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Abstract

This article presents a novel approach to optimise scheduling and production

planning to meet seasonal demand in an industrial process using decaying

catalysts, based on its formulation as a multistage mixed-integer optimal con-

trol problem (MSMIOCP). Unlike existing methodologies, the MSMIOCP

formulation allows to solve this problem as a standard nonlinear optimi-

sation problem without combinatorial optimisation methods, which can be

advantageous in providing reliable, robust and e�cient solutions. Using this

formulation, four case studies of this problem, di↵ering in reaction or deac-

tivation kinetics, are investigated. Two di↵erent solution implementations

are used, each having their own relative advantages. The first implementa-

tion demonstrates a bang-bang behaviour for the linear scheduling controls,

consistent with a theoretical analysis, but faces integration problems and

does not always produce high quality solutions. The second implementation,

while not demonstrating the bang-bang property, always produces high qual-

ity solutions and shows the advantages of the MSMIOCP formulation over

existing methodologies.
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1. Introduction1

Industrial processes that use decaying catalysts face significant negative2

economic setbacks. The space-time yield of the process product decreases3

with the time-on-stream as the catalyst deactivates, thereby causing a lower4

production rate and loss of revenue. Further, the process has to be shut down5

to load a new catalyst or regenerate the deactivated one, which can lead to6

a large expenditure on energy and labour.7

8

Catalyst deactivation is inevitable and the catalyst has to be replaced in9

order to restore the process performance. It is necessary to minimise the costs10

arising from catalyst deactivation to ensure maximum profit for the process.11

There is a trade-o↵ to be addressed between frequently renewing the catalyst12

loads to attain a high production rate and the maintenance costs and loss in13

production occurring from the process shut-down for catalyst changeovers.14

For this purpose, an e�cient schedule for the replacement of the catalysts15

is required. In addition, an optimal production plan is needed, that details16

the operating conditions of the process while taking into account the catalyst17

deactivation and the process economics.18

19

Studies to minimise the negative e↵ects of catalyst deactivation have pre-20

viously been carried out at the reactor or pilot plant level. Szépe and Lev-21

enspiel (1968) were the first to identify the optimal temperature policy to22

maximise the conversion of the reactant in a batch reactor containing a deac-23

tivating catalyst. They considered the reaction kinetics to be separable from24

the catalyst activity and a deactivation rate law that was independent of the25

concentration of the species involved. They demonstrated that if the deacti-26

vation kinetics is more sensitive to temperature than the main reaction, then27

it is optimal to continuously increase the temperature of operation so as to28
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keep the e↵ective reaction rate constant unchanged throughout the reaction29

cycle. However, if the deactivation kinetics is less sensitive to temperature30

than the main reaction, the optimal temperature policy is to operate at the31

maximum temperature limit. Further, they applied this condition to stirred32

flow reactors and established a policy of maintaining constant reactant exit33

conversion, by varying either the flow-rate or the temperature.34

35

Other studies (Chou et al., 1967; Crowe, 1970; Crowe and Lee, 1971) have36

similarly derived maintaining a constant reactant exit conversion as the op-37

timal policy for tubular reactors using decaying catalysts. Lee and Crowe38

(1970) considered, for batch reactors, a more complicated form of deactiva-39

tion kinetics, which was dependent on species’ concentration, and concluded40

that a constant e↵ective rate coe�cient was no longer an optimal policy.41

Crowe (1976) however, reported that for continuous stirred and plug flow re-42

actors, even when concentration dependent deactivation is involved, constant43

exit conversion remains the optimal policy under certain conditions. Further44

works (Krishnaswamy and Kittrell, 1979; Ho, 1984; Pacheco and Petersen,45

1986; Sapre, 1997) have been published, which obtain and analyse a relation46

between the time-on-stream and the temperature of operation, while assum-47

ing constant exit conversion as the optimal operating policy, for flow reactors48

containing deactivating catalysts.49

50

All of the aforementioned publications have focused on identifying the51

optimal operating policy to maximise the conversion of the reactant, until52

when the temperature of operation reaches its upper limit or when the cat-53

alyst has to be discarded or replaced. On an industrial scale, however, such54

strategies may not constitute the optimal policy as other aspects have to be55

taken into consideration such as the seasonal demand figures and the storage56

costs. For instance, maintaining a constant production rate may result in a57

high inventory level during low demand seasons. This could also cause the58
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catalyst to be used up very fast. Hence, it is desired to plan production, such59

that the production rate is not too high during low demand seasons while also60

maintaining an inventory level su�cient to meet the demand during times of61

plant shutdowns for catalyst changeovers. The scheduling of catalyst replace-62

ments along with the plant operating conditions (temperature and flow rate)63

should be organised such that the production level meets seasonal demand64

in an e�cient manner and makes maximum use of the catalyst life.65

66

Most available literature that address the scheduling of catalyst changeovers67

and production planning on an industrial scale are based on Mixed-Integer68

Nonlinear Programming (MINLP) methodologies. Lang et al. (2000) have69

developed an optimal catalyst management policy for an Oxo process. But70

this work does not consider planning production to meet time-varying de-71

mand. Houze et al. (2003) formulated a model using the big-M formulation72

to schedule catalyst changeovers and plan production to meet seasonal de-73

mand for 2-year and 4-year horizons. Bizet et al. (2005) modified the model74

in Houze et al. (2003) by using convex hull formulations instead of the big-M75

formulations wherever possible, which enabled solutions for longer time hori-76

zons of 74-months and 9-years. Further, they claim, without rigorous proof,77

to overcome the non-convexities of that model to obtain global optimality78

by using two di↵erent approaches: a partitioning search strategy and the79

Generalized Benders Decomposition (Geo↵rion, 1972).80

81

In what could be applicable to the problem discussed here, recent publi-82

cations have showcased advancements in MINLP techniques which, they say,83

can facilitate convergence in the optimisation of production planning and84

scheduling for large scale problems. Su et al. (2015) have presented strate-85

gies such as multiple-generation cuts, hybrid methods and partial surrogate86

cuts for improving the e�ciencies of the Outer Approximation and Gener-87

alized Benders Decomposition methods and Su et al. (2016) have applied88
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one of these techniques in a cracking production process. Other develop-89

ments such as cutting plane methods (Eronen et al., 2015) and supporting90

hyperplane techniques (Westerlund et al., 2018) claim to produce easier con-91

vergence in nonsmooth, generalised convex formulations and demonstrate92

applicability to production and scheduling problems. Other methodologies93

for facilitating solutions in MINLP formulations of planning and scheduling94

problems include Lagrangian decomposition techniques (e.g. Mouret et al.95

(2011), Wang et al. (2016)), bi-level decomposition methods (e.g. Li and96

Ierapetritou (2009), Shi et al. (2015), Lin and Du (2018)) and rolling horizon97

methods (e.g. Al-Ameri et al. (2008), Li and Ierapetritou (2010)).98

99

The use of MINLP approaches, as done in the aforementioned publica-100

tions, requires all di↵erential equations present to be discretised and imposed101

as equality constraints under a steady state assumption. This ”infeasible path102

approach” to solving the di↵erential equations causes the problem to have103

a very large number of variables and nonlinear constraints, especially when104

long time horizons are considered. This could lead to convergence di�culties.105

Further, the steady state assumption prevents an accurate description of the106

process dynamics within the time period of discretisation. In addition, an107

increase in the number of catalysts involved would accentuate these problems108

due to an exponential increase in the number of scenarios. Most publications109

also do not reveal their kinetic model or parameters, due to confidentiality110

clauses, and this prevents the reproduction and validation of their results.111

112

The preceding discussion indicates that there is a need for a robust, reli-113

able and e�cient solution methodology to the catalyst replacement schedul-114

ing optimisation problem. The methodology should be able to predict (i)115

the number of catalyst loads to use and an e�cient schedule for the catalyst116

changeovers (ii) the optimal plant operating conditions of flow rate and tem-117

perature at regular intervals and (iii) the production and inventory levels to118
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meet seasonal demand e↵ectively.119

120

Such predictions should be possible even for long time horizons and com-121

plex reaction kinetics. This is the focus of this article. A novel solution122

methodology is proposed based on the realisation that the catalyst replace-123

ment scheduling problem is in actuality a Multistage Mixed-Integer Optimal124

Control Problem (MSMIOCP). Such a formulation can provide the advan-125

tages of robustness, reliability and e�ciency over existing MINLP techniques126

by using state-of-the-art integrators and negating the use of combinatorial127

optimisation methods. In fact, this methodology can be applied to any de-128

caying performance maintenance scheduling optimisation problem.129

130

The rest of the paper is organised as follows. In Section 2 the multistage131

mixed-integer optimal control formulation of this problem is developed. In132

Section 3 this formulation is applied to di↵erent case studies of an industrial133

process, and the solution implementation methodologies and results obtained134

are discussed. Section 4 contains the conclusions of this work, which also de-135

tails the advantages of the proposed approach over previous methodologies.136

For the interested readers, a theoretical analysis of the MSMIOCP formula-137

tion is done in Appendix A and Appendix B contains a set of tables which138

would aid in reproducing the results obtained in this work.139

2. An optimal control approach to the catalyst replacement schedul-140

ing and production planning problem141

In this section, the catalyst replacement scheduling problem is developed142

as an MSMIOCP, characterised by a set of decision and state variables. The143

whole time horizon is divided into stages, with each stage being described by144

a process model constituted by the appropriate Di↵erential Algebraic Equa-145

tions (DAEs), constraints, initial conditions and junction conditions that link146

any two consecutive stages. For each stage, a decision has to be made on147
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whether the catalyst should be in operation or a shut down occurs. Further,148

the plant operating conditions and the amount of product sales should also149

be decided at each stage. These decision variables, when chosen optimally,150

result in the maximum profit or the minimum costs for the process.151

152

A control parametrisation approach is adopted wherein the decision vari-153

ables are discretised over the whole time horizon at the times corresponding154

to each stage while the state variables are retained in their continuous form,155

to be solved by an integrator. The DAEs are solved to a high accuracy in156

the right sequential order and hence, this solution methodology is called a157

”feasible path approach” (Vassiliadis, 1993; Vassiliadis et al., 1994a,b).158

159

The catalyst changeover decisions appear linearly in the system equations160

and so are expected to take values at either bound, thus exhibiting binary161

nature and lending what is called a bang-bang nature to the solution. How-162

ever, the other controls may not appear linearly in the system equations and163

so may appear in a continuous form without exhibiting such a bang-bang164

behaviour. The key feature is that the bang-bang behaviour enables the re-165

laxation of the integer restrictions of the MSMIOCP and its solution as a166

standard Nonlinear Programming (NLP) problem, by avoiding the need for167

combinatorial optimisation methods to schedule catalyst changeovers. The168

formulation as an MSMIOCP follows next.169

170

The basic formulation for an OCP is shown in equations (1a) - (1d). The171

performance index consists of a point index � and a continuous index L.172

This performance index is minimised by the selection of controls w(t) sub-173

ject to di↵erential and algebraic equations, h and g, involving di↵erential174

and algebraic state variables, x(t) and z(t), respectively. The controls w(t)175

can include linear controls u(t) that are binary in nature as well as nonlin-176

ear controls v(t), which can take continuous values. Equations (1b) - (1d)177
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describe an index-1 DAE system, given initial condition x0 and fixed initial178

and final times, t0 and tF , respectively.179

min
w(t)

