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Abstract

A model describing the batch hydrolysis of rapeseed oil including kinetics and

mass transfer at subcritical conditions is presented in this paper. The primary

purpose of this model is to interpret experimental data collected from typical

batch tests and to estimate model parameters. The developed model was further

investigated using Monte Carlo simulations to statistically quantify the variabil-

ity in the model outputs due to uncertainties in the parameter estimates. To

understand which parameters in the model are responsible for the output un-

certainty, a sensitivity analysis method was used (polynomial chaos expansions-

based Sobol sensitivity indices). The results from the sensitivity analysis helped

to identify what parameters in the model are influential, giving insight into the

robustness and predictive capabilities of the model which form the basis for

any model-based decision making for detailed process characterization, design,

optimization and operation of the hydrolysis of rapeseed oil.
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1. Introduction

While production of oilseed and vegetable oils, with an estimated production

of 769 million metric tons per year (2017/2018 forecast), are small compared to

primary petrochemicals, they are an important component in today’s commodi-

ties market [1]. To a large extent, this is due to the high technological standard5

of this mature industry [2]. Generally speaking, vegetable oils are extracted

from soybeans, palm fruit, sunflower, coconuts, rapeseed, cottonseed, olives,

flax, castor seed and groundnuts, making them the most important renewable

raw materials for the chemical industry [3].

Vegetable oils are primarily triglycerides, i.e., triesters of long-chain satu-10

rated and unsaturated fatty acids with glycerol. Basic oleochemicals (chemicals

derived from vegetable oil and animal fats) are free fatty acids, methyl esters,

fatty alcohols, and fatty amides as well as glycerol as by product [4]. Fatty

acids of different chain length, saturated and unsaturated, have been produced

through hydrolysis on an industrial scale for more than 130 years (Lemmens15

Fryer’s Process, Budde and Robertson’s Process, Ittner’s Process, Twitchell

Process, etc.)[5]. The hydrolysis of fats and oils also produces several impor-

tant industrial chemicals including monoglycerides, diglycerides, and glycerol

as side-products [6]. The existing industrial and commercial process hydrolyzes

oils to fatty acids and glycerol at temperature and pressure of about 250◦C and20

50 bar within a few hours to achieve conversions between 96% and 99% [7, 8].

The main products of the oleochemical industry are for human consumption

(ca. 80%) and nonfood applications (ca. 20%) such as detergents, cosmetics,

plastics, or biofuels. Because of their importance in the preparations of further

derivatives and with a fast-growing market for bio-based products, demand for25

these products is expected to grow around the world [9]. For example, the global

market for natural fatty acids reached US$17.1 billion and US$18.3 billion in

2014 and 2015, respectively. This market is expected to grow at an annual

growth rate of 7.1% to US$25.7 billion for the period 2014-2019 [10]. Hence, it

has become more imperative for industry to better respond to consumer needs30
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by understanding the chemical transformations involved in the processing of

vegetable oils.

1.1. Previous modeling efforts

The hydrolysis of oils and fats is an important processing route for the chem-

ical industry. In this regard, several authors have developed kinetic models for35

the hydrolysis reaction of triglycerides [11, 12, 13, 14, 15]. The process for hy-

drolyzing oil by using water is influenced by both mass transfer between the

phases and by the kinetics of the reactions. Processes at subcritical conditions

are conducted with water in a temperature range of 100 to 374◦C under suffi-

cient pressure (below the critical point) to keep the water in the liquid state.40

Conventional industrial hydrolysis of oils and fats is generally conducted un-

der subcritical pressures close to 45 bar and temperatures around 250◦C for a

maximum period of 2 hours with high yields (96-99%). The resulting products

are extremely dark fatty acids and an aqueous solution rich in glycerol, which

need to be re-distilled for color removal and purification [? ]. The hydrolysis of45

triglycerides can be carried out batchwise (Twitchell process) or continuously

(Colgate Emery process) [16].

Currently, the continuous hydrolysis of triglycerides allows the industrial

production of fatty acids by the action of water vapor in a spray column at high

pressures [17]. The reaction is non-catalyzed with conversions of triglycerides50

up to 99% after 1 to 3 hours in the reactor [18]. The glycerol formed during the

hydrolysis is continuously extracted from the reaction medium.

[19, 20] found that the conversion of this reaction is dependent of the tem-

perature. [6] described the autocatalytic behavior of the reaction in a batch

reactor, with the assumption that the reaction occurs in the bulk of the oil55

phase. Such behavior had been attributed to the elevated ion product of water

at high temperature [6]. [13, 14, 15] proposed a model to describe the bipha-

sic hydrolysis by using a combined mass transfer and kinetic approach. The

authors also investigated the reaction in both batch and continuous mode and

proposed a three-step reversible reaction mechanism for the hydrolysis of tri-,60
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di- and monoglycerides [13, 14, 15]. [12] developed a second-order chemical re-

action model and suggested an autocatalytic mechanism due to the action of

generated fatty acids in the aqueous phase that subsequently act as acid catalyst

in subcritical water [12]. More recently, [21] presented a kinetic study for the

hydrolysis of sunflower oil under subcritical conditions in a PFR, where infor-65

mation on the different kinetic regimes the reaction exhibits as well as on the

rate parameters was also provided. Additionally, the hydrolysis at low/middle

temperatures over solid acid catalists was discussed by [22]. In their study, the

rates of hydrolysis were increased by the action of solvents and phase transfer

agents.70

Nevertheless, after a revision of the technical process development of hydrol-

ysis of triglycerides one finds that some basic facts related to the thermodynam-

ics, mass transfer, and kinetics inherent to the biphasic nature of the process

have only been partially recognized due to the rather harsh physical conditions

at which tri-, di-, and monoglycerides are exposed to during their hydrolysis.75

In the literature, the experimental data available which concerns the reactions

needed for the design and analysis of processes which involves lipid technology

are, in the best case scenario, scarce and not conclusive such as, solution and

reaction properties of the species involved, extent of miscibility, phases where

reactions occur and the reaction and mass transfer mechanisms. Moreover, the80

mathematical models used to correlate the behavior of reactions with phenom-

ena are not accurate enough and are not used for validation. Hence, these

models are not predictive in nature, which limit their scientific and industrial

applicability. Hence, only limited information is available [23]. Besides, another

disadvantage of the available models in the open literature is, to the best of our85

knowledge, that none of the recent studies has been analyzed and thoroughly

validated.

Kinetic modeling and validation of biphasic reactions, specifically the hy-

drolysis of vegetable oils at subcritical conditions, is complicated due to the

heterogeneous nature of the system and the lack of experimental information.90

Moreover, these task depends strongly upon selecting accurate estimation and
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simulation methods. Missing or insufficient physical properties and operating

parameters can weaken the accuracy of a model or even prevent one from sim-

ulating it [24]. Hence, it is very important to find and use good values for

models, parameters and properties. In this way, integrating experimentation95

and modeling of chemical processes is a relevant validation strategy for im-

proving property and process modeling as well as designing and optimizing the

reaction and recovery of high value added products.

In this work, a problem-specific model was proposed to evaluate its applica-

bility and predictive capabilities. In the modeling of biphasic reaction systems,100

a model can be used for studying the behavior of the different species within

one phase, defining the distribution of species between two phases, or predicting

the effect of process conditions on reacting species or reaction rates. The chal-

lenges presented by the absence of accurate models for this reaction and process

can be overcome by collecting data through experiments, rigorous mathematical105

modeling, uncertainty and sensitivity quantification, thermodynamic analysis of

reactions and mixtures, simulation of technologies and scenarios, and analysis

of fluid flow behavior in industrial settings. By applying these methodologies, it

is possible to represent accurately a studied system. In this way, the production

of fatty acids can be analyzed in terms of its phenomena, design variables and110

process parameters as a whole. Furthermore, the results can be used to validate

and improve property and process modeling.

