling the simulator in the NAS214 MOO tool. 

In the mechanism, a try-block was used to detect the runtime error during the calculation. 

When no errors happen in the try-block, the results were checked by the process simulator and 

then the right one is passed to MOEAs. If an exception occurs inside a try-block, any remaining 

code in the same try-block will not be executed. The right of control is immediately transferred 

to the outer catch-block, a logger will record the exception and a counter will increase one. 

Subsequently, if the value of the counter N is less than a pre-defined threshold (e.g. one hundred 

as depicted in Fig. 5), the procedure will run the try-block again. But if N is greater than the 

threshold, the program will shut down the current simulator instance and restart a new one. 

Another counter M records the restarting times of the simulator, the try-block will be executed 

again if M is less than the threshold. With the help of the whole mechanism, the developed 

program can run an optimization task for a long time unattended. 



4. Case studies 

Several test functions were utilized to evaluate the effectiveness of the improved algorithm 

mathematically in section 4.1. In order to illustrate the developed model, two illustrative cases 

were studied. The first example illustrated in section 4.2 was the extractive distillation 

involving two objectives. The second example in section 4.3 refers to a process of methanol 

synthesis which is a tri-objective optimization problem, and it was selected to evaluate the 

improved algorithm with the different preference-based dominant rules. Incidentally, all case 

studies run with the developed tool on a desktop computer (Intel i5-8400 @ 3.8GHz). 

4.1. Case 1: Test functions 

This case was employed to verify the improved NSGA-II with a DM’s preference from a 

mathematical perspective. The first test function, ZDT3 (Deb, 2011), was utilized to 

demonstrate the availability of the NSGA-II with r-dominance or A-dominance on the 

unconstrained MOO problem with different reference points. Subsequently, two constrained 

test functions similar to the constrained MOO problems commonly encountered in chemical 

processes, BK (Binh and Korn, 1997) and CH (Chankong and Y. Haimes, 1983) problems, 

were applied to verify the improved NSGA-II. The objective weight vectors of the ZDT3 and 

BK problems were both set to (0.5, 0.5). After 200 generations with the 100 individuals are 

iterated, the solution sets were achieved as shown in Fig. 6-8. When the r-dominance algorithm 

was activated, the solutions converge into a smaller range based on the position of a reference 

point. Moreover, it can be observed that the parameter δ controls the dispersion of preferred 

solutions in r-dominance while the parameter α plays the same part in A-dominance (see Fig. 

7). As shown in Fig. 8, a bias on the distribution of the preferred solutions is caused by adjusting 

the weight of each objective. As a result, designers can adjust the coordinate of a reference 



point, objective weights and the threshold δ to control the position and distribution of solutions 

in r-dominance. Likewise, using the A-dominance algorithm, users can change the parameter 

α and the position of a reference point to control the distribution and position of solutions. 

 

Fig. 6. The effect of different reference points on the two-objective ZDT3 problem 

 

Fig. 7. The effect of different threshold parameters on the two-objective BK problem. 

 

Fig. 8. The effect of different weight vectors on the two-objective CH problem. 
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 Furthermore, the mechanism of reducing the overlapping solutions is implemented in the 

improved NSGA-II. An experiment with ZDT3 is run 30 times repeatedly to test the effect of 

proposed mechanism. For the repeatability test, the population size and the evolutional 

generation are set to 100, while the crossover rate equals 0.85 and the mutation rate is set to 

0.15. After this computation, no overlapping solutions appear in the solution set of each 

repetition obtained by the improved algorithm. Among these solution sets, one is exemplified 

in Fig. 9 (overlapping points are offset) to be compared with the original NSGA-II.  

 

Fig. 9. The effect of the reduction mechanism of overlapping solution on the ZDT3 problem 

A performance metric as shown in Fig. 9, the inverted generational distance (IGD) 

(Veldhuizen and Lamont, 2000), is calculated to evaluate the quality of approximations to the 

true Pareto front obtained by the improved NSGA-II. It is defined as: 

'

IGD

j

j PF

d

n


=

∑
       (4) 

where
' min
j i P

d j i


= −   is the Euclidean distance between each of the solutions and the 

closest solution on the true Pareto front, and n is the number of non-dominated solutions 



obtained. IGD is the measure of the separation between the Pareto front and the non-dominated 

solutions obtained. If all the non-dominated solutions obtained lie on the true Pareto front, the 

value IGD will equal to zero, i.e., the smaller value of IGD indicates the better performance of 

a MOEA. As presented in Fig. 9, the improved NSGA-II has a smaller IGD than the original 

one, which suggests that it has the better performance. 