W = � (x(tF )) +

tFZ

t0

L (x(t), z(t), w(t), t) dt (1a)

subject to180

.
x(t) = h (x(t), z(t), w(t), t) , x (t0) = x0 (1b)

181

g (x(t), z(t), w(t), t) = 0 (1c)
182

w(t) =
h
[u(t)]T , [v(t)]T

iT
, u(t) 2 U , U 2 {0, 1} , 8t 2 [t0, tF ]

(1d)

A multistage form is obtained by discretisation of the scheduling horizon183

into time periods (which can be of arbitrary lengths), where the control184

profiles are allowed to be discontinuous at a finite number of points, tp,185

termed junctions. A general form of junction conditions between any two186

consecutive periods, p and p + 1, as given by Vassiliadis (1993), is used here,187

as per equation (2):188

J
⇣
ẋp+1

�
t+p
�
, xp+1

�
t+p
�
, zp+1

�
t+p
�
, wp+1

�
t+p
�
,

ẋp

�
t�p
�
, xp

�
t�p
�
, zp

�
t�p
�
, wp

�
t�p
�
, tp

⌘
= 0

8p = 1, 2, . . . NP � 1 (2)

The basic form of the multistage OCP over time periods, p = 1, 2, . . . NP ,189

t 2 [tp�1, tp], with tNP = tF is shown in equations (3a) – (3g). The perfor-190

mance index and di↵erential algebraic equations are presented in a form that191

explicitly shows the linearity of the control u(p), for stage p. An illustration192

of the MSMIOCP formulation is shown in Figure 1.193
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x(1)
(t0)

E(1)u(1)
+ f (1)

E(2)u(2)
+ f (2)

E(p)u(p)
+ f (p)

E(p+1)u(p+1)
+ f (p+1)

E(NP )u(NP )
+ f (NP )

x(1)
(t1)

x(2)
(t1)

x(p�1)
(tp�1)

x(p)
(tp�1)

x(p)
(tp)

x(p+1)
(tp)

x(NP�1)
(tNP�1)

x(NP )
(tNP�1)

x(NP )
(tNP )

t0

t1

tp�1

tp

tNP�1

tNP

u(1), v(1)

u(p), v(p)

u(NP ), v(NP )

ẋ(1)
= A(1)u(1)

+ b(1)

ẋ(p)
= A(p)u(p)

+ b(p)

ẋ(NP )
= A(NP )u(NP )

+ b(NP )

0 = C(1)u(1)
+ d(1)

0 = C(p)u(p)
+ d(p)

0 = C(NP )u(NP )
+ d(NP )

Stage 1

Stage p

Stage NP

Initial horizon time

Final horizon time

Figure 1: An illustration of the MSMIOCP formulation
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min
u,v

W =
NPX

p=1

(
�(p)

�
x(p)(tp), z(p)(tp), w(p), tp

�
+

Z tp

tp�1

L(p)
�
x(p)(t), z(p)(t), w(p), t

�
dt

)

=
NPX

p=1

⇢h
�
(p)
1 (x(p)(tp), z(p)(tp), v(p), tp)

iT
u(p) + �

(p)
2 (x(p)(tp), z(p)(tp), v(p), tp)

+

Z tp

tp�1

h
L
(p)
1 (x(p)(t), z(p)(t), v(p), t)

iT
u(p) + L

(p)
2 (x(p)(t), z(p)(t), v(p), t)

�
dt

)

(3a)

subject to194

ẋ(p)(t) = A(p)(x(p)(t), z(p)(t), v(p), t) u(p) + b(p)(x(p)(t), z(p)(t), v(p), t)

(3b)195

0 = C(p)(x(p)(t), z(p)(t), v(p), t) u(p) + d(p)(x(p)(t), z(p)(t), v(p), t) (3c)
196

tp�1  t  tp p = 1, 2, . . . , NP (3d)
197

x(1)(t0) = E(1)
�
v(1)
�
u(1) + f (1)

�
v(1)
�

(3e)
198

x(p)(tp�1) = E(p)(x(p�1)(tp�1), z
(p�1)(tp�1), v(p)) u(p)

+ f (p)(x(p�1)(tp�1), z
(p�1)(tp�1), v(p))

p = 2, 3, . . . , NP (3f)

199

u(t) 2 U , U 2 {0, 1} (3g)

In equation (3a), the point performance index is represented as functions200

of �1 and �2,, where �1 is the coe�cient of the linear control and both terms201

are themselves independent of the linear controls. L1 and L2, A and b, C202

and d, E and f are the analogous terms for the continuous performance203

index, the di↵erential equations, the algebraic equations and the junction204

conditions, respectively.205
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The stage switching times, tp are considered to be constant in this deriva-206

tion. The controls u(p) and v(p) are considered to be piecewise constant. The207

control u(p) is binary in nature and indicates whether a catalyst is in opera-208

tion
�
u(p) = 1

�
or is being replaced

�
u(p) = 0

�
. The control v(p) is continuous209

and represents the operating conditions of the process. The collective vector210

of controls, u and v, over all stages is:211

u =
⇥
u(1), u(2), . . . , u(NP )

⇤T
(4a)

212

v =
⇥
v(1), v(2), . . . , v(NP )

⇤T
(4b)

A theoretical analysis that applies the Pontryagin Minimum (Maximum)213

principle (Pontryagin et al., 1962) is done in Appendix A, similar to that214

done by Al Ismaili et al. (2018) and Adloor et al. (2018). The di↵erence here215

is that the controls are distinguished as occurring linearly or nonlinearly,216

whereas those works considered only linear controls. As can be seen in equa-217

tion (A.14a), the a�ne controls u, when di↵erentiated, do not participate218

in a bilinear or product form with the nonlinear controls v. Hence, despite219

the interaction between the linear and nonlinear controls in the system equa-220

tions, the Hamiltonian gradient with respect to u(p) is independent of that221

linear control. This expression can be termed a ”switching function” in the222

sense that it can cause the value of u(p) to switch in order to minimise the223

Hamiltonian. Some notable points:224

1. If the switching function is positive or negative, the Hamiltonian is225

minimised when the control u(p) is at its lower or upper bound, re-226

spectively. This phenomenon of an optimal control action occurring227

at either bound of the feasible region is called ”bang-bang” control228

(Bryson and Ho, 1975).229

2. There may be some stages where the switching function becomes zero,230

thus resulting in the Hamiltonian gradient at that stage to become231
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insensitive to variations in u. In such cases, a bang-bang behaviour232

may not be observed and the stage is called a singular arc.233

Thus, the condition (3g) for the MSMIOCP can be relaxed to a form:234

u(t) 2 U 0, U 0 2 [0, 1]dim[u(t)] (5)

The optimal control for the relaxed MSMIOCP with respect to the linear235

controls u, can be expected to exhibit a bang-bang behaviour with potential236

singular arcs.237

238

However, as can be seen in equation (A.13a), the Hamiltonian gradient239

with respect to the control v(p), which appeared nonlinearly in the system240

equations, is not independent of this control. Hence, the controls v are not241

expected to exhibit a bang-bang behaviour.242

243

The phenomenon of pure bang-bang controls have previously been demon-244

strated in minimum time problems for linear (Bellman et al., 1956) and245

bilinear systems (Mohler, 1973), in the optimal control of a batch reactor246

(Blakemore and Aris, 1962), optimal thermal control (Belghith et al., 1986)247

and in the optimal drug administration for cancer chemotherapy Ledzewicz248

and Schättler (2002). Zandvliet et al. (2007), however, in an application to249

reservoir flooding problems, have shown that when controls come linearly250

in relation to the continuous state variables, if the only constraints on the251

controls are upper and lower bounds, then bang-bang solutions can occur252

in combination with singular arcs. Thus, the predictions of the Pontryagin253

analysis carried out here is consistent with those of Zandvliet et al. (2007).254

255

Sager (2009) has presented a methodology to handle nonlinear dynamic256

systems involving discrete and continuous controls. Techniques are presented257

to reformulate the problem to avoid nonlinearities and enforce discrete con-258
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trols via auxiliary binary controls that occur linearly in the system dynamics259

and exhibit a bang-bang behaviour. Heuristics, e.g. rounding or sum up260

rounding strategies or algorithms such as Branch and Bound are used to en-261

sure integer solutions when singular arcs appear. This methodology has been262

used in a variety of applications (Sager et al., 2009; Kirches et al., 2010; Sager,263