This model describes batch runs with a reasonable number of parameters

and degree of accuracy. Monte Carlo simulations were run to identify the work-

ing bounds and the cases where the model is most accurate under uncertainty115

in the parameter estimates and model outputs. Furthermore, a sensitivity anal-

ysis method based on variance was used in order to quantify how much of the

variance in the model output each uncertain parameter is responsible for.
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2. Model development

2.1. System phenomena relevant for modeling120

The hydrolysis of triglycerides is generally considered a three-step set of

consecutive, reversible reactions in which one mole of glyceride is generated and

consumed as seen in (Reaction 1) - (Reaction 3). In water at high temper-

ature, this hydrolysis reaction with its backward reaction occurs without any

catalyst. In this system of reversible reactions, a molecule of Triglyceride (TG)125

is hydrolyzed to one molecule of Diglyceride (DG) and one molecule of Fatty

Acid (FA). DG is subsequently hydrolyzed to Monoglyceride (MG) which is

further hydrolyzed to Glycerol (Gly), producing three molecules of FA in total

[14, 25].

The following reactions present the three-step vegetable oil hydrolysis reac-

tion:

TG + H2O
k1−−⇀↽−−−
k−1

FA + DG (Reaction 1)

DG + H2O
k2−−⇀↽−−−
k−2

FA + MG (Reaction 2)

MG + H2O
k3−−⇀↽−−−
k−3

FA + Gly (Reaction 3)

130

However, as presented by Noureddini et al, the reaction described by (Reaction 4)

can take place at high temperatures (180◦C-280◦C) [26].

TG + MG
k4−−⇀↽−−−
k−4

2 DG (Reaction 4)

As a result of its heterogeneous nature, the hydrolysis reaction is affected not

only by the chemical kinetics but also by the rate of mass transfer between the135

oil and water phase. Other important variables which are affecting the process

are temperature, pressure, density, viscosity, and geometry of reactor. Since

the polar water and non-polar TG form two immiscible phases, one component
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must diffuse into the other before the reaction between them can happen. Thus,

both a mass transfer of water from the bulk of the aqueous phase to the organic140

phase and a chemical reaction take place in the process. An increase in the

solubility of water in the oil-rich phase with high temperature as well as the

action of high agitation could overcome the interface mass-transfer resistance

due to the dissimilarity in size and polarity between triglycerides and water,

and consequently boost the reaction rate of hydrolysis. At subcritical condi-145

tions the dielectric constant of water declines significantly as water is heated at

constant pressure. At such conditions, water behaves closely as organic solvent.

This means that its solvation properties are enhanced because the hydrogen

bonding between molecules of water is weaker allowing greater miscibility and

consequently diffusion of. Additionally, different levels of agitation can result in150

the change of dimension and nature of the interfacial area between organic and

aqueous phase.

[19] observed that in the beginning of the reaction, a water in oil emulsion

is formed and the reaction proceeds slowly due to mass transfer limitations. As

the reaction continues, the emulsion breaks down and the reaction rate increases155

significantly. This is because the fatty acid content in the oil increases due to the

reaction, which then acts as an acid catalyst. Consequently, the overall reaction

rate expression should consist of the mass transfer rate, the chemical reaction

rate and include explicitly the solubility of water in the oil phase depending on

its composition.160

According to the two-film theory, an interface separates the phases and there

is one film in either phase that adheres to the interface [27, 28]. Mass transfer

and reaction occur through the following consecutive steps as proposed by [29]

for a high-pressure oil-hydrolysis countercurrent spray reactor:

1. Water in the aqueous bulk diffuses through the aqueous film.165

2. Water diffuses through the liquid/liquid interface.

3. Water diffuses through the oil film to the oil phase bulk where the reaction

takes place.
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4. Water reacts with the tri-, di-, and monoglycerides forming fatty acids

and glycerol.170

5. Fatty acids dissolve in the oil phase with the unreacted tri-, di-, and

monoglycerides while glycerol diffuses back to the aqueous phase. The

aqueous bulk is composed of water, glycerol, and very low amounts of

TG, DG, MG, and FA.

The representation of the mass transfer mechanism is shown in Figure 1.175

Bulk oil phase

InterfaceDispersed phase (aqueous) Continuous phase (oil)

Bulk aqueous phase

Glycerol

Water Triglycerides

Fatty acids

Local aqueous

boundary layer

Local oil

boundary layer

Water

Glycerol

Figure 1: Mass transfer and reaction processes based on the two film theory for the hydrolysis

of oils

2.2. Mathematical formulation

The general modeling objective followed in this work is that the model should

be sophisticated enough to describe the complexities of the hydrolysis of veg-

etable oil, but the parameters should be based on measurable phenomena to a

possible extent.180
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1. Two phases are present: aqueous (polar) and oil (non-polar) represented

by the subscripts aq and oil respectively. All the reactions occur in oil

phase.

2. Reactions are elementary and consecutive.

3. As the reactions are reversible, TG, DG, and MG are present at the185

chemical equilibrium.

4. Partition of water and glycerol among the two phases.

5. Mass transfer phenomena is described by Whitman’s two-film theory [30].

Based on the reaction scheme presented in (Reaction 1) to (Reaction 4),

the following kinetic equations are proposed:190

TG + H2O
k1−−⇀↽−−−
k−1

FA + DG

R1 = k1 · CTG · CH2O − k−1 · CDG · CFA
(1)

DG + H2O
k2−−⇀↽−−−
k−2

FA + MG

R2 = k2 · CDG · CH2O − k−2 · CMG · CFA
(2)

MG + H2O
k3−−⇀↽−−−
k−3

FA + Gly

R3 = k3 · CMG · CH2O − k−3 · CGly · CFA
(3)

TG + MG
k4−−⇀↽−−−
k−4

2 DG

R4 = k4 · CTG · CMG − k−4 · C2
DG

(4)

Where ki is the reaction rate constant for component i.

In order to model the batch hydrolysis, the expression for every species in-

volved in the reaction should be determined. The reaction rates can be described

by the expressions in Equations (1) - (4). The mole balances for the aqueous

and oil phases become:195
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• Aqueous phase
dnaqH2O

dt
= −JaqH2O

· Vaq (5)

dnaqGly
dt

= JaqGly · Vaq (6)

• Oil phase
dnoilTG
dt

= (−R1 −R4) · Voil (7)

dnoilDG
dt

= (R1 −R2 − 2 ·R3) · Voil (8)

dnoilMG

dt
= (R2 −R3 −R4) · Voil (9)

dnoilFA
dt

= (R1 +R2 +R3) · Voil (10)

dnoilH2O

dt
=
(
−R1 −R2 −R3 + JoilH2O

)
· Voil (11)

dnoilGly
dt

=
(
R3 − JoilGly

)
· Voil (12)

The equations which describe the mass transfer of water and glycerol from

and to the two phases are as follows:

JaqH2O
= k1L,a ·

(
CaqH2O

−mH2O · C
oil,∗
H2O

)
(13)

JaqGly = k2L,a ·
(
CaqGly −mGly · Coil,∗Gly

)
(14)

JoilH2O = k1L,a ·
(
Coil,∗H2O

− CoilH2O

)
(15)

JoilGly = k2L,a ·
(
CoilGly − C

oil,∗
Gly

)
(16)
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When one assums steady-state, the interfacial concentration (C∗i ) can be

calculated by solving the following balance for the ith component:

Jaqi · V
aq = Joili · V oil (17)

By solving Equation (17), it is possible to obtain:200

Coil,∗i =
V aq · kiL,a · Caqi + kiL,a · V oil · Coili

kiL,a · V oil + V aq · kiL,a ·mi
(18)