4.2. Case 2: Extractive distillation by varying pressure 

The extractive distillation with varying pressure (EDVP) is an energy-efficient separation 

process of pressure-sensitive azeotropic mixtures. An increasing attention goes to the 

optimization of these processes since it possesses the advantages of extractive distillation (Hu 

et al., 2019; Luyben, 2018; Shen et al., 2015; A. Yang et al., 2018; Yang et al., 2019a, 2019c). 

Recently a particular attention (You et al., 2017) has been focused to the SOO of the EDVP 

process such as the optimization of operation costs applying the sequence quadratic program 

(SQP). You et al. (2017) presented the analysis of process feasibility and established a certain 

process (see Fig. 10). The system of acetone/methanol with chlorobenzene as entrainer was 

investigated in the case, where methanol with a higher boiling point was withdrawn as distillate 

in the extractive column. For the optimization of energy consumption, they proposed an 

objective function (i.e. the operational cost, f1, see Eqs.5a) taking both extractive columns and 

regeneration columns into account simultaneously. After obtaining the optimized result, You et 

al. (2017) also calculated the total annual cost (TAC) in Eq.(5f) to comprehensively evaluate 

the operating cost and equipment cost. In this section, a different strategy, the multi-objective 

optimization, was applied to extend solution space for comparing with the results of SOO. 

 



 

Fig. 10. The flowsheet of the extractive distillation with the notation of variables. 

At first, the MOO problem was formulated in this case study. Two conflicting objectives 

including the operational cost (f1) and the capital cost (f2) were optimized. The TAC (Douglas, 

1988) was no longer considered as an objective but an important observed variable. The first 

objective with respect to the total energy cost per unit product is given in Eq. (5a), which 

involves the heat duties of all re-boilers, coolers of two columns and the entrainer cooler. For 

calculating the capital cost, the same cost formulas within work conducted by You et al. (2017) 

were employed. The column shell, tray and heat exchanger costs constitute the capital cost, and 

their formulas are provided in the Eq. (5b) (more details are given in the Supporting 

Information). In addition, the equimolar feed to be separated (FAB = 540 kmol/ h) and the 

entrainer feed were set at 320 K for this case, while the same product purity constraints (0.995 

molar fractions) of both acetone and methanol were specified. From Eq. (5a) to Eq. (5e) the 

mathematical formulation of the optimization problem is presented. 

Minimize f1, f2: 



1 1 1 2 2 2 3

1

1 2

R R c C R R c C c CM Q m Q M Q m Q m Q
f

D k D

 +  +  +  + 
=

+ 
   (5a) 

1
2

7

Ei
i

C

f
t

∑
==              (5b) 

Subject to:               (5e) 

1
0.995methanol,Dx               

1
0.001methanol,Wx   

2
0.995 acetone,Dx   

2
0 995chlorobenzene,Wx .  

2

1 1 1 2 2 2 3

capital cost
= + operating cost

payback period

= + ( + + + + )R R c C R R c C c C

 
TAC

f
7200* M Q m Q M Q m Q m Q

t

   (5f) 

Before the multi-objective optimization, a SA was implemented for determining the key 

variables and search space. For the extractive distillation, the larger reflux ratio does not mean 

the better product quality. Thus, it is necessary to find a reasonable range of reflux ratio with 

the SA. In this case, as chlorobenzene is a heavy entrainer, the regenerator with a lower pressure 

can benefit its purification. As such, the condenser pressure of the regenerator was considered 

as a constant set to 100.0 kPa in the SA. The condenser pressure of the extractive distillation 

column and the entrainer flowrate were regarded as the manipulated variables while the reflux 

ratios of two columns, capital cost and operational cost were chosen as the sampled variables. 

It should be noted that the product purity was constrained in the “Design-spec/Vary” function 

of Aspen Plus® (the reflux ratios of the two columns were varied) and only the available results 

are presented in Fig. 11. For the effective separation, the reflux ratio needs to be lower while 

the flowrate of entrainer is kept constant and the condenser pressure is higher (see Fig. 11a). 