2005). In this article, however, there is no need for any such reformulation264

because the discrete controls already occur linearly in the system equations.265

It is worth mentioning, however, that the Pontryagin analysis’ predictions of266

bang-bang behaviour for the linear controls, even when in combination with267

other continuous controls, are consistent with those of Sager (2009).268

269

The formulation of the catalyst replacement scheduling problem as a re-270

laxed MSMIOCP o↵ers a number of advantages over previous methodologies:271

1. The feasible path approach employs state-of-the-art integrators to solve272

the di↵erential equations, thereby giving highly accurate solutions. The273

dynamic nature of the process is addressed in exactness, unlike in the274

MINLP formulations which discretise the di↵erential equations under275

a steady state assumption.276

2. The infeasible path approach adopted by the existing methodologies,277

which imposes the discretised di↵erential equations as equality con-278

straints, causes the problem to have a very large number of nonlinear279

constraint equations. This leads to convergence di�culties. In contrast,280

in the feasible path approach, the di↵erential equations are solved by an281

integrator without being considered as constraints in the optimisation282

phase. The resulting problem is of a much smaller size and convergence283

can be obtained even from random start points. Thus, the proposed284

approach is more robust compared to other methodologies.285

3. The bang-bang behaviour avoids the need for combinatorial optimisa-286

tion methods to schedule the catalyst changeovers. Thus, this is more287
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e�cient than other approaches as no computational e↵ort is spent in288

deciding when to schedule catalyst changeovers.289

Thus, the formulation as a relaxed MSMIOCP has great potential for290

o↵ering a reliable, robust and e�cient solution to the catalyst replacement291

scheduling problem. Of course, global optimality of the solution cannot be292

guaranteed by this methodology but even the MINLP formulations presented293

previously su↵er from this shortcoming.294

295

The analysis as a relaxed MSMIOCP is general to any maintenance296

scheduling problem formulation that has the same model structure and hence297

it opens up the way to address other challenging problems. Al Ismaili et al.298

(2018) have demonstrated this for a heat exchanger network cleaning schedul-299

ing problem, where the controls are cleaning actions that appear linearly in300

the system dynamics and so, exhibit a bang-bang behaviour. In the follow-301

ing section, this formulation is applied to di↵erent case studies of a catalyst302

replacement scheduling optimisation problem.303

3. Case Studies304

In this section, the relaxed MSMIOCP formulation of the catalyst replace-305

ment scheduling problem is applied in case studies to maximise the profit of306

an industrial process that uses a decaying catalyst to produce the desired307

product. The essential elements of the problem formulation are discussed308

first before presenting the results obtained.309

3.1. Problem formulation310

In the problem addressed, the following assumptions apply:311

1. The industrial process operates over a fixed time horizon, in the order312

of years. Each year is constituted by 12 months and there are a total313

of NM months, wherein each month is constituted by 4 weeks.314
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2. The industrial process functions according to a certain process model315

and is subject to operating constraints.316

3. The reactor containing the deactivating catalyst is a Continuous Stirred317

Tank Reactor (CSTR) that is of known and fixed volume.318

4. The catalyst performance decays with time and has to be replaced319

before it crosses a certain maximum age. Various forms of catalyst320

deactivation kinetics will be investigated in the di↵erent case studies.321

5. The catalyst deactivation rate constant is taken to be independent of322

the temperature of operation.323

6. There is a maximum number of catalyst loads that can be used over324

the given time horizon.325

7. All available catalysts exhibit identical functioning and performance.326

8. The time required to shut down the process, replace the catalyst and327

restart the process is taken to be one month, during which time no328

production occurs.329

9. The main reaction is assumed to be of the form:330

R ! Q (6)

where R is the reactant and Q is the desired product. The di↵erent331

case studies will examine first and second order kinetics with respect to332

the reactant’s concentration. Further, in each case study, the reaction333

rate will be considered separable from the catalyst activity.334

10. The reaction rate constant is taken to exhibit an Arrhenius form of335

temperature dependence.336

11. The feed inlet concentration is taken to be known and constant.337
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12. The flow rate of raw material to the reactor has to be specified on a338

weekly basis.339

13. The flow rate of raw material to the reactor has an upper limit during340

catalyst operation and is stopped when the catalyst is being replaced.341

14. The temperature of the reactor has to be specified on a weekly basis.342

15. The temperature of the reactor can be operated only within fixed343

bounds during catalyst operation and is set to its lower bound dur-344

ing catalyst replacement.345

16. The product is produced and stored continuously as inventory.346

17. The product produced is sold on a weekly basis.347

18. The seasonal demand figures for the product are given.348

19. The sales for each week is less than or equal to the customer demand349

for the product in that week.350

20. There is a penalty corresponding to the unmet demand in each period.351

21. The costs involved in the process are known and are subject to a known352

value of annual inflation. These include the sales price of the product,353

the cost of inventory, the cost of flow and raw material, the cost of354

catalyst changeover and the penalty for unmet demand.355

Given the above assumptions, the optimisation model must determine356

the following values, which constitute the controls of the MSMIOCP:357

(i) The catalyst changeover decision variable, y(i), for each month, i, which358

determines whether a catalyst is in operation (y(i) = 1) or being re-359

placed (y(i) = 0) during that month.360

(ii) The feed flow rate to the reactor, ffr(i, j), during each week, j, of each361

month, i.362
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(iii) The temperature of operation of the reactor, T (i, j), during each week,363

j, of each month, i.364

(iv) The amount of product sold, sales(i, j), at the end of each week, j, of365

each month, i.366

In the above list, j 2 {1, 2, 3, 4} and i 2 {1, 2, ..., NM}. The catalyst367

changeover decisions correspond to the binary controls u in equation (4a)368

while the other decision variables correspond to continuous controls v in369

equation (4b).370

371

The state variables that characterise the MSMIOCP formulation of this372

industrial process include (i) the catalyst age, cat�age (ii) the catalyst activ-373

ity, cat�act (iii) the concentration of the reactant at the exit of the reactor, cR374

(iv) the inventory level, inl and (v) the cumulative inventory costs, cum�inc.375

These state variables are determined by the decision variables’ values at any376

time using a set of Ordinary Di↵erential Equations (ODEs) which constitute377

the process model. In the following, process models to describe di↵erent case378

studies of the industrial process are formulated. These ODEs apply for week379

j 2 {1, 2, 3, 4} of month i 2 {1, 2, ..., NM} of the process and are of the form380

of equation (3b). Unless specified, a particular model equation applies to all381

case studies:382

1. The catalyst age varies linearly with time when the catalyst is in oper-383

ation (y(i) = 1) but does not increase at times of catalyst replacement384

(y(i) = 0). Hence, the di↵erential equation describing the catalyst age385

at all times is given by:386

d (cat�age)

dt
= y(i) (7)

2. The catalyst activity decays according to a deactivation rate law during387

times of catalyst operation (y(i) = 1) but experiences no change during388
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times of catalyst replacement (y(i) = 0), when there is no production389

occurring. Thus, the di↵erential equation for the catalyst activity takes390

the form:391

d (cat�act)

dt
= y(i) ⇥ rD (8)

where rD is the rate of catalyst deactivation. Di↵erent models of cat-392

alyst deactivation kinetics are considered as separate case studies:393

Case Study A: Composition independent catalyst deactivation394

rD = �Kd ⇥ cat�act (9)

Case Study B: Reactant concentration dependent catalyst deactivation395

rD = �Kd ⇥ cat�act ⇥ cR (10)

Case Studies C and D: Product concentration dependent catalyst de-396

activation397

rD = �Kd ⇥ cat�act ⇥ (CR0 � cR) (11)

where Kd is the deactivation rate constant and CR0 is the reactant398

entry concentration.399

3. The reactor is assumed to be completely stirred and so the reactant exit400

concentration (cR) is obtained from the generic mass balance equation401

of a CSTR during times of catalyst operation (y(i) = 1). However, dur-402

ing catalyst replacement (y(i) = 0), no reaction occurs and the reactor403

is assumed to be filled with fresh, unreacted reactant at the entry con-404

centration (CR0), to be used by the new catalyst after replacement.405

The di↵erential equation that accounts for both scenarios is given by:406
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d (V R ⇥ cR)

dt
= (ffr(i, j) ⇥ (CR0 � cR)) � (y(i) ⇥ V R ⇥ rR)

(12)

where V R is the volume of the reactor and rR is the rate of reaction407

(6). The case studies consider di↵erent forms of rR:408

Case Studies A, B and C: First order kinetics for reaction (6)409

rR = K1 ⇥ cat�act ⇥ cR (13)

Case Study D: Second order kinetics for reaction (6)410

rR = K1 ⇥ cat�act ⇥ cR2 (14)

where K1 is the rate constant. For all case studies, K1 is assumed to411

exhibit an Arrhenius form of temperature dependence, of the form:412

K1 = AR ⇥ exp

✓
� Eact

Rg ⇥ T (i, j)

◆
(15)

where AR is the pre-exponential factor, Eact is the activation energy413

for the reaction and Rg is the universal gas constant.414

4. It is assumed that whatever product is produced is stored as inventory415

before being sold at the end of the week. During catalyst operation416

(y(i) = 1), the increase in inventory level at any time depends on the417

rate of production (= V R ⇥ rR) of the product chemical, but dur-418

ing catalyst replacement (y(i) = 0), there is no increase in inventory419

level. Hence, the di↵erential equation that provides a description of420

the inventory level (inl) for both scenarios is given by:421

d (inl)

dt
= y (i) ⇥ (V R ⇥ rR) (16)

19



where the expression for rR depends on the case study.422

5. Finally, the increase in the cumulative inventory cost (cum�inc) at any423

time depends on the inventory level at that time and the Inventory Cost424

Factor (icf) (adjusted for inflation), which stipulates the cost per unit425

product per unit time:426

d (cum�inc)

dt
= inl ⇥ icf (17)

The icf at any time is given by the following equation:427

icf = base�icf ⇥ (1 + inflation)bi/12c (18)

where base�icf is the inventory cost factor before inflation, inflation is the428

annual inflation rate and b·c is the greatest integer function.429

430

For each case study, the process model is solved repeatedly over a weekly431

time span, which corresponds to one stage of the MSMIOCP. In order to solve432

these ODEs, for each stage, suitable initial conditions have to be provided.433

The initial conditions for week 1 of month 1 are assumed to be known and434

are of the form of equation (3e). The initial conditions for the other stages435

are obtained using junction conditions between two successive stages of the436

process, of the form of equation (3f).437

438

The initial conditions corresponding to week 1 of month 1, represented439

as init�var(1, 1) for variable var, are as follows:440

1. The initial catalyst age is that of a fresh catalyst, which is zero:441

init�cat�age (1, 1) = 0 (19)
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2. The initial catalyst activity is that of a fresh catalyst (start�cat�act):442

init�cat�act (1, 1) = start�cat�act (20)

3. At the start of the process, the reactor is filled with the reactant R at443

its entry concentration CR0. Hence, the initial exit concentration is444

given by:445

init�cR (1, 1) = CR0 (21)

4. There is no inventory at the beginning of the process, and so:446

init�inl (1, 1) = 0 (22)

5. There is no inventory at the start of the process and so the initial447

cumulative inventory cost is given by:448

init�cum�inc (1, 1) = 0 (23)

The junction conditions are described next. These junction conditions449

di↵er depending on whether the catalyst is in operation (y (i) = 1) or is450

being replaced (y (i) = 0) during that month. In the following text, the451

expressions init�var (i, j) and end�var (i, j) indicate the initial and end452

conditions, respectively for the variable var, for week j of month i:453

1. During months of catalyst operation (y (i) = 1), the initial catalyst age454

for a week corresponds to the catalyst age at the end of the previous455

week. But during months of catalyst replacement (y (i) = 0), the cat-456

alyst age has to be set to zero, the age of a new catalyst. The junction457

conditions that describe both scenarios is given by:458
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init�cat�age (i, j + 1) = end�cat�age(i, j)

8j = 1, 2, 3 8i = 1, 2, . . . , NM
(24a)

459

init�cat�age (i, 1) = [y(i) ⇥ end�cat�age(i � 1, 4)]