In the absence of experimental data for the liquid-liquid equilibrium, Excess

Gibbs energy-based activity coefficients are used to predict the partition coeffi-

cient m. In this study the modified UNIFAC (Dortmund) model developed by

Gmehling et al. is applied for the calculation of the equilibrium compositions of

the two liquid phases and partition coefficients [31, 32, 33, 34, 35]. This method205

was chosen due to its large range of applicability and the reliable results pre-

dicted for properties related to phase equilibria of systems involving vegetable

oils [36]. Moreover, thermodynamic models such as NRTL, UNIQUAC, SAFT

or CPA require specific binary interaction parameters obtained by regression

and extrapolation of experimental phase equilibrium data of systems containing210

tri-, di- and monoglycerides which, unfortunately, are not available in the open

literature. In order to solve the mass transfer equations, it is also necessary to

define the partition coefficient for both water and glycerol. . These calcula-

tions are carried out by using the iterative algorithm proposed by [37], and it is

summarized in the Supporting Information section of this work.215

Volumes of oil and aqueous phase are calculated by using the following equa-

tion:

Voil =
∑
i,oil

ni,oil
ρi

Vaq =
∑
i,aq

ni,aq
ρi

(19)

Densities of components (ρi) are calculated by using polynomial fittings of

experimental data of density versus temperature for the desired range. Corre-

lation parameters for these polynomials have been obtained from the CAPEC220

11



Lipids Database [38]. In brief, the mathematical model has 8 variables, i.e.

moles, and it contains 10 parameters which are estimated from dedicated ex-

periments.

3. Experimental materials and methods

3.1. Chemicals225

Rapeseed oil purchased from Scandic Food A/S (Nørre Aaby, Denmark)

and deionized water (18 Ω) were used for the hydrolysis experiments. n-Heptane

[CAS 142-82-5], Acetic acid [CAS 69-19-7], Isopropanol [CAS 67-63-0], and tert-

Butyl methyl ether [CAS 1634-04-4] were used for HPLC-Analysis and were

purchased from Sigma-Aldrich Denmark ApS (Brøndby, Denmark).230

3.2. Batch experiments

Hydrolysis reactions were run in a 300 ml Hastelloy C-276 jacketed reactor

with ceramic band heaters (Parker Autoclave Engineers, Model 300 ml HC

EZE-Seal). The reactor includes a spiral cooling coil to provide a mean of

removing heat from the vessel to control the reaction and for cooling the reactor235

at the end of every experiment. This coil consists of multiple loops wound in

the inside diameter of the vessel around the shaft guide. The autoclave was

sealed and flushed 3 times with 5 bar N2 and 6 bar H2 to remove any traces of

oxygen. The reactor is equipped with a PID controller to monitor and control

temperature and agitation speed. A dip tube connected to a valve was used for240

withdrawal of liquid samples by the action of pressure difference. This procedure

was carried out every 30 minutes. Approximately 2 ml of sample were retrieved

from the reactor into a 5 ml vial which was put immediately in ice-water for

several minutes and analyzed. The collection of samples in multiphase systems

at high pressure presents many challenges. The most difficult one is how to245

get a representative sample from the system. In this work, the only solution to

this problem was to collect the sample using the sampling port, separate the two

phases, measure each individually in weight and volume to verify mass balances,
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and then recombine them for further analysis. A scheme of the set-up used is

depicted in Figure 2. 11 experiments were carried out based on a Box-Behnken250

design for three factors (temperature, oil-to-water ratio, and agitation speed)

and an experimental runtime of 6 hours as shown in Table 1 [39].

Table 1: Experimental design (validation sets are highlighted)

Experimental conditions
Experiment Temperature (◦C) Water-to-oil ratio Agitation (rpm)

1 180 15 360
2 180 40 360
3 280 15 360
4 280 40 360
5 180 27.5 120
6 180 27.5 600
7 280 27.5 120
8 280 27.5 600
9 230 15 120
10 230 15 600
11 230 40 600

The initial time of each experiment was defined as the point of time when

oil and water reached the operating temperature (approximately 18 minutes).

3.3. HPLC Analysis255

Collected samples were analyzed by following the procedure developed by

[40], and modified by [41]. 40 µL of the sample were injected in the HPLC (Ulti-

mate 3000, Dionex A/S, Hvidovre, Denmark) to analyze TG, DG, MG, and FA.

The separation of the compounds was performed in a cyanopropyl column (0.25

x 0.004 m) (Discovery, Cyano, Sigma Aldrich A/S, Brøndby, Denmark), U3000260

auto-sampler, TCC-3000SD column oven, U3400A quaternary pump modules,

and a Corona Charged Aerosol Detector (Thermo Scientific, MA, United States).

A binary gradient program was run with the use of three solvents (99.6% v/v

tert-Butyl methyl ether, 0.4% v/v Acetic acid and, Isopropanol). The detection

of the compounds was achieved by a Corona Charged Aerosol Detector from265

Thermo Scientific Dionex (Chelmsford, MA) with pressurized N2 .
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Figure 2: Reactor setup used for the hydrolysis of rapeseed oil

4. Parameter estimation, uncertainty and sensitivity analysis

4.1. Sequential and simultaneous parameter estimation

For the datasets collected in the experiments, kinetic and mass transfer

parameters were estimated by applying the Levenberg-Marquardt algorithm for270

the non-linear global fitting problem. Thus, the Levenberg-Marquardt algorithm

presents the simultaneously estimated parameters, the value of the residuals and

the Jacobian matrix by minimizing the objective function in order to get the

lowest sum of squared residuals for the kinetic and mass transfer parameters:

θ = arg min
∑
i

(
yexpi − ypredi

)2
(20)

In Equation (20) θ are the estimated parameters, yexpi the measurement, and275

ypredi the obtained value of parameter i.

This preliminary estimation gives an initial guess for the simultaneous esti-

mation of parameters which is carried out as an ordinary non-linear regression

problem.
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4.1.1. Covariance-based uncertainty analysis of parameter estimation and out-280

put prediction

The underlying assumption is that the errors are normally distributed. The

uncertainty of the parameter estimates is based on the covariance matrix, COV (θ),

which is obtained through first linear approximation as described in the work-

flow proposed by [42]. The covariance matrix COV(θ) is estimated by Equation285

(21):

COV (θ) =
S (θ)

N − p

((
dy
dθ

)T
Q−1m

(
dy
dθ

))
(21)

where S(θ) represents the minimum error sum of squares calculated from

the Levenberg-Marquardt algorithm in the non-linear global fitting problem, dydθ
is sensitivity matrix of the outputs obtained in the model (y) with reference to

the model parameters (θ). Qm is the covariance matrix of measurement errors,290

N is the number of experimental data used for the regression, and p is the

total number of estimated parameters. In this way, the correlation between two

parameters v and w can be expressed as:

COR (θv, θw) =
COV (θv, θw)√

σ2
θv
σ2
θw

(22)

The histograms of residuals were used to verify that the residuals follow a

normal distribution and have a zero mean. This also allows one to evaluate the295

quality of the fitting by identifying the confidence regions for the parameters

through the calculation of normal bivariate distributions.

4.1.2. Monte Carlo method for uncertainty analysis of parameter estimation

and prediction

In this work, the calculation of the uncertainty in the obtained parameters300

was carried out by applying the Monte Carlo method. This technique uses

randomly sampled parameters so as to evaluate the model outputs and to obtain

their distribution. In this way, it is possible to achieve global results in the

uncertainty due to the large number of evaluations the model undergoes. Thus,
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once the input parameter space is defined, the model is evaluated by obtaining305

the corresponding model outputs y. The procedure for performing uncertainty

analysis can be summarized as:

1. Definition of the input parameter uncertainty: upper and lower

bounds for a model parameter are defined by its confidence intervals θ̂.

2. Sampling input uncertainty: quasi-random sampling of the parameter310

estimates by means of a Latin Hypercube Sampling to distribute samples

evenly over the input parameter space [43].