On the other hand, both higher pressures in the condenser of the extractive column and larger 

entrainer flowrates require the higher reflux ratio in the regeneration column to keep the higher 

separation efficiency (see Fig. 11b), while causing the higher capital and operational costs (see 

Fig. 11c and Fig. 11d). However, it is only feasible to run the extractive column with higher 

pressures if the entrainer flowrate becomes lower. These results indicate that the optimal 

solutions may be realized by lower entrainer flowrates or higher condenser pressure of the 

extractive column. 

 

Fig. 11. Effect of the condenser pressure of the extractive distillation and the entrainer 

flowrate on (a) the required molar reflux ratio of the extractive distillation, (b) the required 

molar reflux ratio of the regenerator, (c) the capital cost, and (d) the operational cost. 

To evaluate the proposed strategy more comprehensively, we formulated three optimization 



plans with different ranges of the decision variables including NT1, NT2, FE, R1, R2, D1, D2, NFE, 

NFAB, and NFReg. The first plan was used to explore the optimal solutions of the MOO without 

a sensitivity analysis (SA) and any preference by the original and improved NSGA-II. After 

the SA of this process was carried out, the second plan searched the optimal solutions in a more 

reasonable range of design variables. Finally, the third plan was employed to validate the 

improved NSGA-II with r-dominance. The decision variables optimized in these plans are 

shown in Table 2 while the search space of decision variables is given in Table 3.  

Table 2 The decision variables optimized in the Case 1. 

Decision variables Symbols 

The condenser pressure of the extractive distillation column P1 

The condenser pressure of the regenerator P2 

The flowrate of the entrainer FE 

The reflux ratio of the extractive distillation column R1 

The reflux ratio of the regenerator R2 

The distillation flowrate of the extractive distillation column D1 

The distillation flowrate of the regenerator D2 

The stage number of the extractive distillation column NT1 

The stage number of the regenerator NT2 

The mixture feed stage of the extractive distillation column NFE 

The entrainer feed stage of the extractive distillation column NFAB 

The feed stage of the regenerator NFReg 

Table 3 The search space of decision variables in Case 1. 

Decision 

variables 

1st Plan  2nd Plan with SA 3rd Plan  Units 

Upper limits Lower 

limits 

Upper 

limits 

Lower limits Upper limits Lower 

limits 

 

P1 1000.0 100.0 1000.0 600.0 1000.0 100.0 kPa 

P2 450.0 100.0 250.0 101.0 450.0 100.0 kPa 

FE 1700.0 300.0 600.0 1.0 1700.0 840.0 kmol/h 

R1 3.5 0.95 2.0 0.5 3.5 0.95 - 

R2 5.5 1.35 2.0 0.5 5.5 1.35 - 

D1 272.0 268.0 272.0 268.0 272.0 268.0 kmol/h 

D2 272.0 268.0 272.0 268.0 272.0 268.0 kmol/h 



NT1 50 38 50 38 50 38 - 

NT2 25 15 25 15 25 15 - 

NFE 37 28 37 28 37 28 - 

NFAB 25 2 25 2 25 2 - 

NFReg 15 25 15 25 15 25 - 

For these three plans, the population size was set to 100 individuals and the mutation ratio 

was considered as 0.2 while the crossover ratio was set as 0.95. A series of solution sets were 

obtained after 500 iterations were accomplished, all of them for each generation were recorded. 

Fig. 12 describes the trend of solution sets for every hundred generations in the first plan. A 

remarkable decrease of two objectives can be observed from 200 to 500 generations. After 400 

generations were iterated, the solution set of 400th generation achieved by the improved NSGA-

II were more preferable than that of 500th generation given by the original one. It can be 

suggested that the improved NSGA-II outperforms the original one. On the other hand, Fig. 12 

also shows the different numbers of overlapping solutions in the solution set generated by the 

two algorithms while the duplicate copies have been offset for clarity. Obviously, there exist 

more overlapping solutions in the solution sets achieved by the original NSGA-II, i.e., the 

improved NSGA-II can achieve a better-distributed solution set.  