8i = 2, 3, . . . , NM
(24b)

460

2. During months of catalyst operation (y (i) = 1), the initial catalyst ac-461

tivity for the week corresponds to the catalyst activity at the end of462

the previous week. However, during months of catalyst replacement463

(y (i) = 0), the catalyst activity has to be reset to the activity corre-464

sponding to that of a fresh catalyst, which remains the same throughout465

the duration of month i. The junction conditions that describe both466

scenarios is given by:467

init�cat�act (i, j + 1) = end�cat�act(i, j)

8j = 1, 2, 3 8i = 1, 2, . . . , NM
(25a)

468

init�cat�act (i, 1) = [y(i) ⇥ end�cat�act(i � 1, 4)] + [(1 � y(i)) ⇥ start�cat�act]

8i = 2, 3, . . . , NM

(25b)

469

3. During months of catalyst operation (y (i) = 1), the exit concentration470

for the beginning of a week corresponds to the exit concentration at the471

end of the previous week. And during months of catalyst replacement472

(y (i) = 0), the reactor is filled with reactant at entry concentration473

CR0, ready to be used by the fresh catalyst at the beginning of the474

next month. So, the junction conditions take the form:475

init�cR (i, j + 1) = end�cR(i, j)

8j = 1, 2, 3 8i = 1, 2, . . . , NM
(26a)
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init�cR(i, 1) = [y(i) ⇥ end�cR(i � 1, 4)] + [(1 � y(i)) ⇥ CR0]

8i = 2, 3, . . . , NM

(26b)

476

4. At the end of a week, an amount, sales(i, j) of the stored product is477

sold. Thus, the initial inventory level for the week corresponds to the478

inventory present after the sales at the end of the previous week. The479

following junction conditions apply during months of catalyst operation480

as well as catalyst replacement, as the sales do not cease at any time:481

init�inl (i, j + 1) = end�inl(i, j) � sales(i, j)

8j = 1, 2, 3 8i = 1, 2, . . . , NM
(27a)

482

init�inl (i, 1) = end�inl(i � 1, 4) � sales (i � 1, 4)

8i = 2, 3, . . . , NM
(27b)

483

5. The inventory cost accumulated until the beginning of a week is equal484

to the value of the inventory cost accumulated until the end of the485

previous week and the following junction conditions apply regardless486

of whether the catalyst is being used or replaced:487

init�cum�inc (i, j + 1) = end�cum�inc(i, j)

8j = 1, 2, 3 8i = 1, 2, . . . , NM
(28a)

488

init�cum�inc (i, 1) = end�cum�inc(i � 1, 4)

8i = 2, 3, . . . , NM
(28b)

489

The initial conditions (20) – (23) and junction conditions (25) – (28) en-490

able a solution for the ODEs for all stages, and thereby obtain the values491

of the state variables for the entire time horizon. These are then used to492
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compute the values of some of the constraints and the objective function of493

the problem, whose formulations are described next.494

495

The constraints that apply to this industrial process for week j 2 {1, 2, 3, 4}496

of month i 2 {1, 2, ..., NM} are as follows:497

1. In the context of the formulation as a relaxed MSMIOCP, the catalyst498

changeover decision variables y (i), for a month i, are considered con-499

tinuous variables that vary between 0 and 1 (but are expected to take500

only 0 or 1 values due to the bang-bang nature of the formulation), and501

so the following bounds are imposed:502

0  y(i)  1 (29)

2. The flow rate of raw material to the reactor has an upper limit (FUp)503

at which it can operate. Hence, the following bounds are set on the504

feed flow rate for each week:505

0  ffr(i, j)  FUp (30)

3. The sales in each week are assumed to be less than or equal to the de-506

mand for the product in that week (demand(i, j)). Hence, the following507

bounds on the sales at the end of each week are imposed:508

0  sales(i, j)  demand(i, j) (31)

4. The temperature of the reactor operates between known, fixed lower509

and upper bounds, TLo and TUp, respectively. Hence, the following510

bounds are set on the weekly temperature of operation of the reactor:511

512

TLo  T (i, j)  TUp (32)
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5. During times of catalyst replacement, the process is shut down and so513

the flow of raw material to the reactor stops. The following constraint514

ensures that the weekly feed flow rate remains below the upper bound515

during times of catalyst operation (y(i) = 1) and drops to zero when516

there is catalyst replacement (y(i) = 0).517

ffr(i, j) � [FUp ⇥ y(i)]  0 (33)

6. When the process is shut down for catalyst replacement, the tempera-518

ture of the reactor is required to drop to its lower bound. This condi-519

tion is imposed using the following constraint which ensures that the520

temperature for the week remains between its bounds during times of521

catalyst operation (y(i) = 1) and drops to the lower bound when there522

is catalyst replacement (y(i) = 0):523

TLo  T (i, j)  [(TUp � TLo) ⇥ y(i)] + TLo (34)

7. There is only a certain number of catalysts available to be used by the524

process. The limit on the maximum number of catalyst changeovers525

(n) allowed is imposed using the following constraint:526

NMX

i=1

y(i) � NM � n (35)

8. The catalyst undergoes deactivation over time and has to be replaced527

before it crosses a certain maximum age (max�cat�age). As the the528

decision on whether to replace a catalyst or not is made on a monthly529

basis, it is su�cient to ensure that the catalyst age does not cross this530

limit at the end of each month i:531

end�cat�age (i, 4)  max�cat�age (36)
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9. In order to ensure that more product than available is not sold, the532

inventory level at the end of each week should be greater than the sales533

for the week. This is imposed using the following constraint:534

end�inl(i, j) � sales(i, j) � 0 (37)

The objective function that represents the net costs of the industrial process,535

is of the form of equation (3a) and comprises the following elements:536

1. The Gross Revenue from Sales (GRS)537

This term represents the revenue for the process from the net sales of538

the product chemical over the whole time horizon:539

GRS =
NMX

i=1

4X

j=1

psp(i, j) ⇥ sales(i, j) (38)

where psp(i, j) is the sales price per unit product for week j of month540

i, adjusted for inflation at that time:541

psp(i, j) = base�psp ⇥ (1 + inflation)bi/12c (39)

where base�psp is the unit product sales price before inflation.542

2. The Total Inventory Costs (TIC)543

This term represents the net storage costs for the product over the544

whole time horizon and is obtained from the solution of the ODEs for545

the state variable cum�inc at the end of the final week of the process:546

TIC = end�cum�inc(NM, 4) (40)

3. The Total Costs of Catalyst Changeovers (TCCC)547

The total expenditure for the catalyst changeover operations is:548
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TCCC =
NMX

i=1

crc(i) ⇥ (1 � y (i)) (41)

where crc(i) is the cost of the catalyst replacement operation for month549

i, adjusted for inflation at that time:550

crc(i) = base�crc ⇥ (1 + inflation)bi/12c (42)

where base�crc is the cost of a catalyst changeover operation before551

inflation. It is highlighted that the terms within the summation remain552

non-zero only during the times of catalyst replacement (y (i) = 0) and553

only these terms contribute to the total costs.554

4. The Net Penalty for Unmet Demand (NPUD)555

The unmet demand in each week (unmet�demand (i, j)) is the quantity556

of product by which the sales falls short of the demand in that week:557

unmet�demand (i, j) = demand (i, j) � sales (i, j)

8j = 1, 2, 3, 4 8i = 1, 2, . . . , NM
(43)

There is a penalty associated with this unmet demand and the net558

penalty costs over the entire time horizon is given by:559

NPUD =
NMX

i=1

4X

j=1

pen(i, j) ⇥ unmet�demand(i, j) (44)

where pen(i, j) is the penalty per unit product for week j of month i,560

adjusted for inflation at that time:561

pen(i, j) = base�pen ⇥ (1 + inflation)bi/12c (45)

where base�pen is the penalty per unit product before inflation.562
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5. The Total Flow Costs (TFC)563

This term represents the net expenditure on the feed of raw material564

to the reactor and is given by:565

566

TFC =
NMX

i=1

4X

j=1

cof(i, j) ⇥ ffr (i, j) (46)

where cof(i, j) is the cost of raw material per unit volume per week for567

week j of month i, adjusted for inflation at that time:568

cof(i, j) = base�cof ⇥ (1 + inflation)bi/12c (47)

where base�cof is the cost of raw material per unit volume per week569

before inflation.570

If the Net Costs are represented by NC, the objective function for this opti-571

misation problem takes the form:572

min NC = �GRS + TIC + TCCC + NPUD + TFC (48)

The essential elements of the problem formulation have now been de-573

scribed in detail. The aim is to make the appropriate decisions in order to574

minimise the net costs (or maximise the net profit) of the industrial process,575

when subject to the process model, initial and junction conditions and the576

constraints. It is highlighted that the catalyst changeover decision variables577

(y) occur linearly in all elements of the problem formulation. Thus, these578

variables are expected to exhibit a bang-bang behaviour in the optimal solu-579

tion and the constraint, y (i) 2 [0, 1] is equivalent to y (i) = {0, 1}.580

581

In the next sections, the problem solution implementation details will be582

discussed and the results obtained will be presented. As will be seen, the583

complex nature of the problem caused complications in obtaining solutions584

using the solvers currently available. Di↵erent solution implementations were585
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attempted on di↵erent solvers: Implementation I was performed on MAT-586

LAB and Implementation II was carried out in Python, each of which had587

their own relative advantages.588

589

The elements of the problem set up here are similar to that in Houze et al.590

(2003) and Bizet et al. (2005). However, those publications did not reveal591

any parameters used in their studies, citing confidentiality reasons. So, in592

this article, case studies were created using a set of constructed parameter593

values, which have been mentioned in Table B.7. The time horizon chosen594

here is 3 years, which is more realistic in present day industries compared to595

the much longer duration studied in Houze et al. (2003).596

597

The problem size details for the chosen time horizon, applicable for all case598

studies, are shown in Table B.8. It is important to note that the number of599

variables and constraints in this formulation are much smaller than if MINLP600

approaches were used.601

3.2. Problem solution implementation I, results and discussions602

3.2.1. Implementation I details603

Implementation I was performed on MATLAB R� R2018a with its Opti-604

misation ToolboxTM (MATLAB and Optimisation Toolbox, 2018), as a code605

that solves a standard multistage optimal control problem using the feasible606

path approach, by linking an ODE solver with the optimiser fmincon. Two607

types of ODE solvers were tried: the ode15s solver available on MATLAB R�
608

R2018a (Shampine and Reichelt, 1997) and the IDAS solver of sundialsTB,609

a MATLAB interface to the open-source set of di↵erential-algebraic equation610

solvers, SUNDIALS (Serban, 2009). In both cases, the solver was designated611

to have an absolute tolerance of 10�6 and a relative tolerance of 10�4. The612

Jacobian was provided to the solvers to improve its reliability and e�ciency.613

It was found that IDAS of sundialsTB was faster in computation compared614
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to ode15s and so was preferred for this implementation.615