3. Use of the sampling matrix to evaluate the model: simulations are

performed by using the sampled input matrix obtained in the previous

step. In this way, a cumulative distribution function for each model output315

is obtained. Consequently, mean values of the model and 5th and 95th

percentile calculations are used to represent the uncertainty of the model

outputs.

4.2. Variance based sensitivity analysis - Sobol method

A variance based sensitivity analysis method uses the variance of the model320

outputs and decomposes it into fractions that can be related to the model pa-

rameters. These partial variances can be obtained by the decomposition of a

random vector of input parameters. Then, the partial variances are normal-

ized with the total variance to obtain the so-called Sobol sensivity indices [44].

The Sobol indices are useful to quantify the importance of a parameter Xi on325

a model output. The Sobol indices can take values between 0 and 1. In this

method, a value closer to 1 means that the contribution of the input parameter

on the variance is high. The Sobol sensitivity indices also allow one to identify

the total and the interaction effect among parameters on the output variance

for a specific input parameter [45].330

The variance calculates measures on how far a set of random numbers are

spread out from their mean value. The variance of a model output y is given
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by:

V (y) = V (f (X)) = σ2 =

∫
(f (X)− µ)

2 − p (X) dX (23)

where V (X) is the variance, σ the standard deviation, µ the mean, p(X) is

the probability density function of X, and X is a random parameter.335

The variance can be decomposed by using Sobol’s higher dimensional model

representations as follows [46]:

V (y) =
∑
i

Vi +
∑
i

∑
j>i

Vi,j (24)

where Vi and Vi,j are the first-order and second-order variance of the model

outputs respectively.

Sobol indices can be obtained by normalizing the partial variances with the340

total variance as:

Si =
Vi

V (y)
Si,j =

Vi,j
V (y)

(25)

where Si is the first-order sensitivity index which allows one to characterize

the influence of parameter Xi on the model output. Si,j is the second-order sen-

sitivity index, which allows the quantification of interactions among parameters

Xi and Xj .345

STi is the total sensitivity index where the input parameter Xi is present,

which can be expressed as [47]:

STI = Si +
∑
j

Si,j (26)

These indices can be obtained by using Monte Carlo simulations (e.g. Janssen,

Sobol, or Saltelli approximation) [48, 44, 49]. However, recently developed

methodologies make use of metamodels, such as polynomial chaos expansions to350

overcome the computational costs related to the sampling of the Monte Carlo

method.
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4.2.1. Polynomial chaos expansions

Polynomial chaos expansion (PCE) is a sampling-based method to determine

the evolution of uncertainty in a model, which can be estimated as a sum of355

orthogonal polynomials. The main advantage of representing the model output

as a polynomial is that it allows one to simplify and speed-up the calculations

required.

Different polynomial types can be used to approximate the model output.

This approximation depends on the type of distribution the input variable X360

follows. For example, Legendre polynomials and Hermite polynomials are used

for rectangular and standard normal distributions respectively. The model out-

put can be approximated with different polynomial types. The approximated

function is defined as:

y = f (X) ≈
∑
a∈RM

ŷaφa (X) (27)

where the coefficients ŷ can be found by using Gauss-Legendre quadrature365

rules [50]:

ŷa ≈
N∑
k=1

= f (xk)φa (xk)wk (28)

In Equation (28) wk represent the weights and xk the nodes, which can

be calculated by the polynomial distribution function of the independent input

parameters. Both the weights and nodes can be determined by finding the roots

of the polynomial function [47].370

Once this approximation of the model output is obtained, the total and par-

tial variance of the function can directly be computed due to the orthogonality of

the polynomials [47, 51]. Once the variances are obtained, the Sobol sensitivity

indices can be computed.

Vt =
∑
a∈RM
a6=0

ŷ2a (29)
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Vi =
∑
a∈Ra
a6=0

ŷ2a (30)

4.3. Residual analysis375

The residual analysis is relevant for model validation because it allows one

to verify whether the model estimates explain the variations in a dependent

variable. Ideally the residuals should be small and uncorrelated. If the residuals

are correlated or have any special aspect that does not seem random, there is a

methodical error in the model. The residuals are calculated as:380

e = y − ŷ (31)

Where e is a vector which contains the residuals, y are the measurements

taken in a experiment, and ŷ is the output calculated in the model.

5. Implementation and simulation environment

The implementation of the methodologies, simulations, and programming of

the statistical methods were coded in Matlab by using the work-flow presented385

by [52, 53]. [52, 54]. The algebraic differential equations proposed in the model

were solved by using the built-in routine ode23s, while parameter estimations

and regressions were performed with the use of the fminsearch and lsqnonlin

algorithms in Matlab [55, 56, 57, 58]. The UQLab framework provided im-

plementations of PCE models and Sobol sensitivity indices, which were used390

in this study [47, 59]. The implementation of the above presented methods is

summarized in Table 2.

6. Results and discussion

6.1. Model fitting, parameter uncertainty and correlation

Eight datasets obtained with the above described experimental procedure395

were used to estimate the model parameters through global fitting, while three
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Table 2: Uncertainty and sensitivity analysis method

# Step Description Output

1 Parameter estimation Parameters to fit the model θ0

Identification of parameter θ̂R

Correlation matrix Rθ

Confidence interval for parameters σ

2 Uncertainty analysis Prediction uncertainty of the model 5th and 95th

3 Sensitivity analysis Sobol sensitivity indices Si and STi
Polynomial chaos expansions Vi and VT

4 Residual analysis Simulations with estimated parameters

Probability distribution of residuals

Compute the autocorrelation function

are used for model validation. Model fits for the validation sets as well as the

parameter estimation are presented in Figure 3 and Table 3.

The performance of the model fits for the validation sets during the reaction

times is shown in Figure 3, where data is provided in terms of moles of species.400

It can be seen that the quality of the model fits is high. The quality of the model

fits and the experimental data is important in order to ensure that the model

gives a true measure of the real system. In this regard, the Mean Absolute Error

was quantified to measure the average magnitude of the errors in the predictions

provided by the proposed model for the experimental validation sets. For the405

studied model outputs nTG, nDG, nMG and nFA the Mean Absolute error was

0.0042 moles, 0.0038 moles, 0.0037 moles and 0.0187 moles respectively, which

can be considered as low. These fits were obtained by estimating 8 kinetic and 2

mass transfer parameters present in the developed mathematical model. Since

the estimation error obtained by the standard deviation is low, it is possible to410

say that the estimated values are accurate [54].

The proposed model captures the behaviour for the four analyzed compo-

nent, although the prediction for DG and MG mismatches the experimental

data. However in Figure 3, the experimental amount of moles of validation set

1 (180◦C - 1:15 oil-to-water molar ratio) shows significant mismatches, when it415
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comes to the prediction ofMG which is much higher than the amount predicted

by the model. The model mismatches observed can be related to changes in the

phenomena which were not modeled such as viscosity and due to the large gen-

eration of emulsifying agents such as DG andMG, which in addition to forming

hydrogen bonds, can be combined in the mixture with small amounts of water420

and glycerol changing then the distribution of phases as reported by Wang et

al [60]. At 180◦C - 1:40 oil-to-water molar ratio - 360 rpm, there is a higher

amount of FA produced which is in agreement with previous research, since it

is known that high amounts of water lead to higher conversion rates [60, 12, 13].

The mean of the estimated parameters, their standard deviation σ, and425

correlation coefficients are shown in Table 3. Once parameter estimates are

obtained, it is necessary to determine how specific they are in relation to the

experimental data used. When two parameters are highly correlated, a change

in the model output can be mitigated by a change in the value of the other

parameter. As seen in Table 3, some of the parameters are highly correlated,430

which prevents to find a unique estimate of the parameter value.
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Figure 3: Global fitting and experimental data for the hydrolysis at ( ) 180◦C - 1:15 oil-

to-water molar ratio - 360 rpm, ( ) 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm and

( ) 180 ◦C-1:40 oil-to-water molar ratio-360 rpm.
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Table 3: Mean, standard deviation and correlation matrix for the parameter estimation.