Further, two solutions presented in Table 4 are selected as trade-offs respectively from the 

optimal solution sets achieved by the two algorithms. Comparing these solutions with the result 

achieved by SOO, there are the less demand of entrainer but the higher operating pressure of 

extractive distillation. Meanwhile, the operational cost and capital cost (f1 and f2) achieved by 

the improved NSGA-II are also lower than their values in the SOO result. It can be inferred 

that the higher operating pressure of the extractive distillation and less entrainer could result in 

the smaller size of equipment and lower energy consumption. Another point should be noted 

that the search space had reached the boundaries of several variables in the first plan (e.g. the 



entrainer flowrate almost equals its lower bound), which implies there may still exist some 

space to go further in the optimization. As the practical problems may be highly complex, most 

of the time designers could not be aware of a reasonable decision space at the early stage of 

MOO. Fortunately, the knowledge provided by SA can help us to reduce the uncertainties of 

formulating a MOO problem. For example, if the designers have known that the less entrainer 

and the higher pressure of extractive distillation can bring the lower cost, they may narrow the 

decision variable space of the first plan. As the second plan shown in Table 3, the upper and 

lower bounds of the entrainer flowrate and operating pressure of the extractive distillation had 

been adjusted. The results recalculated by the improved NSGA-II with SA include a series of 

better solutions shown in Fig. 12. Although the initial scope of SA is still determined intuitively, 

the SA can provide an objective trend contributing to understanding the relationships between 

input and output variables.  

 

Fig. 12. Evolution trend of solution sets on the MOO problem of all the three plans. 

   In the third plan, the upper and lower bound of the entrainer flowrate was narrowed into a 

range closer to the SOO plan, which was to validate the proposed strategy with DM’s 

preference. For comparison, the third plan was optimized without any preference at first. After 



400 generations were iterated, the final non-dominated solutions composed of two regions are 

presented in Fig. 13a. When the DM’s preference is not introduced, the improved NSGA-II 

cannot determine the pros and cons of these solutions. If the process designers may be more 

interested to the solutions in the region 1, and the time consumed by the solutions in the region 

2 could be considered as the extra time consumption. Since the TAC is often employed as the 

objective in the SOO, the TAC values of these solutions are compared between these two 

regions manually. It can be found that the solutions have the smaller TAC values and the lower 

capital cost (i.e. the smaller equipment size) in the region 1. The reason is that the payback 

period t can be considered as a parameter to adjust the proportion of capital cost in the TAC 

shown in Eq. (5f). However, it is tough to weigh the importance of two conflicting objectives 

in the original NSGA-II. In the proposed strategy, the employment of r-dominance in the 

improved NSGA-II allows designer to specify a reference point close to region 1 guiding the 

solution set locating in the preferred region.  

 

Fig. 13. The distribution of solution sets on the third plan: (a) the optimal solutions of the 

400th generation; (b) the evolution trend obtained by r-dominance 

The cooperation of the improved NSGA-II with r-dominance needs to specify several 

additional parameters including a reference point vector r, the threshold δ and the weight vector 

w need to introduce the designer’s preference. The extra parameter values in the third plan are 



given in Fig. 13, and other settings are consistent with the first plan except the entrainer 

flowrate. After 400 generations were iterated, the improved NSGA-II with r-dominance gave 

a solution set only appeared in the region 1 rather than in the region 2 (see Fig. 13b). Moreover, 

the solution set obtained with r-dominance are more preferable than the one without any 

preferences. It can be concluded that the improved NSGA-II with r-dominance can make 

solutions converge to the region preferred by designers. In other words, the r-dominance could 

employ the designer’s preference in a practical problem of chemical engineering and reach the 

desired solutions without exploring the whole set of Pareto solutions.  