616

The optimisation on fmincon was performed using the Sequential Quadratic617

Programming (SQP) algorithm (Nocedal and Wright, 2006) with the follow-618

ing convergence criteria: constraint tolerance of 10�3, step tolerance of 10�3
619

and optimality tolerance of 10�4. A forward finite di↵erence scheme was used620

for the estimation of gradients. Given the wide variation in the magnitude of621

the di↵erent decision variables (e.g. y 2 [0, 1], but sales ⇠ 103), the starting622

points to the optimiser were scaled down using the respective upper bounds of623

each decision variable to avoid scaling problems in the optimisation. Further,624

in order to accelerate convergence, constraint (37) was scaled down by a fac-625

tor of 103 and the objective function value was scaled down by a factor of 106.626

627

In order to demonstrate the robustness of the developed methodology, it628

was desired to obtain a solution from a set of random values for the initial629

guesses of the decision variables to the optimiser. However, it was impor-630

tant to ensure that the set of random starting points were a set of ’feasible’631

points. Using highly infeasible starting points in this problem of complex na-632

ture could cause great di�culties to the optimiser in converging to a solution.633

634

So in the initial part of Implementation I called Phase 1, a set of feasible635

start points for the decision variables was obtained by first generating a set of636

random points using the rand function in MATLAB R� and running the opti-637

misation model with the objective function set to zero. These feasible points638

were then used as the starting values for the actual optimisation problem in639

Phase 2 of the implementation. An algorithmic flowchart for Implementation640

I is shown in Figure 2.641

642

The implementation was performed on a 3.2 GHz Intel Core i5, 16 GB643

RAM, Windows machine running on Microsoft Windows 7 Enterprise. Since644
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Start
Obtain random values
for decision variables.
Label these values as
S0.

Obtain feasible points
by running model
with objective func-
tion set to 0 and S0 as
starting values. Label
feasible points as S1.

Run optimisation
model with S1 as
starting values. Label
solution as S2.
S2 is the desired
solution.

Phase 1 Phase 2

End

Figure 2: An algorithmic flowchart for Implementation I

the problem is non-convex, multiple runs were performed with di↵erent start-645

ing points. Test runs were performed using the Parallel Computing ToolboxTM
646

on MATLAB R� to compare the computational times between parallelising the647

gradient evaluations versus parallelisation of a loop of multiple start points648

using a parfor loop, and the latter was found to be faster. So, using the649

parfor loop for parallelisation, 50 runs were attempted for each case study.650

3.2.2. Implementation I: General performance discussion651

It was found that Implementation I had limited success when applied to652

Case Studies A and B whereas for Case Studies C and D, the technique failed653

completely. While some runs in Case Studies A and B exhibited a very good654

bang-bang behaviour for the catalyst changeover controls, in many other sim-655

ulations, the runs either converged prematurely to poor solutions or crashed656

due to the integrator failing (Table B.9). Statistics regarding the solutions657

obtained and the computational e↵ort involved, for the successful runs of658
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Case Studies A and B are given in Tables B.10 and B.11, respectively. For659

Case Studies C and D, every single run crashed showing an error with the in-660

tegration. These unexpected integration problems were experienced by both661

sets of ODE solvers which were tried. These problems could probably be662

attributed to the inadequacies of the MATLAB ODE suite in integrating the663

more nonlinear di↵erential equations of Case Studies C and D.664

665

Overall, the performance of Implementation I was unsatisfactory in pro-666

viding solutions to all case studies. Despite this, there is a very good reason667

for reporting this solution procedure in this article: it is observed that a668

bang-bang behaviour is exhibited by the catalyst changeover controls, even669

when those linear controls occur in combination with other process control670

variables that occur nonlinearly in the system equations. This is consistent671

with the predictions of the Pontryagin analysis done in Appendix A. In the672

ensuing text, the optimal control and state variables of the most profitable673

run from the set of 50 di↵erent, random starting points for each of Case674

Studies A and B are reported, along with relevant economic statistics.675

3.2.3. Case Study A: Results and discussions676

Figures 3 – 6 and Table 1 report the features of the best local optimum677

among the 13 successful runs for Case Study A, in which the main reaction678

is of first order kinetics with respect to the reactant and the catalyst deacti-679

vation kinetics is independent of the species’ concentrations.680

681

Figure 3 illustrates the variation of the monthly catalyst changeover con-682

trols over the whole time horizon. It can be seen that these controls take683

values of either 0 or 1, thus exhibiting a bang-bang behaviour, consistent684

with the prediction for linear controls from the analysis in Appendix A. The685

graph indicates that the optimal policy for the industrial process is to use 4686

of the 6 available catalysts over the 3-year horizon, with the 3 replacements687

(y = 0) occurring on the 8th, 17th and 24th months. The first replacement688
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Figure 3: The variation of the catalyst changeover controls over the time
horizon for Case Study A

occurs during the quarter of lowest demand in order to minimise losses. The689

other replacements occur only when a su�cient inventory level (Figure 6) is690

present to meet the demand during process shut-down.691

692

Figure 4 plots the weekly flow rates to the reactor (ffr) and temperatures693

of operation (T ), made dimensionless by their respective upper bounds and694

the exit concentration of the reactant from the reactor (cR), over the whole695

time horizon of the process. Some notable points regarding these trends:696

• The model’s optimal policy during catalyst operation is to maintain a697

constant exit conversion by reducing the flow rate to compensate for698

the catalyst deactivation and operate temperature at its upper bound.699

This is consistent with the work of Szépe and Levenspiel (1968) for700

continuous reactors, which predicted similar policies when the main701

reaction is more sensitive to temperature than the catalyst deactivation702

and the latter is independent of the species’ concentration.703
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Figure 4: The variation of the feed flow rate, temperature and reactant exit
concentration over the time horizon for Case Study A

• During the operation of the last catalyst, the sharp drop in the flow704

rate causes a corresponding e↵ect in the exit concentration and this705

occurs to bring the production rate to a value that exactly fulfils the706

demand for the remainder of the time horizon.707

• It is highlighted that the flow rate does not exhibit a bang-bang be-708

haviour as these controls appear nonlinearly in the system equations,709

consistent with the prediction from Appendix A. It is interesting to710

note that the temperature controls only take values at their upper or711

lower bounds, and this follows from the nature of the problem and the712

constraints imposed, without a correlation to their nonlinear occurrence713

in the system equations.714

A comparison of the optimal quantity of product sales with the corre-715

sponding product demand and unmet demand for each week over the whole716

time horizon, is shown in Figure 5. While a considerable amount of unmet717

demand exists during the first year of the process, it is nil for the remainder718
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years. Given that the product sales price increases annually due to inflation,719

a greater amount of profit can be obtained by selling more product during720

later years and so the model prefers to sell less during the first year and more721

in the later years. It is also highlighted that the sales continue throughout the722

time horizon, even at times of process shut down for catalyst replacement.723

Taking inflation into account, the model operates the sales in an e�cient724

manner such that the inventory level (Figure 6) is adjusted to balance the725

trade-o↵s between storing a su�cient quantity of product to meet seasonal726

demand and high storage costs.727

728

The variation of the catalyst activity, catalyst age, inventory level and729

cumulative inventory costs over the time horizon are shown in Figure 6. It is730

highlighted that towards the end of the first year, the inventory level shows731

a significant increase, despite there being a considerable amount of unmet732

demand at that time. This happens in order to enable greater amount of733

sales during later times when the product sales price has increased due to734

inflation, thereby enlarging the profit obtained.735

736

The magnitudes of the various economic aspects that form the elements737

of the objective function are given in Table 1. The table indicates that738

the cost of flow and raw material constitutes more than half of the total739

expenses with the net penalty for unmet demand also forming a significant740

proportion. The cost of catalyst changeovers contributes relatively less while741

the inventory costs form a very low percentage of the total expenditure. It is742

also seen that the costs of operation take away about 43.6% of the revenue743

generated by the product sales.744

745
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(a)

Sales Demand

(b)

Unmet demand Demand

Figure 5: The variation of (a) sales and (b) unmet demand, in comparison
to the demand over the time horizon for Case Study A

Figure 6: The variation of the catalyst activity, catalyst age, inventory level
and cumulative inventory cost over the time horizon for Case Study A
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Table 1: Economic aspects of the best solution of Case Study A

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 776.422

Costs

Total Inventory Costs TIC 0.299

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 117.089

Total Flow Costs TFC 189.955

Profit �NC 438.08

3.2.4. Case Study B: Results and discussions746

Figures 7 – 10 and Table 2 report the features of the best local optimum747

among the 22 successful runs for Case Study B, in which the main reaction748

is of first order kinetics with respect to the reactant and the catalyst deacti-749

vation kinetics is proportional to the reactant concentration.750

751

Figure 7 shows the variation of the monthly catalyst changeover controls752

over the time horizon. Once again, a bang-bang behaviour is exhibited, con-753

sistent with the analysis in Appendix A. The recommendation is to use 4754

of the 6 available catalysts over the 3-year horizon, with the 3 replacements755

(y = 0) occurring on the 9th, 16th and 23rd months. Once again, the first756

replacement occurs at a time to minimise losses and the other changeovers757

occur only when there is su�cient inventory to meet the demand.758

759

Figure 8 is the analogue of Figure 4 in Case Study A. The trends of ffr760

and cR during catalyst operation are di↵erent from in Case Study A: the761

decrease in ffr is such that its rate of decrease is slower than the rate of762

catalyst deactivation and this causes cR to show a roughly linear increase in763
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Figure 7: The variation of the catalyst changeover controls over the time
horizon for Case Study B