θ Mean
Correlation matrix

k1 k−1 k2 k−2 k3 k−3 k4 k−4 k1L,a k2L,a

k1 2.029 0.101 1.000
k−1 1.919 0.208 0.655 1.000
k2 2.251 0.203 0.112 0.013 1.000
k−2 4.236 0.528 0.123 -0.137 0.931 1.000
k3 1.173 0.057 0.059 0.168 -0.079 -0.059 1.000
k−3 0.395 0.031 -0.103 -0.292 -0.092 -0.029 0.603 1.000
k4 2.464 0.128 -0.138 0.096 -0.111 -0.185 -0.001 -0.155 1.000
k−4 1.75 0.102 -0.268 -0.431 -0.302 -0.262 -0.111 0.063 0.068 1.000
k1L,a 0.319 0.025 -0.773 -0.424 -0.524 -0.499 -0.063 0.061 0.191 0.292 1.000
k2L,a 0.772 0.13 -0.273 -0.222 0.063 0.182 -0.426 -0.242 -0.336 0.054 0.255 1.000

For example, k1 has a high negative correlation with k1L,a, which means that

the kinetic constant related to the consumption of triglycerides has a negative

effect on the mass transfer coefficient of water. Our study also shows that if the

value of k1 increases, k1L,a decreases to obtain a good fit. Similar analyses can be435

done for k1 and k−1 (consumption and generation of TG in (Reaction 1)), k−1

and k−4 (consumption and generation ofDG in (Reaction 1) and (Reaction 4)),

k2 and k−2 (generation and consumption ofMG in (Reaction 2)), k−2 and k1L,a

(consumption of MG in (Reaction 2) and mass transfer of water respectively),

k3 and k−3 (generation and consumption of MG). This correlation is expected,440

since the hydrolysis proceeds as a set of parallel and sequential reactions, which

implies poor identifiability. In this regard, more measurements should be per-

formed so as to be included in the parameter estimation. These measurements

can be moles of glycerol and water as well as separate measurements of mass

transfer rates between phases without the complexity of ongoing reaction.445

It is worth mentioning that the uncertainty results presented in this work are

conditional to the range defined by the parameter uncertainty alongside their

correlation coefficients. Therefore, the results need to be handled accordingly

within those conditions [52]. In this context, the results provided by the un-

certainty analysis and parameter estimation are of local nature and are valid450

in the neighborhood at which the minimization was performed in the param-

eter estimation. To overcome the identifiability issues, it is then necessary to

22



find a unique combination of estimated parameters which provide low corre-

lation and low confidence intervals. However, the major disadvantage of this

approach is that those parameters that are found unidentifiable need to be es-455

timated from independent experiments, which can be expensive. In order to

generalize the results obtained, it is required to perform a sensitivity analysis

based-identifiability analysis iteratively at different conditions or alternatively

one could perform a global sensitivity analysis as the one carried out in this

work for model improvement [61, 52]. Another valid option is to accept the460

model with its parameter uncertainty and use it to evaluate whether it can be

applied in process engineering tasks as well as process design and optimization.

6.2. Uncertainty analysis of model predictions

The uncertainty of the calculated model outputs (nTG, nDG, nMG, and nFA)

during the hydrolysis reaction can be seen in Figure 4 and Figure 5. In these465

figures, synthetic data generated by the evaluation of the model by using Latin

Hypercube Samples is shown for the validation set (hydrolysis at 180◦C - 1:27.5

oil-to-water molar ratio - 600 rpm). It is possible to observe that almost all the

experimental values lay inside the working boundaries of the simulations. The

tight predictions for nTG and nFA give an overview of the robustness of the470

model and quality of the fit, while the large predictions calculated for nDG and

nMG indicate that either the model which contains deficiencies or the variables

were not properly measured. In this case, a better estimation of the parameters

and more experiments are necessary to get more accurate predictions for these

species.475

6.3. Sensitivity analysis of model outputs

For the sensitivity analysis with Sobol indices an output was needed, given

our interest in determining which parameters contribute to the uncertainty of the

model outputs during the time course of the reaction (0.5 - 6 hours), where there

are significant variations in the model outputs of the Monte Carlo simulations480

(Figure 4). Global calculations were also made by using the mean values of
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Figure 4: Uncertainty propagation generated from the simulations based on Monte Carlo

method for the selected dataset (hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600

rpm) ( )
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Figure 5: Uncertainty propagation represented by the mean ( ) and the 5th and 95th

percentiles ( ) of the Monte Carlo simulations for the selected dataset (hydrolysis at 180◦C

- 1:27.5 oil-to-water molar ratio - 600 rpm)
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the outputs. This was done to rank the significance of the parameters obtained

at the different conditions used in the validation sets. It should be noted that

the analysis can be performed at different time points and different process

conditions at which case the parameter ranking can vary. In this case, the485

selected set of conditions was the hydrolysis at 180◦C - 1:27.5 oil-to-water ratio

- 600 rpm.

Results for the variance-based sensitivity analysis are expressed by two sensi-

tivity indices: the Sobol first order sensitivity indices Si indicate the importance

of each parameter considered individually, while the total sensitivity indices STi490

account for both the importance of individual parameters and interactions be-

tween parameter pairs. In this study, the values of STi are similar to Si.

The highest sum of STi obtained for the input parameters of nMG (1.0059),

as seen in Table 4, shows that the variations in outputs are motivated by first-

order effects of the parameters, while the second-order interaction terms con-495

tribute to only 0.59% of the variance of the model output [62] (See also Sup-

porting Information).

Through the analysis of the sensitivity analysis for the mean values of the

validation set, it can be noticed that the consumption of nTG is most influenced

by kinetic parameters k1 and k−1 in (Reaction 1) along with the mass transfer500

coefficient of water k1L,a. It is explained by the fact that the the mass transfer

of water is bound to the reaction with nTG. Hence, the resulting decrease or

increase in mass transfer should then affect all the model outputs. For the pa-

rameters in the reactions related to the formation and consumption of nDG, the

most influential parameters are k2 and k−2 in (Reaction 2), while the remaining505

parameters are deemed irrelevant. In the case of nMG, kinetic parameters k3 and

k−3 in (Reaction 3) have the higher impact. Consequently, the most important

parameters related to generation of the product nFA are the rate constants for

forward reactions alongside the rate constants for reverse reactions (Reaction 1)

- (Reaction 3). As seen in Table 4, the parameters k4, k−4, and k2L,a are little510

or non-influential for the model outputs coupled with the experimental data.

Parameters k4, k−4 which are related to the fourth reaction step were included
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in the model to account for additional reactions which occur in the system with

unreacted triglycerides and generated diglycerides. In this case, its low contribu-

tion to the output variance could indicate that such reaction is not taken place515

in the reactors. In the same way, low values for the mass transfer coefficient of

glycerol k2L,a could be related to a low generation of glycerol which therefore is

not relevant in the mass transfer process. Therefore, values for these parameters

can be fixed to any value within their confidence intervals without influencing

the model outputs. Non-influential parameters contribute to a small percentage520

of the total variance, which then provide criteria for model simplification.