Table 4 Comparison among the results achieved by the MOO and SOO of Case 2 

Variables and 

objectives 

SOO 1st plan  2nd plan 

Improved 

NSGA-II 

with SA 

3rd plan 

Improved 

NSAII  

with r-dominance 

Units 

Original 

NSGA-II 

Improved 

NSGA-II 

 

P1 300.0 978.7 983.6 974.9 294.1 kPa 

P2 100.0 113.5 116.3 105.0 100.0 kPa 

FE 858.4 300.9 300.0 257.6 840.0 kmol/h 

R1 1.710 1.221 1.209 1.301 1.689 - 

R2 1.702 1.350 1.350 1.165 1.540 - 

D1 271.0 270.8 270.8 270.8 270.5 kmol/h 

D2 270.8 271.0 271.0 271.1 268.1 kmol/h 

NT1 45 47 48 48 45 - 

NT2 18 17 17 17 15 - 

NFAB 36 36 36 37 36 - 

NFE 18 19 20 18 17 - 

NFReg 6 7 7 7 6 - 

xm,D1 0.995 0.995 0.995 0.995 0.995 - 

xm,W1 3.0e-4 0.001 0.001 0.001 0.001 - 

xa,D2 0.996 0.995 0.995 0.995 0.995 - 

xc,W2 1.000 1.000 1.000 1.000 1.000 - 

f1 0.356 0.278 0.277 0.272 0.347 J/mol 

f2 1.020 0.734 0.732 0.723 0.957 106 $/a 

TAC 4.720 3.603 3.597 3.528 4.520 106 $/a 



This case study presents the advantages of the improved algorithm from two aspects. One 

is to improve the search efficiency of NSGA-II by suppressing the generation of redundant 

solutions, and the other is to control the evolution direction by introducing the DM’s 

preferences. Finally, the increase in efficiency will be reflected in the reduction of time 

consumption. As shown earlier, the improved algorithm outperformed, in which either the same 

number of generations led to a more preferable solution set, or a better solution set needed 

fewer iterations. For all these plans, it took an average of 1.7 minutes to compute each 

generation for the improved and original NSGA-II while the time was saved by reducing the 

number of iterations. And also, the SA is helpful to find a suitable decision space at the early 

stage of MOO, it can further make optimization more purposeful.  

4.3. Case 3: Methanol synthesis loop 

The effectiveness of the improved NSGA-II with r-dominance had been verified in the 

previous bi-objective case. However, there may exist the problems with more than two 

objectives, e.g., the global optimization considering the factors of economics, environment, 

productivity. As methanol is one of the most promising renewable energy to replace the fossil 

fuels, the methanol production has been a research hotspot (Y. Yang et al., 2018). A process of 

methanol synthesis shown in Fig. 14 is exemplified to be optimized with the improved 

algorithm. The case study is a more complex problem involving three objectives for comparing 

the two different preference-based NSGA-II (i.e. r-dominance and A-dominance). The 

mathematical model was formulated including three objectives: the operational cost (J1), the 

capital cost (J2) and the opposite of total carbon efficiency (J3). The critical indicator of the 

production efficiency, total carbon efficiency, can be calculated as the ratio between the mass 

of carbon atoms in the product and the mass of carbon atoms in the fresh feed. In this process, 



the methanol reactor was simulated with a reaction kinetic model (Vanden Bussche and 

Froment, 1996). Moreover, the quality of the product methanol was not considered as an 

objective but a constraint. The main units including a methanol reactor, a compressor, one flash 

vessel, heat exchangers, and a washing column are counted in the capital cost. From Eq. (6a) 

to Eq. (6d), the mathematical formulation of the optimization problem is presented (more 

details are given in the Supporting Information), and the feed composition of the fresh syngas 

is listed in the Table 5. Besides, the TAC (Eq. (6e)) was still considered as an indicator of 

reference but not as an objective. 
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Table 5 Feed composition of the fresh syngas in Case 3. 

Components Molar fraction (%) 

CO2 3.500 

CH4 0.690 

H2 69.560 

CO 23.290 

N2 2.960 

As methanol synthesis reactions are reversible and exothermic, the coolant temperature (T1) 

and the feed temperature (T2) of the methanol reactor were chosen as two decision variables. 



Meanwhile, the flowrate (FR) of the recycle syngas has a noticeable impact to the power 

consumption of the compressor, which was also used as a significant variable in the problem. 

The hydrogen recovery system was simplified to a SEP unit in Aspen Plus® and its recovery 

ratio (E1) was considered as a decision variable as well. Washing water can reduce the methanol 

in the recycle syngas and purge gas but it works to the disadvantage of the purity of crude 

methanol and the operational cost. On the other hand, equipment dimensions are crucial to the 

total capital cost and the performance of a whole process. Among the devices, the methanol 

reactor cannot be sized automatically in the process simulator while the other devices including 

heat exchangers and columns can be sized by the process simulator. Thus, the size of the reactor 

was also considered as an optimized variable. For clarity, all decision variables are summarized 

in Table 6.  