Figure 8: The variation of the feed flow rate, temperature and reactant exit
concentration over the time horizon for Case Study B
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magnitude. This behaviour is not consistent with the work of Crowe (1976)764

which predicted maintaining a constant exit conversion as the optimal policy765

at the reactor level, even when the catalyst deactivation kinetics is dependent766

on the reacting species’ concentration. An explanation for this profile of cR767

is o↵ered using the following points:768

• A larger magnitude of cR implies a faster deactivation of the catalyst,769

following from Equation (10), and this is unfavourable for the process.770

• A larger magnitude of cR means a larger reaction rate, following from771

Equation (13), and this is favourable for the process.772

Thus, there is a trade-o↵ to be balanced in maintaining a particular mag-773

nitude of cR. The flow rate is chosen such that at the beginning of operation774

of a new catalyst, a relatively low value of cR occurs, which although lowers775

the reaction rate, it prevents the fresh catalyst from deactivating too fast.776

However, as the catalyst deactivates, the focus shifts to maintaining a higher777

reaction rate and this is done by the appropriate reduction of ffr to raise778

cR. This linearly increasing trend enables to optimally balance the positive779

and negative e↵ects of maintaining a particular magnitude of cR.780

781

Figures 9 – 10 and Table 2 are the analogues of Case Study B to Figures 5782

– 6 and Table 1 in Case Study A. The profile for the catalyst activity during783

catalyst operation in Figure 10 follows from equation (10). The explanations784

for the trends of all other variables in Figures 9 and 10 are similar to those785

of their Case Study A analogues. Table 2 shows that the costs of operation786

take away about 39.5% of the revenue generated by the product sales.787

788
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(a)

Sales Demand

(b)

Unmet demand Demand

Figure 9: The variation of (a) sales and (b) unmet demand, in comparison
to the demand over the time horizon for Case Study B

Figure 10: The variation of the catalyst activity, catalyst age, inventory
level and cumulative inventory cost over the time horizon for Case Study B
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Table 2: Economic aspects of the best solution of Case Study B

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 785.245

Costs

Total Inventory Costs TIC 0.290

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 106.061

Total Flow Costs TFC 172.67

Profit �NC 475.225

3.3. Problem solution implementation II, results and discussions789

Given the inadequacies of Implementation I, it was decided to attempt790

an alternate implementation in PythonTM 3.7.1 under PyCharm 2018.2.4791

(Community Edition). This section discusses the details and performances792

of a preliminary implementation called Implementation IIA, before doing the793

same for Implementation II, a modification of the former. Subsequently, the794

results of all case studies obtained using Implementation II are presented.795

3.3.1. Implementation IIA details796

Implementation IIA was carried out as a Python code that solved a stan-797

dard multistage optimal control problem using the feasible path approach,798

similar to that of Implementation I. The code was written using CasADi,799

an open source software that enables a symbolic framework for numerical800

optimisation (Andersson, 2013). The elements of the problem, as given in801

Section 3.1, were defined as symbolic expressions using CasADi v3.4.5. The802

Automatic Di↵erentiation (AD) feature of CasADi enabled constructions of803

symbolic expressions of the derivatives of all predefined functions, thereby804

maintaining di↵erentiability to an arbitrary order. This allowed for an e�-805

cient calculation of gradients, that did not su↵er from round-o↵ and trunca-806
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tion errors, unlike gradient calculation using finite di↵erences.807

808

CasADi contains plug-ins to the open source SUNDIALS suite (Hind-809

marsh et al., 2005) and IPOPT by COIN-OR (Wächter and Biegler, 2006),810

which were used for the integration of ODEs and optimisation, respectively.811

The IDAS solver of SUNDIALS was used for the integration of the ODEs812

with the following termination criteria: an absolute tolerance of 10�6 and a813

relative tolerance of 10�6. The optimisation by IPOPT had, respectively, the814

following termination and acceptable termination criteria: 10�4 and 10�4 for815

the optimality error, 1 and 106 for the dual infeasibility, 10�4 and 10�2 for816

the constraint violation, and 10�4 and 10�2 for the complementarity. The817

acceptable number of iterations was set at 15.818

819

The above implementation procedure was run on the same hardware and820

operating system used for Implementation I. A set of random starting guesses821

for the decision variables were provided using the rand method of the random822

class within the numpy module.823

3.3.2. Implementation IIA: General performance discussion824

For multiple test runs, it was found that the catalyst changeover actions825

did not exhibit a bang-bang behaviour when this implementation method-826

ology was used. Other adjustments such as tighter optimality tolerances,827

scaling of the objective functions and constraints or providing feasible start-828

ing guesses to the decision variables made little di↵erence and there remained829

non-integral catalyst changeover control values in the final solution. Thus,830

the analysis done in Section 2 is not applicable here and further modifications831

were needed to Implementation IIA in order to attain the desired results and832

this led to Implementation II.833
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3.3.3. Implementation II details834

Implementation II is composed of executing Implementation IIA with a835

penalty term homotopy, a technique is similar to that suggested by Sager836

(Sager, 2005, 2009). The principle of this method is to add a monotonically837

increasing penalty term to the objective function in equation (48) and solve838

a series of OCPs of generic form:839

Fk : min

"
NC + Mk

NMX

i=1

y(i) [1 � y(i)]

#
(49a)

840

k = 1, 2, 3 . . . (49b)

The first problem (k = 1) in the series is designated a weight of M1 = 0841

and so the solution of F1 is equivalent to the solution of Implementation IIA.842

The procedure of the method is to initialise problem Fk+1 with the solution843

of Fk and increase the penalty term in the objective of Fk+1 by choosing a844

weight Mk+1 > Mk. This procedure is repeated until iteration K such that845

weight MK is large enough to force all catalyst changeover controls to take846

values of either 0 or 1. For the choice of parameters used in the set of case847

studies investigated in this article, the weight is increased as per the following848

arithmetic progression:849

Mk+1 = (2 ⇥ Mk) +
�
5 ⇥ 107

�
(50a)

850

M1 = 0 (50b)
851

k = 1, 2, 3 . . . (50c)

Every iteration, k, will be referred to as a ’major iteration’ in this article.852

This progression for increasing the weights was chosen arbitrarily, by trial853

and error. It should be mentioned that if the weight is increased too slowly,854

the computational time becomes large, while if it is increased too fast, the855

optimiser can fail to recognise a solution and continue iterations indefinitely.856
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The implementation was performed on the same hardware as for Im-857

plementations I and IIA. Once again, multiple runs were performed with858

di↵erent starting points due to the non-convex nature of the problem. Test859

runs using the multiprocessing module in Python, to parallelise a loop of860

multiple start points, executed slower than when the runs were done serially.861

So for each case study, 50 runs were executed in a serial manner.862

3.3.4. Implementation II: General performance discussion863

It was found that Implementation II produced high quality solutions for864

all case studies. Not in a single run for any case study, regardless of the de-865

gree of nonlinearity of the process model, was any integration or convergence866

problem encountered.867

868

Statistics regarding the solutions obtained from the 50 runs for all case869

studies using Implementation II are given in Table B.12. The range of op-870

timal profit values obtained for Case Studies A and B were comparable to871

those obtained from the limited set of successful runs for the same case stud-872

ies using Implementation I, thereby indicating that the answers obtained in873

these case studies created using invented parameters are indeed optimal. The874

table also indicates that the number of catalyst replacements were lower and875

the catalyst ages longer for this implementation in comparison to Implemen-876

tation I. However, such comparisons were not possible for the runs of Case877

Studies C and D as Implementation I failed to produce solutions for those878

case studies. Statistics regarding the computational e↵ort involved are given879

in Tables B.13 and B.14.880

881

Overall, Implementation II was more reliable and robust, compared to882

Implementation I, in producing high quality solutions. Next, the results of883

the best solution obtained using this implementation from the set of 50 runs,884

for each of the case studies, are discussed along with other relevant statistics.885
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Figure 11: The variation of the catalyst changeover controls over the time
horizon for Case Study A

3.3.5. Case Study A: Results and Discussions886

Figures 11 – 14 and Table 3 report the features of the best local optimum887

among the 50 runs for Case Study A using Implementation II. These are the888

analogues of Figures 3 – 6 and Table 1, respectively, obtained using Imple-889

mentation I in Section 3.2.3.890

891

Figure 11 shows the variation of the monthly catalyst changeover controls892

over the time horizon, across di↵erent major iterations. It is seen that the893

solution of the first major iteration is not of bang-bang form, while in the894

second iteration, integer values are obtained for these controls. The recom-895

mendation is to use 5 of the 6 available catalysts over the 3-year horizon, with896

the 4 replacements (y = 0) occurring on the 7th, 13th, 20th and 26th months.897

Similar to Figure 3, the first replacement occurs at a time to minimise losses898

and the other replacements occur only when there is su�cient inventory to899

meet the demand. The other results presented are those obtained as solutions900

of the second major iteration.901
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Figure 12: The variation of the feed flow rate, temperature and reactant
exit concentration over the time horizon for Case Study A

(a)

Sales Demand

(b)

Unmet demand Demand

Figure 13: The variation of (a) sales and (b) unmet demand, in comparison
to the demand over the time horizon for Case Study A
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Figure 14: The variation of the catalyst activity, catalyst age, inventory
level and cumulative inventory cost over the time horizon for Case Study A

Table 3: Details of the economic aspects for Case Study A

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 783.722

Costs

Total Inventory Costs TIC 0.276

Total Costs of Catalyst Changeovers TCCC 42.025

Net Penalty for Unmet Demand NPUD 107.96

Total Flow Costs TFC 183.515

Profit �NC 449.946

902

The variation of the trends of variables in Figures 12 – 14 are similar to903

their analogues in Case Study A. Once again, the optimal policies suggested904

at the reactor level by Szépe and Levenspiel (1968) for continuous reactors are905
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followed here for cR and T . Table 3 shows that the profit here is comparable906

to that in Table 1.907

3.3.6. Case Study B: Results and Discussions908

Figures 15 - 18 and Table 4 report the features of the best local optimum909

among the 50 runs for Case Study B using Implementation II. These are the910

analogues of Figures 7 - 10 and Table 2, respectively, obtained using Imple-911

mentation I in Section 3.2.4.912

913

In this case, three major iterations are needed to force the catalyst changeover914

controls to take integer values (Figure 15) and the other results presented915

in this section correspond to the solution of the third major iteration. The916

explanations of the trends for all variables, and the final profit and costs917

values are very similar to those in Section 3.2.4.918

Figure 15: The variation of the catalyst changeover controls over the time
horizon for Case Study B

919
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Figure 16: The variation of the feed flow rate, temperature and reactant
exit concentration over the time horizon for Case Study B

(a)

Sales Demand

(b)

Unmet demand Demand

Figure 17: The variation of (a) sales and (b) unmet demand, in comparison
to the demand over the time horizon for Case Study B
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Figure 18: The variation of the catalyst activity, catalyst age, inventory
level and cumulative inventory cost over the time horizon for Case Study B