Table 4: Sensitivity analysis with first order Sobol’ indices for each model parameter for the

hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm
Rank Triglycerides Diglycerides Monoglycerides Fatty acids

1 k1 0.5476 k2 0.7355 k3 0.6547 k2 0.3735
2 k−1 0.2339 k−2 0.2149 k−3 0.2185 k3 0.1778
3 k1L,a 0.1181 k3 0.0234 k2L,a 0.0591 k1 0.1521
4 k2 0.0671 k−3 0.0073 k2 0.0344 k−2 0.1096
5 k−2 0.0327 k1L,a 0.0068 k−2 0.0257 k−3 0.0622
6 k−4 0.0009 k1 0.0051 k1L,a 0.0049 k1L,a 0.0553
7 k3 0.0006 k−1 0.0045 k1 0.0043 k−1 0.055
8 k−3 0.0004 k2L,a 0.0019 k−1 0.0043 k2L,a 0.0167
9 k4 0.0002 k−4 0.0018 k4 0 k4 0
10 k2L,a 0.0001 k4 0.0004 k−4 0 k−4 0∑

Si = 0.9984
∑
Si = 0.9984

∑
Si = 0.9939

∑
Si = 0.9978∑

STi = 1.0016
∑
STi = 1.0016

∑
STi = 1.0059

∑
STi = 1.0022

In Figure 6 and Figure 7, we show graphically the first order indices Si

obtained by Sobol’s method of the mass transfer phenomena (k1L,a and k2L,a)

and the different reaction pathways (k1 and k−1, k2 and k−2, k3 and k−3, and

k4 and k−4) to the measured outputs nTG and nFA at different time steps.525

Detailed data concerning the sensitivity analysis of model outputs nMG and

nDG is available in the Supporting Information. These indices give information

about the significance of each parameter, where high values indicate higher

significance and vice versa smaller values indicate negligible or no significance.

Nonetheless, total sensitivity indices STi give information related to the first-530
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order effects of the parameters in the the model and the mutual interactions

among parameters.

In Figure 6 and 7, we present the global sensitivity analysis results conducted

as the reaction progresses. The most important insight provided by these results

are the relative importance of mass transfer and kinetics parameters changes as535

reaction progresses. For example, in Figure 6, it is possible to notice that in the

early stages of the reaction the consumption of nTG is mainly sensitive to the

rate constant for forward (Reaction 1) k1 and the mass transfer coefficient of

water k1L,a, which both show a decreasing trend along time. In the beginning

of the hydrolysis, the transfer of water from the aqueous phase to the oil phase540

accelerates the reacting process. As the reaction progresses, the main contrib-

utors are the kinetic parameters related to (Reaction 2) and (Reaction 3). In

the case of nDG, k1, and k1L,a, they contribute greatly to the variance at 0.5 h,

where they lose their relevance as the reaction progresses. Then, the most in-

fluential parameters are the kinetic related to (Reaction 2). Their significance545

have an appreciable change during the reaction as seen in Figure A.2. In re-

gards to nMG, the parameters associated with the consumption and generation

of nMG in (Reaction 2), (Reaction 3), and (Reaction 4) present the largest

variations because nMG participates in more reactions of the system than all

the other components. As previously mentioned, the reactions are consecutive550

and reversible. Hence, it is possible that every group of parameters might affect

the equations which govern the model differently. When it comes to nFA in

Figure 7, the main contributors to the sensitivity, at the beginning, are rate

constant for forward (Reaction 1) and the mass transfer coefficient of water.

The later is understood by the diffusion of water through the oil film to the555

oil phase bulk where the reaction takes place. Then, kinetic parameters related

to (Reaction 1), (Reaction 2), and (Reaction 3) contribute greatly, which is

explained by the fact that the mole balances involving FA do not have a mass

transfer component since the generated products are assumed to remain in the

oil phase, where they were generated.560

A closer look to the 10 estimated parameters shows that the mass trans-
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Figure 6: Contribution to the variations in the model output nTG over time using Sobol

sensitivity indices for the hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm
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fer phenomena (k1L,a and k2L,a) and the three reaction pathways (k1 and k−1

(Reaction 1), k2 and k−2 (Reaction 2), k3 and k−3 (Reaction 3)), are the pa-

rameters which have a relatively significant effect on all the four model outputs.

The non-influential parameters indicate that at the given experimental condi-565

tions, they do not affect the measured outputs. Therefore such information can

be used as input to prioritize the research areas, for example, in improving the

design of experiments to estimate those parameters or in simplifying the model.

This is relevant in particular when reparametrizing and recalibrating the model

for different feedstock with different initial composition (e.g. palm fatty acid570

distillate) or operating conditions (use of catalyst).

The results from the uncertainty analysis showed that the parameter esti-

mates are trustworthy given the narrow working bounds obtained in the model

outputs, which is of great interest for predictive purposes. It should be men-

tioned that the mass transfer coefficients can change during the reaction given575

the change of the component fractions in the consumed and generated phases.

Hence, the values for these are deemed as average. In this regard, uncertainty

analysis helped to validate the assumption that the estimated parameters are

constant during the reaction. For process development, these analysis are useful

when choosing type and finding optimal configurations in reactors. For example580

the use of batch data to predict reactor configuration residence times and conver-

sions are easy to apply and fast to use. This analysis is therefore of considerable

interest to improve the understanding of design and operating variables that

increase the feasibility of vegetable oil utilization. It is because they provide

information that could be used to compare different modeling approaches under585

different operating conditions.

6.4. Analysis of residuals

The residuals are calculated based on the validation set (hydrolysis at 180◦C,

1:27.5 oil-to-water mol ratio and 600 rpm) and are presented in Figure 8. The

errors for nTG, nDG, nMG, and nFA stay within -0.02 and 0.02 moles. If the590

residuals follow a standard normal distribution and are uncorrelated, the use of
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the model does not yield to errors in the evaluations. The Gaussian probability

plots in Figure 8 shows the distance of the residuals to a standard distribution.

The third plot in Figure 8 determines if there is any information in the residuals

that is not obtained when the model is evaluated. It can be seen that there are595

spikes in almost all plots, however, they are not significant because they do not

exceed the limit set by the confidence intervals.
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Figure 8: Residual analysis for the validation set (hydrolysis at 180◦C, 1:27.5 oil-to-water mol

ratio and 600 rpm)

7. Conclusions

In this work a model for the hydrolysis of vegetable oils in a batch reactor un-

der subcritical conditions was developed and the parameters in the model were600

estimated from experimental data. The model includes mass transfer between

oil and water phase and kinetics of the reversible hydrolysis reactions. The

parameter estimation results showed that, while the parameter estimates were

accurate, the pairwise correlation between estimates were significant for some

parameters. This indicates that the available experimental data is not sufficient605
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to uniquely identify the mass and kinetic parameters and thus requires further

and improved experiment design. A Monte Carlo based uncertainty analysis was

performed to find the accuracy of estimated parameters, the mean and standard

deviations of the model outputs from experimental data. This method was then

successfully applied to calculate the accuracy of the estimated parameters as610

well as their confidence intervals. We recommend this procedure for the estima-

tion of the variance of parameters in chemical kinetics modeling. The results

showed that the presented model was able to predict accurately the experimen-

tal data with a narrow confidence interval. The performed sensitivity analysis

detected the influential and non-influential parameters to the model outputs,615

which allows to validate the model and assumptions proposed. This analysis

provided insights on the relative importance of parameters and their changes as

the reaction progresses, being the parameters related to the mass transfer (k1L,a

and k2L,a) and first steps of the reacting system linked to the consumption of

triglycerides the most important (k1 and k−1 (Reaction 1)). Since the lack620

of experimental data is a crucial issue in the hydrolysis of vegetable oils, this

model-based analysis of data is of substantial value to provide necessary infor-

mation for detailed modeling and characterization of the subcritical hydrolysis

process.
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Nomenclature

Symbols630

Ci Concentration of component i [mol L−1]

DG Diglycerides
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FA Fatty acids

Gly Glycerol

H2O Water635

Jji Mass transfer rate of component i in phase j [mol L−1 hr−1]

ki Rate constant for forward reaction i [L mol−1 hr−1]

k−i Rate constant for reverse reaction i [L mol−1 hr−1]

k1L,a Volumetric mass transfer coefficient of water [hr−1]

k2L,a Volumetric mass transfer coefficient of glycerol [hr−1]640

mi Partition coefficient of component i

MG Monoglycerides

nji Moles of component i in phase j [mol]