Table 6 The decision variables optimized in the methanol synthesis loop 

Optimized parameters  Upper 

limits 

Lower 

limits 

Units 

Temperature of the coolant in methanol convertor T1 255 203 ℃ 

Temperature of preheater outlet at the cold-side T2 220 190 ℃ 

Flowrate of the recycle syngas FR 9500 1800 kmol/h 

Flowrate of the washing water  Fw 6500 500 kg/h 

hydrogen recovery ratio E1 0.950 0.010 - 

Number of the tube in methanol converter N1 4500 1500 - 

 



 

Fig. 14. The flowsheet of the methanol synthesis loop with the notation of variables. 

The improved NSGA-II was used to solve this case with three configurations: without any 

preference, with r-dominance and with A-dominance. For the parameters of each configuration, 

the population included 100 individuals and the mutation probability was considered as 0.2 

while the crossover ratio was set as 0.95. After 100 generations were iterated, the optimal 

solutions depicted in Fig. 15 were obtained. As a designer often selects a solution as the trade-

off from the region in the green circle of Fig. 15a, the solutions outside the green circle may 

consume the extra time. To introduce the DM’s preference, the improved algorithms with r-

dominance and A-dominance are used to optimize the process respectively. Unfortunately, the 

solutions cannot be converged in the designer’s preferred region by the NSGA-II with r-

dominance (see Fig. 15b) while they almost stay in the objective space without any preferences. 

In contrast, the solutions achieved by the NSGA-II with A-dominance are converged in the 



preferred region (see Fig. 15c and Fig. 15d).  

 

Fig. 15. The optimal solutions of this tri-objective case: (a) the improved NSGA-II without 

any preferences (b) the improved NSGA-II with r-dominance (c) the improved NSGA-II with 

A-dominance and (d) the comparison of above all 

In this case study, the solution sets have a strong concave behavior on the Pareto front, 

thus it is convenient to choose a trade-off solution for the designers. In other words, there exists 

a region including some trade-off solutions that can increase the carbon efficiency and keep a 

relatively low operational and capital cost. As such, one solution near the most concave of this 

region was picked out as the final solution and presented in Table 7. When the DMs have an 

interest in this region, they could control the convergence of solutions with the assist of A-

dominance. However, the extra parameters including the position of reference points and the 



threshold should be determined carefully, since they have significant impacts on the search 

space of optimization.  

Table 7 The final determined solutions of Case 3 from the optimal set. 

Design parameters, product quality and cost data   Units 

Temperature of the coolant in methanol convertor T1 240.5 ℃ 

Temperature of preheater outlet at the cold-side T2 200.1 ℃ 

Flowrate of the recycle syngas FR 3138 kmol/h 

Flowrate of the washing water  Fw 662.7 kg/h 

hydrogen recovery ratio E1 7.676e-4 - 

Number of the tube in methanol converter N1 1779 - 

Operational cost  J1 0.03972 106 $/a 

Capital cost J2 5.197 106 $ 

the carbon efficiency 1.0-J3 0.9332 - 

Total annual cost TAC 1.772 106 $/a 

Methanol production FM 10058 kg/h 

Molar fraction of the methanol in the product xM 0.8844 - 

After all computations were finished, it took a long time to invoke the developed 

algorithms with the process simulator. Statistically, each generation needed approximately 11 

minutes to calculate in these three configurations, i.e., the computation of 100 generations took 

approximately 18 hours. In fact, the solutions obtained by A-dominance had begun to fall into 

the preferred region while r-dominance cannot guide the solutions efficiently even running 100-

generation iteration. As such, the improved NSGA-II with A-dominance could be potentially 

more effective preference-based algorithm than that with r-dominance for the cases with high-

dimensional objectives. Nevertheless, most computing time was consumed in achieving 

convergence of the process model, especially for the process with plenty of iterative loops. It 

indicates that the model complexity in a process simulator has significant influence on the 

computational performance.  