Table 4: Details of the economic aspects for Case Study B

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 785.902

Costs

Total Inventory Costs TIC 0.282

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 105.235

Total Flow Costs TFC 169.251

Profit �NC 480.135

3.3.7. Case Study C: Results and Discussions920

Figures 19 – 22 and Table 5 report the features of the best local opti-921

mum among the 50 runs for Case Study C using Implementation II. Here922

the main reaction is of first order kinetics with respect to the reactant and923

50



Figure 19: The variation of the catalyst changeover controls over the time
horizon for Case Study C

the catalyst deactivation kinetics is dependent on the product concentration.924

Implementation I failed to obtain results for this case study, due to problems925

in integrating the highly nonlinear system of ODEs.926

927

Figure 19 shows the variation of the monthly catalyst changeover controls928

over the time horizon, across di↵erent major iterations. In this case, three929

major iterations are needed to force the catalyst changeover controls to take930

integer values. 4 of the 6 available catalysts are used, with the changeovers931

occurring on the 9th, 17th and 24th months, which are times when a su�cient932

inventory level is present to meet the demand. All other results presented933

here are those obtained at the end of the third major iteration.934

935

Figure 20 shows that the profiles of ffr and cR during times of catalyst936

operation are di↵erent from other case studies and once again, the trend for937

cR is not consistent with the work of Crowe (1976). The scenarios are:938
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Figure 20: The variation of the feed flow rate, temperature and reactant
exit concentration over the time horizon for Case Study C

• The ffr is constant at its maximum value during when the deactivation939

of the catalyst causes cR to increase with time.940

• The ffr decreases at a rate that causes cR to decrease.941

The flow costs are high in the former scenario while they are considerably942

lower in the latter. However, a higher value of cR in the former scenario is943

favourable economically as this leads to a slower rate of catalyst deactivation944

and a larger reaction rate, following from equations (11) and (13), respec-945

tively, while the reverse is true in the latter scenario.946

947

Thus, it can be said that there is an interplay between the elements of the948

process economics, which a↵ect the variation of ffr and cR during catalyst949

operation. The following interpretations are o↵ered:950

• The flow rate remains constant at its upper bound during the time the951

catalyst activity is relatively high. This is because the revenue from952
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higher production and lesser unmet demand outweigh the flow costs for953

this time. Eventually, the catalyst activity falls low enough and causes954

this balance to shift. At this point, the ffr begins to decrease.955

• When ffr begins to decrease, cR begins to decrease from its maximum956

value. Overall, a large production rate is preferred but at the same957

time, ffr has to be reduced in order to lower the flow costs. This958

compromise is attained by decreasing ffr at a rate that minimises the959

rate of change of cR away from its maximum value and thereby keeps960

the production rate as large as possible.961

• During the operation of the final catalyst, the ffr experiences a sharp962

drop and exhibits a rate of decrease to result in a production rate that963

exactly fulfils the demand for the remainder of the time horizon.964

(a)

Sales Demand

(b)

Unmet demand Demand

Figure 21: The variation of (a) sales and (b) unmet demand, in comparison
to the demand over the time horizon for Case Study C

965
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Figure 22: The variation of the catalyst activity, catalyst age, inventory
level and cumulative inventory cost over the time horizon for Case Study C

Table 5: Details of the economic aspects for Case Study C

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 795.192

Costs

Total Inventory Costs TIC 0.241

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 93.623

Total Flow Costs TFC 239.836

Profit �NC 430.493

Figures 21 - 22 and Table 5 are the analogues of Case Study C to Figures966

13 - 14 and Table 3 in Case Study A. The profile for the catalyst activity967

during catalyst operation in Figure 22 follows from equation (11). The ex-968

planations for the trends of all variables in Figures 21 and 22 are similar969
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to those of their Case Study A analogues. Table 5 reveals that the costs of970

operation take away about 45.9% of the revenue generated by the product971

sales, with the flow costs take up a larger proportion of the total expenses972

here compared to previous case studies.973

3.3.8. Case Study D: Results and Discussions974

Figures 23 - 26 and Table 6 report the features of the best local opti-975

mum among the 50 runs for Case Study D using Implementation II. Here976

the main reaction is of second order kinetics with respect to the reactant and977

the catalyst deactivation kinetics is dependent on the product concentration.978

Such solutions could not be obtained by Implementation I once again, due979

to problems in integrating the highly nonlinear system of ODEs.980

981

As seen in Figure 23, this solution required two major iterations to force982

the catalyst changeover controls to take integer values. The suggestion is983

to use 4 of the 6 available catalysts, with the replacements occurring on the984

8th, 17th and 25th months. Similar to the previous case studies, the timing of985

these replacements is such that losses are minimised or su�cient inventory986

is present to meet demand. All other results discussed here are from the987

solutions of the second major iteration.988

989

The profiles of ffr and cR in Figure 24 are similar to those in Figure 20.990

Only here, the ffr remains at its maximum value for a longer duration than991

in Case Study C because a higher value of cR is needed to compensate for992

the lower reaction rate.993

994

The explanations for the trends of variables in all other figures are similar995

their Case Study C analogues. Table 6 reveals that the costs of operation996

take away about 56.8% of the revenue generated by the product sales.997

998
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Figure 23: The variation of the catalyst changeover controls over the time
horizon for Case Study D

Figure 24: The variation of the feed flow rate, temperature and reactant
exit concentration over the time horizon for Case Study D
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(a)

Sales Demand

(b)

Unmet demand Demand

Figure 25: The variation of (a) sales and (b) unmet demand, in comparison
to the demand over the time horizon for Case Study D

Figure 26: The variation of the catalyst activity, catalyst age, inventory
level and cumulative inventory cost over the time horizon for Case Study D
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Table 6: Details of the economic aspects for Case Study D

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 752.937

Costs

Total Inventory Costs TIC 0.343

Total Costs of Catalyst Changeovers TCCC 31.525

Net Penalty for Unmet Demand NPUD 146.441

Total Flow Costs TFC 249.539

Profit �NC 325.089

999

4. Conclusions and further discussions1000

A novel methodology has been developed to schedule catalyst changeovers1001

and plan production in an industrial process based on the realisation of this1002

problem as a multistage mixed integer optimal control problem. This formu-1003

lation was applied to four case studies of the process, which di↵ered based1004

on the kinetics of the main reaction or the catalyst deactivation. Due to the1005

non-convex nature of the problem, 50 di↵erent starting guesses were used for1006

each case study.1007

1008

Following from a theoretical analysis of the MSMIOCP formulation, it1009

was expected that the catalyst changeover controls, which appeared a�nely1010

in the system equations, should exhibit a bang-bang behaviour in the optimal1011

solution. However, the solution implementation faced complications due to1012

the complex nature of the problem and required using two di↵erent imple-1013

mentation methodologies, each of which had their own relative advantages:1014

1. Implementation I is favourable from a theoretical point of view, as its1015
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solutions exhibit the bang-bang property for the catalyst changeover1016

controls. However, it has a tendency to converge prematurely or crash1017

due to problems in integration, which are probably due to inadequacies1018

of the MATLAB ODE integrator suite. While a limited set of solutions1019

could be obtained for Case Studies A and B, no solutions could be1020

obtained for case Studies C and D due to these integration problems.1021

2. Implementation II does not exhibit the bang-bang property for the1022

catalyst changeover controls but is robust and reliable in providing high1023

quality solutions for all case studies. The lack of bang-bang behaviour1024

is most likely an issue of the IPOPT optimiser.1025

The range of profit values obtained for the successful runs of Implementa-1026

tion I in Case Studies A and B compared well with those in Implementation1027

II, thereby indicating that the answers obtained in these case studies created1028

using invented parameters are indeed optimal.1029

1030

For each case study, the variation of all control and state variables of the1031

best solution were plotted over the time horizon and the economics of the pro-1032

cess was presented in a table. Explanations were provided for the trends of1033

all variables, which were mainly focused on increasing profit while e�ciently1034

managing all costs in order to balance the trade-o↵s involved. A notable re-1035

sult was in Case Study A wherein the policies for reactant exit concentration1036

and temperature of operation correlated well with that of published litera-1037

ture (Szépe and Levenspiel, 1968) at the reactor level. However, the policy1038

for the reactant exit concentration in the solutions of the other case studies1039

was not consistent with the related work (Crowe, 1976) at the reactor level,1040

indicating that that policy may not hold when inventory, sales and demand1041

considerations come into play.1042

1043

The problem set up considered here is similar to that in Bizet et al. (2005).1044

In order to evaluate the quality of solutions obtained here, a comparison1045

59



between the two works is drawn using the following points:1046

1. The number of catalyst loads considered in Bizet et al. (2005) was either1047

2 or 3. If that number was increased, the number of combinations1048

involved in their solution methodology would increase exponentially1049

and so, obtaining good solutions would require a very large amount of1050

computational e↵ort. On the other hand, the nature of the formulation1051

proposed is such that good solutions can be obtained in a reasonable1052

amount of time even if the number of available catalyst loads is 6 (as1053

considered in this work) or even infinite.1054

2. In Bizet et al. (2005), the flow rate, temperature and sales are decisions1055

to be taken on a monthly basis, whereas in this work, those controls1056

are optimised on a weekly basis. The smaller problem size enabled by1057

the MSMIOCP approach facilitates producing solutions which are more1058

informative compared to the former. If decisions were taken on a weekly1059

basis in Bizet et al. (2005), the problem size would have increased1060

almost 4-fold, thus accentuating the di�culties in obtaining solutions.1061

3. The use of integrators to solve the di↵erential equations enables an1062

accurate description of the process dynamics in this work. However,1063

in Bizet et al. (2005) a significant approximation is involved as the1064

di↵erential equations are discretised under a steady state assumption.1065

Thus, the solutions obtained in this work are more reliable.1066

4. The solution times in Bizet et al. (2005) are in the order of seconds.1067

However, the solution times for the methodology proposed here are in1068

the order of hours, even for a shorter time horizon of 3 years. This1069

is due to the high computational e↵ort spent in solving the di↵eren-1070

tial equations to a high accuracy at each iteration of the optimisation.1071

However, this additional computational e↵ort is not a major issue and1072

is outweighed by the robust, reliable and e�cient solutions obtained.1073

60



5. The time horizons considered in Bizet et al. (2005) are 74 months and 91074

years. Such long time horizons are unrealistic in present day industries1075

and so, a shorter time horizon of 3 years is considered in this work.1076

However, it is stressed that the methodology proposed here would face1077

no di�culties in producing high quality solutions even for time horizons1078

as long as considered in Bizet et al. (2005).1079

6. Unlike in this article, no parameters were revealed in Bizet et al. (2005)1080

due to confidentiality reasons and so their results are not reproducible.1081

If such data were available, it would be very interesting to execute the1082

proposed methodology with those parameters and compare the solu-1083

tions obtained with those of Bizet et al. (2005).1084

The preceding discussion indicates the high quality of solutions obtained1085

by the proposed methodology in comparison to previous publications. To1086

conclude, the contributions of this paper are highlighted by the following ad-1087