Ri Reaction rate [mol L
−1 hr−1]

t Time [hr]645

TG Triglycerides

Vj Volume of phase j [L]

Greek letters

ρi Molar volume of component i [mol L−1]

θ Estimated parameter650

Subscripts and superscripts

∗ Interface

aq Aqueous phase

i Component 1, 2, 3, .., n
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j Phase655

oil Oil phase
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Supporting Information

Liquid-Liquid Equilibrium Calculations

Modified UNIFAC (Dortmund)850

The modified UNIFAC (Dortmund) model has a combinatorial contribution

(ln γCi ) to the activity coefficient, which is directly related to differences in size

and shape of the molecules, and a residual contribution (ln γRi ) to define the

energetic interactions between the molecules as presented by Gmehling et al

[31, 32, 33, 34, 35].855

ln γi = ln γCi + ln γRi (A.1)

The combinatorial part is given by:

ln γ
′

i = 1− V
′

i + lnV
′

i − 5qi

[
1− Vi

Fi
+ ln

(
Vi
Fi

)]
(A.2)

The pure-component parameters ri and qi are respectively, related to molec-

ular van der Waals volume and molecular surface area. They are calculated as

the sum of the group volume and group parameters, RK and QK .

The mole fraction of component j in the mixture is denoted as zj . Thus:860

ri =
∑
k

v
(i)
k RK qi =

∑
k

v
(i)
k QK (A.3)

Where vik, always an integer, is the number of groups of type k in the

molecule i. The group parameters RK and QK are normally obtained from

van der Waals group volumes and surface areas.
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The residual part is given by:

ln γRi =
∑
k

v
(i)
k

[
ln Γk − ln Γ

(i)
k

]
(A.4)

Γk is the group residual activity coefficient, and Γ
(i)
k is the residual activity865

coefficient of group k in a reference solution containing only molecules of type

i.

ln Γk = Qk

1− ln

(∑
m

θmψmk

)
−
∑
m

(θmψmk)∑
n
θnψnk

 (A.5)

θm =
QmXm∑
n
QnXn

Xm =

∑
i

v
(i)
m xi∑

i

∑
m
v
(i)
k xi

(A.6)

The surface area fraction of group m in the mixture is represented by θm

and Xm is the mole fraction of group m in the mixture. The group interac-

tion parameter ψnm characterizes the interaction between groups m and n at870

temperature T through parameters a, b and c.

Ψnm = exp

(
−anm + bnmT + cnmT

2

T

)
(A.7)

Liquid-Liquid Equilibrium Algorithm

The equilibrium for a liquid – liquid system is defined by the equation:

γαi z
α
i = γβi z

β
i i = 1, 2, 3...,Component (A.8)

Where γi, the activity coefficient of component i in phase (α or β), is pre-

dicted using the modified UNIFAC (Dortmund) model. zαi and zβi represent the875

mole fraction of component i in phase α and β respectively.

The algorithm is summarized as a flow diagram in Figure A.1 as proposed

and presented by O’Connell and Haile [63]. If the system temperature and

pressure are known (as they usually are for liquid-liquid equilibrium situations),

then the problem can be posed as an analogy to isothermal flash calculations.880
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In such an approach, the known quantities are temperature T , pressure P and

the set of overall system mole fractions z. The following relation can be defined:

zi =
ni

nTotal
=

nαi + nβi

nαTotal + nβTotal
(A.9)

Then the quantities to be computed would be the mole fractions in each

phase, zα and zβ , and the fraction of total material in one phase, R =
nβi

nTotal
.

Distributions coefficients for each component mi are defined by mi =
zβi
zαi

.885

In order to calculate the required mole fractions, a gamma-gamma formula-

tion for the phase equilibrium equations needs to be expressed in terms of the

distribution coefficients as:

mi =
zβi
zαi

=
γαi

γβi
i = 1, 2, . . . ,Component (A.10)

For each component i in the liquid-liquid system, a material balance is writ-

ten as:890

zαi (1−R) + zβi R = zi (A.11)

Where R =
nβi

nTotal
. Then, by using Equation (A.10) for the distribution

coefficients, it is possible to eliminate zβi in favor of zαi :

zαi (1−R) + zαi miR = zi (A.12)

Solving for zαi and zβi :

zαi =
zi

1 +R (mi − 1)
zβi =

zimi

1 +R (mi − 1)
(A.13)

However, the mole fractions in each phase must sum to unity, therefore, a

Rachford-Rice type function F must be defined as [37]:

F ≡
m∑
i

zβi −
m∑
i

zαi =

m∑
i

zi (mi − 1)

1 +R (mi − 1)
= 0 (A.14)

This Rachford-Rice type function is one equation in the unknown R, inde-895

pendent of the number of components present, which readily lends itself to a
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solution by Newton’s method. A flow diagram for solving this problem is shown

in Figure A.1.

Figure A.1: Rachford-Rice algorithm applied to the gamma-gamma method for solving mul-

ticomponent liquid-liquid equilibrium problems (adapted from O’Connel et al. [63])

Results of the Sobol’ sensitivity analysis

In this section (Tables A.1 to A.4), we provide original numerical values900

coming out from the sensitivity analysis. Values from Tables A.1 to A.4 were

used to produce plots in Figure 6 and 7 in the main text, and Figure A.2 and

A.3; which were also used to discuss the results of the sensitivity analysis.
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Table A.1: First order and total Sobol sensitivity indices of the model outputs nTG for the

hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm
First order Sobol’ sensitivity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.522 0.584 0.583 0.483 0.379 0.300 0.241 0.193 0.155 0.126 0.102 0.084

k−1 0.001 0.022 0.131 0.306 0.430 0.472 0.463 0.428 0.382 0.334 0.290 0.253

k2 0.000 0.000 0.004 0.037 0.101 0.165 0.207 0.223 0.221 0.207 0.188 0.168

k−2 0.000 0.000 0.000 0.002 0.013 0.041 0.084 0.130 0.169 0.195 0.208 0.212

k3 0.000 0.000 0.001 0.002 0.002 0.001 0.000 0.003 0.009 0.018 0.026 0.031

k−3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.011 0.019

k4 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.000 0.001 0.003 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.477 0.392 0.278 0.166 0.071 0.017 0.001 0.017 0.054 0.104 0.160 0.215

k2L,a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005∑
Si 1.000 1.000 1.000 0.999 0.998 0.997 0.996 0.994 0.993 0.990 0.987 0.985

Total Sobol’ sensitivity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.523 0.584 0.583 0.483 0.380 0.301 0.242 0.195 0.158 0.129 0.105 0.086

k−1 0.001 0.022 0.131 0.307 0.432 0.475 0.466 0.433 0.387 0.341 0.297 0.260

k2 0.000 0.000 0.005 0.038 0.102 0.167 0.209 0.226 0.224 0.211 0.192 0.172

k−2 0.000 0.000 0.000 0.002 0.013 0.042 0.084 0.131 0.171 0.198 0.213 0.218

k3 0.000 0.000 0.001 0.002 0.002 0.001 0.000 0.003 0.010 0.018 0.027 0.032

k−3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.006 0.012 0.020

k4 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.000 0.001 0.003 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.477 0.393 0.278 0.166 0.071 0.017 0.002 0.017 0.055 0.107 0.164 0.221

k2L,a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.006∑
STi 1.000 1.000 1.001 1.001 1.002 1.003 1.004 1.006 1.007 1.010 1.013 1.015
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Table A.2: First order and total Sobol sensitivity indices of the model outputs nDG for the

hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm
First order Sobol’ sensitivity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.607 0.249 0.006 0.003 0.012 0.014 0.013 0.012 0.009 0.008 0.006 0.005

k−1 0.001 0.020 0.022 0.015 0.006 0.002 0.000 0.000 0.000 0.001 0.000 0.000

k2 0.071 0.708 0.788 0.749 0.714 0.657 0.584 0.509 0.439 0.376 0.325 0.274

k−2 0.000 0.003 0.021 0.070 0.157 0.261 0.351 0.409 0.437 0.443 0.433 0.415

k3 0.000 0.000 0.001 0.002 0.007 0.017 0.033 0.051 0.068 0.082 0.090 0.096

k−3 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.013 0.026 0.042 0.059 0.081

k4 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.001 0.008 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.320 0.009 0.155 0.157 0.101 0.045 0.010 0.001 0.011 0.032 0.057 0.086

k2L,a 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.011 0.020 0.031∑
Si 0.999 0.998 0.999 0.999 0.999 0.999 0.998 0.997 0.996 0.994 0.991 0.989