5. Conclusion 



In this work, a strategy was proposed to search the desirable solutions for the MOO 

problems of chemical processes, which allows designers to control the distribution of solutions 

according to their knowledge and experience. In the proposed strategy, the improved NSGA-II 

as the key technique, has two significant advantages: the improved non-dominated sorting with 

a designer’s preference, and the mechanism for reducing overlapping solutions. To introduce 

designer’s preference, two dominant relationships involving r-dominance and A-dominance 

were integrated into NSGA-II. For the improved NSGA-II with r-dominance, a reference point 

was used to control the direction of convergence and the weights are employed to control the 

bias of solutions. By contrast, the NSGA-II with A-dominance employs an angle to represent 

a designer’s preference. From a mathematical perspective, both of the two algorithms work 

effectively to three test functions in the first case study while the improved NSGA-II can also 

obtain fewer overlapping solutions than the original one. 

For the practical issues of chemical processes, the improved NSGA-II was validated and 

highlighted by two illustrative cases. A case of extractive distillation was exemplified for the 

proposed strategy, in which the better convergence of the improved NSGA-II was presented. 

The results also suggest the necessity of SA carried out for reducing the blindness at the model 

formulation. Moreover, the designer’s preference was introduced to obtain the smaller TAC by 

r-dominance with effect. And the other one case is a more complex problem, a methanol 

synthesis loop with three objectives. Both r-dominance and A-dominance were applied to the 

tri-objective case with the improved NSGA-II. The result reveals that the r-dominance cannot 

make the solutions converge into the desirable region but the A-dominance can achieve the 

desired effect. It is also suggested that the A-dominance is more suitable for the tri-objective 

problems, and r-dominance could be employed to optimize bi-objective problems. 



Although we have to admit that the final solution for a problem still relies on the final 

decision of designers, the proposed strategy could help them to find their desirable solution 

effectively. The overall purpose of this work is to draw the attention of the process designers 

to the preference-based MOEAs with SA, particularly from the community of process systems 

engineering, to reduce time-consumption using the methods discussed in this work. In the 

future work, the strategy optimizing the MOO problems with the discrete variables still need 

to be studied and the method to determine the parameters representing the designer’s preference 

should be also explored further.  
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Nomenclature 

f(x), fi, Ji objective functions, fitness functions 

max

if , min

if  the maximum, minimum fitness function in the current population 

xL   the vectors representing the lower constraints 

xU   the vectors representing the upper constraints 

h(x)  the equality in a MOO formulation 

g(x)  the inequality in a MOO formulation 

P   a population of individuals 

g   the vector representing a reference point 



w   a weight vector of objectives 

A   an individual (point A) in the population 

B   an individual (point B) in the population 

X   an individual (point X) in the population 

Y   an individual (point Y) in the population 

D(A, B, g)  the relative difference between the distance from A to g and the distance from 

B to g 

Distmax  the maximum distance from g to the farthest point in the population 

Distmin  the minimum distance from g to the closest point in the population 

Dist(A, g) the Euclidean distance between A and g 

δ   the non-r-dominance threshold 

b   a vector representing the ideal point 

i   the relative distance between X and b 

j   the relative distance between Y and b 

Angle(X, Y) the angle between X and Y 

Angle(X, g) the angle between X and g 

Angle(Y, g) the angle between X and g 

PF*  the true Pareto front 

'

j
d   the Euclidean distance between each solution and the closest solution on the 

PF* 

j    each solution 

i    the closet solution to the solution j  



k     the price difference ratio of two distillates 

MR1, MR2  the energy price ratio of the steam used in the reboilers 

mc   the energy price ratio of the cooling water used in the coolers of Case 2 

cm     the energy price of the cooling water used in the coolers of Case 3 

CEi   the capital cost of each device in the case 1, $ 

t   payback period, year 

QR   the heat duties of the reboilers, GJ/h 

QC    the heat duties of the condensors, GJ/h 

Cmi   the capital cost of each device in the case 3, $ 

FCH4O   the molar flowrate of product methanol, kmol/h 

FCO  the molar flowrate of carbon monoxide in the fresh gas, kmol/h 

FCO2   the molar flowrate of carbon dioxide in the fresh gas, kmol/h 

PCOMP  the power of the compressor in the case 3, GJ/h 
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