vantages the MSMIOCP approach, employed using Implementation II, o↵ers1088

over existing methodologies:1089

1. It is robust because solutions can be obtained from any random starting1090

guess, aided by the smaller number of constraints present.1091

2. It is reliable because solutions can be obtained to a high degree of1092

accuracy using state-of-the-art integrators.1093

3. It is e�cient because the catalyst replacements are scheduled inher-1094

ently during the optimisation without using combinatorial optimisation1095

methods.1096

The final points are with regard to the future applications of the proposed1097

methodology. It would be interesting to apply this technique to cases wherein1098

the catalyst deactivation kinetics has a greater dependence on temperature1099

than the main reaction. Another application would be to optimise catalyst1100
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replacement scheduling and production in a network of reactors, a problem1101

for which numerous MINLP formulations have been developed currently. The1102

consideration of the e↵ect of parametric uncertainties in this problem would1103

also be useful for robust decision making within industry. In addition, while1104

the starting guesses for the decision variables here have been obtained using1105

traditional random number generating functions, it would be interesting to1106

observe the e↵ect of using Latin Hypercube sampling (McKay et al., 1979)1107

or Orthogonal sampling (Tang, 1993), which ensure a better representation1108

of real variability for a random set.1109
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Appendix A. A Pontryagin analysis of the Multistage Mixed In-1114

teger Optimal Control Problem Formulation1115

In this section, a theoretical analysis is performed wherein the Pontryagin1116

Minimum (Maximum) principle is applied to the MSMIOCP formulation1117

developed in Section 2. The performance index in equation (3a) is modified so1118

that Euler-Lagrange multipliers are introduced, as shown in equation (A.1):1119
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(A.1)

where �p, µp and ⌫p are the Euler-Lagrange multipliers for stage p = 1, 2, . . . NP .1120

Variations on the parameter set of stage p0 of the form �u (p0) are considered,1121

which result in variations in the state values at all times, as shown in equation1122

(A.2). For the sake of convenience, the arguments within the parantheses for1123

each term are neglected. Clearly, the state vector of stage p, where p < p0,1124

will not be influenced. This results in �x(p) (t) = 0 and �y(p) (t) = 0.1125
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Integration by parts for the term involving �ẋ(p)(t) is used to obtain equation1126

(A.3)1127
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For a stationary point, infinitesimal variations in the right hand side should1128

yield no change to the performance index, i.e. �W = 0, and hence related1129

terms must be chosen so that they always guarantee this. This leads to1130

the following set of Euler-Lagrange equations and the Pontryagin Minimum1131

(Maximum) principle (Pontryagin et al., 1962).1132

1133

To cancel the �x(1) and �x(1) (t1) terms, the di↵erential equations and1134

final time stage conditions, as shown in equations (A.4a) – (A.5), must hold,1135

respectively:1136
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To cancel the �z(1) and �z(1) (t1) terms, the algebraic equations and final1138

time stage conditions, as shown in equations (A.6a) – (A.7), must hold,1139

respectively:1140
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The �x(p) (t), �x(p) (tp) and �x(p) (tp�1) terms are cancelled through the1143

condition that the following di↵erential equations and final time stage con-1144

ditions (equations (A.8a) – (A.10)) hold:1145
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Algebraic equations and final stage conditions, equations (A.11a) – (A.12b)1147

must hold in order to cancel the �z(p) and �z(p) (tp) terms.1148
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As per the Pontryagin Minimum (Maximum) Principle, the decision vari-1149

ables of the problem should be chosen to minimise the Hamiltonian. The1150

Hamiltonian gradient conditions, taken from the coe�cients of �v(p) and �u(p),1151

are given by equations (A.13a) – (A.14b).1152

rv(p)H
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@f (p)
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�T
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+

Z tp

tp�1

""
⇥
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(p)
1 (t)
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+

@L
(p)
2 (t)
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#T

+


@A(p)(t)

@v(p)
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+
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@v(p)
u(p) +

@d(p)(t)

@v(p)

�T
µ(p)(t)

#
dt

= 0 (A.13a)
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1153

tp�1  t  tp p = 1, 2, . . . , NP (A.13b)

ru(p)H(p) = �
(p)
1 +

⇥
E(p)

⇤T
⌫(p)

+

Z tp

tp�1

h
L
(p)
1 +

⇥
A(p)

⇤T
�(p)(t) +

⇥
C(p)

⇤T
µ(p)(t)

i
dt

= 0 (A.14a)

1154

tp�1  t  tp p = 1, 2, . . . , NP (A.14b)

Appendix B. Tables1155

Table B.7: List of parameters

Parameter Symbol Value

AR 885 (1/day)

base�cof $ 210 /week

base�crc $ 107

base�icf $ 0.01 /(kmol day)

base�pen $ 1250 /kmol

base�psp $ 1000 /kmol

CR0 1 kmol/m3

demand

1st quarter of year: 8000 kmol/week

2nd quarter of year: 7200 kmol/week

3rd quarter of year: 3300 kmol/week

4th quarter of year: 4500 kmol/week

Eact 30,000 J/gmol
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Table B.7: List of parameters

Parameter Symbol Value

FUp 9600 m3/day

inflation 5%

Kd

Case Study A: 0.0024 (1/day)

Case Study B: 0.0024 (1/(day . kmol/m3))

Case Studies C, D: 0.024 (1/(day . kmol/m3))

max�cat�age 504 days (= 1.5 years)

n 5

NM 36 months (= 3 years)

Rg 8.314 J/(gmol.K)

start�cat�act 1

TLo 400 K

TUp 1000 K

V R 50 m3
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Table B.8: Problem size specifications, applicable for each case study

Property Size

Ordinary Di↵erential Equations 720

Decision variables

Catalyst changeover actions 36

Feed flow rate 144

Sales 144

Temperature 144

Total 468

Constraints

Constraints (29) 72

Constraints (30) 288

Constraints (31) 288

Constraints (32) 288

Constraints (33) 144

Constraints (34) 288

Constraint (35) 1

Constraints (36) 36

Constraints (37) 144

Total 1549

Table B.9: Implementation I performance details

Case Study

Number of runs Number of runs Number of runs

converging converging crashing due to

successfully prematurely integration problems

Case Study A 13 28 9

Case Study B 22 23 5
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Kirches, C., Sager, S., Bock, H.G., Schlöder, J.P., 2010. Time-optimal control1209

of automobile test drives with gear shifts. Optimal Control Applications1210

and Methods 31, 137–153.1211

Krishnaswamy, S., Kittrell, J., 1979. Analysis of temperature-time data for1212

deactivating catalysts. Industrial & Engineering Chemistry Process Design1213

and Development 18, 399–403.1214

Lang, Y.D., Biegler, L., Maier, E., Majewski, R., 2000. An optimal cat-1215

alyst management strategy for Oxo processes. Computers & Chemical1216

Engineering 24, 1549–1554.1217

Ledzewicz, U., Schättler, H., 2002. Optimal bang-bang controls for a two-1218

compartment model in cancer chemotherapy. Journal of Optimization The-1219

ory and Applications 114, 609–637.1220

Lee, S.I., Crowe, C.M., 1970. Optimal temperature policies for batch reactors1221

with decaying catalyst. Chemical Engineering Science 25, 743–744.1222

Li, Z., Ierapetritou, M.G., 2009. Integrated production planning and schedul-1223

ing using a decomposition framework. Chemical Engineering Science 64,1224

3585–3597.1225

Li, Z., Ierapetritou, M.G., 2010. Rolling horizon based planning and schedul-1226

ing integration with production capacity consideration. Chemical Engi-1227

neering Science 65, 5887–5900.1228

Lin, Y., Du, W., 2018. A Two-Level Optimization Framework for Cyclic1229

Scheduling of Ethylene Cracking Furnace System, in: 2018 IEEE Congress1230

on Evolutionary Computation (CEC), IEEE. pp. 1–8.1231

80



MATLAB, Optimisation Toolbox, 2018. version 9.4.0.813654 (R2018a). The1232

MathWorks Inc.1233

McKay, M.D., Beckman, R.J., Conover, W.J., 1979. Comparison of three1234

methods for selecting values of input variables in the analysis of output1235

from a computer code. Technometrics 21, 239–245.1236

Mohler, R.R., 1973. Bilinear control processes: with applications to engi-1237

neering, ecology and medicine. Academic Press, Inc.1238

Mouret, S., Grossmann, I.E., Pestiaux, P., 2011. A new Lagrangian de-1239

composition approach applied to the integration of refinery planning and1240

crude-oil scheduling. Computers & Chemical Engineering 35, 2750–2766.1241

Nocedal, J., Wright, S., 2006. Numerical optimization. Springer Science &1242

Business Media.1243

Pacheco, M.A., Petersen, E.E., 1986. A novel interpretation of temperature1244

versus time curves for deactivating catalyst systems. Journal of Catalysis1245

98, 380–385.1246

Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mischenko, E., 1962. The1247

mathematical theory of optimal processes, Wiley-Interscience. New York .1248

Sager, S., 2005. Numerical methods for mixed-integer optimal control prob-1249

lems. Der Andere Verlag Tönning.1250

Sager, S., 2009. Reformulations and algorithms for the optimization of1251

switching decisions in nonlinear optimal control. Journal of Process Con-1252

trol 19, 1238–1247.1253

Sager, S., Bock, H.G., Reinelt, G., 2009. Direct methods with maximal1254

lower bound for mixed-integer optimal control problems. Mathematical1255

Programming 118, 109–149.1256

81



Sapre, A., 1997. Catalyst deactivation kinetics from variable space-velocity1257

experiments. Chemical Engineering Science 52, 4615–4623.1258

Serban, R., 2009. sundialsTB v2. 4.0, a MATLAB Interface to SUNDIALS.1259

Technical Report. Technical Report UCRL-SM-212121, Lawrence Liver-1260

more National Laboratory.1261

Shampine, L.F., Reichelt, M.W., 1997. The MATLAB ODE suite. SIAM1262

journal on scientific computing 18, 1–22.1263

Shi, H., Chu, Y., You, F., 2015. Novel optimization model and e�cient1264

solution method for integrating dynamic optimization with process oper-1265

ations of continuous manufacturing processes. Industrial & Engineering1266

Chemistry Research 54, 2167–2187.1267

Su, L., Tang, L., Grossmann, I.E., 2015. Computational strategies for im-1268

proved MINLP algorithms. Computers & Chemical Engineering 75, 40–48.1269

Su, L., Tang, L., Grossmann, I.E., 2016. Scheduling of cracking production1270

process with feedstocks and energy constraints. Computers & Chemical1271

Engineering 94, 92–103.1272
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