Total Sobol’ sensitivity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.608 0.250 0.007 0.004 0.012 0.014 0.013 0.012 0.009 0.008 0.006 0.005

k−1 0.001 0.020 0.022 0.015 0.006 0.002 0.000 0.000 0.001 0.001 0.001 0.001

k2 0.071 0.709 0.789 0.750 0.715 0.658 0.585 0.510 0.440 0.378 0.327 0.277

k−2 0.000 0.003 0.021 0.070 0.158 0.262 0.353 0.412 0.441 0.448 0.439 0.422

k3 0.000 0.000 0.001 0.002 0.007 0.018 0.034 0.052 0.070 0.084 0.093 0.099

k−3 0.000 0.000 0.000 0.000 0.000 0.002 0.006 0.014 0.027 0.044 0.062 0.086

k4 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.001 0.008 0.006 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.321 0.010 0.156 0.157 0.101 0.046 0.010 0.001 0.011 0.032 0.059 0.088

k2L,a 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.006 0.012 0.022 0.034∑
STi 1.001 1.002 1.001 1.001 1.001 1.001 1.002 1.003 1.005 1.006 1.009 1.011
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Table A.3: First order and total Sobol sensitivity indices of the model outputs nMG for the

hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm
First order Sobol’ sensitivity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.138 0.142 0.110 0.034 0.003 0.000 0.002 0.003 0.003 0.003 0.003 0.003

k−1 0.000 0.002 0.010 0.018 0.014 0.008 0.004 0.002 0.001 0.000 0.000 0.000

k2 0.351 0.455 0.466 0.224 0.056 0.008 0.000 0.002 0.005 0.007 0.007 0.008

k−2 0.000 0.002 0.020 0.047 0.052 0.044 0.032 0.022 0.013 0.009 0.005 0.003

k3 0.003 0.049 0.290 0.652 0.780 0.768 0.713 0.625 0.535 0.449 0.374 0.317

k−3 0.000 0.000 0.003 0.020 0.060 0.122 0.196 0.281 0.345 0.386 0.410 0.415

k4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.504 0.349 0.098 0.002 0.030 0.038 0.022 0.007 0.001 0.003 0.009 0.016

k2L,a 0.000 0.000 0.000 0.001 0.003 0.011 0.027 0.052 0.086 0.129 0.175 0.217∑
Si 0.997 0.999 0.998 0.997 0.999 0.998 0.996 0.993 0.990 0.986 0.982 0.978

Total Sobol’ sensitivity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.139 0.142 0.111 0.035 0.004 0.000 0.002 0.003 0.004 0.003 0.003 0.003

k−1 0.000 0.002 0.010 0.018 0.014 0.008 0.005 0.002 0.001 0.000 0.000 0.000

k2 0.354 0.455 0.467 0.225 0.057 0.008 0.001 0.003 0.006 0.008 0.008 0.008

k−2 0.000 0.002 0.020 0.048 0.052 0.044 0.033 0.023 0.015 0.010 0.006 0.004

k3 0.003 0.049 0.292 0.654 0.780 0.768 0.713 0.626 0.535 0.450 0.375 0.318

k−3 0.000 0.000 0.003 0.020 0.061 0.123 0.199 0.286 0.355 0.399 0.426 0.436

k4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.507 0.349 0.099 0.003 0.031 0.038 0.023 0.007 0.001 0.003 0.009 0.017

k2L,a 0.000 0.000 0.000 0.001 0.004 0.012 0.030 0.058 0.095 0.141 0.191 0.237∑
STi 1.003 1.001 1.002 1.003 1.001 1.002 1.004 1.007 1.010 1.014 1.018 1.022
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Table A.4: First order and total Sobol sensitivity indices of the model outputs nFA for the

hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm
First order Sobol’ sensivitity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.421 0.318 0.229 0.171 0.134 0.107 0.084 0.066 0.052 0.040 0.032 0.026

k−1 0.001 0.008 0.024 0.042 0.055 0.062 0.064 0.062 0.056 0.051 0.044 0.039

k2 0.027 0.142 0.279 0.376 0.421 0.423 0.392 0.341 0.291 0.240 0.201 0.167

k−2 0.000 0.001 0.006 0.024 0.058 0.102 0.144 0.172 0.184 0.189 0.182 0.174

k3 0.000 0.006 0.032 0.082 0.143 0.198 0.234 0.245 0.240 0.223 0.204 0.185

k−3 0.000 0.000 0.000 0.002 0.010 0.028 0.058 0.093 0.126 0.153 0.177 0.192

k4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.551 0.526 0.429 0.303 0.178 0.075 0.016 0.002 0.017 0.052 0.086 0.121

k2L,a 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.016 0.030 0.047 0.066 0.085∑
Si 0.999 0.999 1.000 1.000 0.999 0.999 0.999 0.998 0.996 0.995 0.992 0.989

Total Sobol’ sensitivity indices

0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 3.5 h 4 h 4.5 h 5 h 5.5 h 6 h

k1 0.422 0.318 0.229 0.171 0.134 0.107 0.084 0.066 0.052 0.040 0.032 0.026

k−1 0.001 0.008 0.024 0.042 0.055 0.063 0.065 0.062 0.056 0.051 0.045 0.040

k2 0.027 0.143 0.280 0.376 0.421 0.424 0.392 0.341 0.291 0.240 0.201 0.168

k−2 0.000 0.001 0.006 0.024 0.059 0.103 0.144 0.173 0.185 0.190 0.183 0.176

k3 0.000 0.006 0.032 0.082 0.143 0.198 0.234 0.245 0.241 0.224 0.205 0.185

k−3 0.000 0.000 0.000 0.002 0.010 0.029 0.059 0.095 0.129 0.157 0.184 0.200

k4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k−4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k1L,a 0.551 0.526 0.429 0.303 0.178 0.076 0.016 0.003 0.018 0.052 0.087 0.123

k2L,a 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.018 0.032 0.051 0.072 0.093∑
STi 1.001 1.001 1.000 1.000 1.001 1.001 1.001 1.002 1.004 1.005 1.008 1.011
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Figure A.2: Contribution to the variations in the model output nDG over time using Sobol

sensitivity indices for the hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm
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Figure A.3: Contribution to the variations in the model output nMG over time using Sobol

sensitivity indices for the hydrolysis at 180◦C - 1:27.5 oil-to-water molar ratio - 600 rpm

48


	Introduction
	Previous modeling efforts

	Model development
	System phenomena relevant for modeling
	Mathematical formulation

	Experimental materials and methods
	Chemicals
	Batch experiments
	HPLC Analysis

	Parameter estimation, uncertainty and sensitivity analysis
	Sequential and simultaneous parameter estimation
	Covariance-based uncertainty analysis of parameter estimation and output prediction
	Monte Carlo method for uncertainty analysis of parameter estimation and prediction

	Variance based sensitivity analysis - Sobol method
	Polynomial chaos expansions

	Residual analysis

	Implementation and simulation environment
	Results and discussion
	Model fitting, parameter uncertainty and correlation
	Uncertainty analysis of model predictions
	Sensitivity analysis of model outputs
	Analysis of residuals

	Conclusions

