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ABSTRACT 

Model-based oil production systems optimisation under pressure and facility routing constraints is a 
testing challenge, especially in presence of complex downhole wellbore phenomena (water coning, 
slugging, phase separation). Nonlinearities and nonconvexities from underlying physics and binary 
decisions exacerbate model complexity, yielding Mixed Integer Nonlinear Programs (MINLP). To 
guarantee solvability of optimisation formulations and reduce MINLP complexity, piecewise 
linearisation techniques based on Special Ordered Sets of type 2 (SOS2) constraints are developed 
towards approximating nonlinear functions and transforming models to Mixed Integer Linear Programs 
(MILP). Nevertheless, computational analyses of MILP vs. MINLP formulations for oil production 
optimisation are scarce. This study explores the benefits of an MILP reformulation applied to three case 
studies of varying complexity. We compare MILP model results to original MINLP formulation 
solutions with multiple solvers, evaluating the impact of the number of linearisation breakpoints used 
on solution time, accuracy, robustness, model development effort and ease of automation. 

 

Keywords: Real-Time Production Optimisation (RTPO); Mixed Integer Linear Programming (MILP); 
Mixed-Integer Nonlinear Programming (MINLP); Well routing; Electrical Submersible Pumps (ESP); 
Progressive Cavity Pumps (PCP) 
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1. Introduction 

Oil and gas exploration and management activities are key to meeting the world’s global energy 
demands. In response to this, petroleum exploration companies constantly seek innovative technologies 
that aid the hydrocarbon recovery process, with relatively cheap implementation costs (Redutskiy, 
2017). Although several visualisation and analysis tools have continued to experience increased 
development, heuristic approaches currently dominate the production decisions in the upstream sector 
of the oil and gas industry (Grimstad, 2015). Compared to the downstream industry which has received 
significant attention from the process systems engineering (PSE) community, the upstream industry has 
hardly been penetrated by PSE tools, especially from the standpoint of real-time optimisation (Epelle 
and Gerogiorgis, 2019a; 2019b). Hence, there has been an increased incentive to apply mathematical 
optimisation for the recovery improvement of hydrocarbon reserves (Gunnerud and Foss, 2010). 

 

Figure 1: Technology pyramid of production optimisation (Grimstad et al., 2015). 

Several factors generally constrain a production system (Fig. 1). For example, the inflow performance 
from the reservoir to the wellbore may vary over a short time horizon due to complex multiphase flow 
phenomena such as slugging or water and gas coning and over a long timeframe, due to the prevalent 
flooding and drainage conditions of production and injection wells. Processing facilitates also impose 
gas and water capacity constraints and a fixed separator pressure. Constraints relating to well 
drawdown-down pressure, choke settings, flow routing and flow assurance (hydrate formation and wax 
deposition) further complicate an optimisation formulation for such systems (Epelle et al., 2020). 
Hence, novel algorithmic advancements have enabled engineers model, simulate and optimise complex 
phenomena characterising the production activities in the petroleum industry (Codas et al., 2012).  

An aggregate production system model consists of several models corresponding to the production 
system components (reservoir model, well model and surface facility models for the pipelines and 
separators). These models must be maintained by frequent calibration using acquired data of the system 
(Fig. 1). With these information, production optimisation can be performed to obtain the system’s 
optimal operating conditions. Mixed-Integer Nonlinear Programming (MINLP) which combines the 
modelling capabilities of integer and nonlinear programming into a flexible and multifaceted 
framework, could result in formulations which are difficult to solve. Typical sources of nonlinearity in 
the production system include the production wells’ pressure-rate response, the pipeline and valve 
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pressure drop and multiphase flow rate relationships (Epelle and Gerogiorgis, 2019b). These complex 
relationships are usually not explicitly known and are dependent on several operational parameters 
estimated via high fidelity simulators. Piecewise linear models have the advantage of establishing linear 
relationships directly from the simulator sample points; a property that significantly reduces problem 
complexity. However, a frequently adopted simplification approach is to convert the MINLP to a Mixed 
Integer Linear Program (MILP) via piecewise linear approximations (Gerogiorgis et al., 2006; Silva 
and Camponogara, 2014; Kronqvist et al., 2018). A computational performance comparison of the 
trade-offs to be made when deciding the structure of the optimisation formulation is scarce in literature. 
This work provides some insights via a detailed analysis of the computational performance of both 
formulations. 

2. Relevant Literature 

Optimisation problems of production systems over short and long term horizons have been formulated 
as MINLPs and MILPs in several published studies (Tavallali et al., 2016). These studies incorporate 
the flow dynamics of certain elements of the entire production system, thus making them differ 
significantly in complexity.  

A multiperiod MINLP formulation was established by Gupta and Grossmann (2012) for the optimal 
planning of oilfield (offshore) infrastructural development over a 20-year production horizon. The 
resulting formulation yielded good solutions when solved with MINLP solvers, DICOPT, SBB and 
BARON. They also presented a reformulation strategy of their MINLP problem into an MILP via binary 
reduction and elimination of bilinear terms; thus obtaining globally optimal solutions. Epelle and 
Gerogiorgis (2019a) presented an MINLP formulation for real-time optimisation of a production system 
with wells of different types. They considered gas lift, ESP-assisted and naturally flowing wells of 
complex geometries with the potential for sand production. They obtained rapid computations using the 
BONMIN solver.  Hoffman and Stanko (2016) formulated a Real-Time Production Optimisation 
(RTPO) problem of a network consisting of pump-assisted wells (with Electrical Submersible Pumps – 
ESPs). An integrated approach for production optimisation from multiple offshore reservoirs in the 
Santos Basin of Brazil was presented by Camponogara et al. (2017). Their approach relied on a 
reformulation of an MINLP problem to an MILP via piecewise linear approximations which serve as 
proxy models for each production unit. They further demonstrated the robustness and scalability of their 
formulation for large heterogeneous oilfields. Silva et al. (2015) modelled flow splitting of well fluids 
to multiple headers and embedded this model in an MILP formulation via piecewise linearisation for 
production optimisation purposes. Piecewise reformulations of MINLPs have also been applied in many 
recent publications (Kosmidis et al., 2005; Gerogiorgis et al., 2009; Aguiar et al., 2012; Codas et al., 
2012; Gunnerud et al., 2012; Silva and Camponogara, 2014). 

Rodrigues et al. (2016) developed a new formulation called the Multicapacitated Platforms and Wells 
Location Problem (MPWLP) and solved it as an MILP using the CPLEX solver. The solution to this 
model provides the number and location of production platforms, wells and manifolds, the capacities 
of the production platforms, the interconnections between platforms, manifolds and wells, and which 
sections of each well should be vertical or horizontal. Zhang et al. (2017) developed a unified MILP 
formulation for obtaining the best possible topological structure in a production gathering network 
consisting of wells and pipelines under operational constraints. Their model (solved using MINLP 
solvers in GUROBI) facilitates the development of field planning schedules. 

Other studies which directly incorporate details of the reservoir’s conditions in their model apply both 
gradient-based and derivative-free methods for optimising water flooding operations, especially in the 
context of closed-loop reservoir management (Chen et al., 2010; Asadollahi et al., 2012; Epelle and 
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Gerogiorgis, 2020). However, the focus herein is the fast-paced dynamics of the wells, manifolds, 
pipelines and separator components of the production system. The objective of this paper is to develop 
a surrogate model-based production optimisation formulation which when solved, is capable of 
providing optimal operational settings that maximise a field’s Net Present Value (NPV) while satisfying 
imposed operational constraints. To achieve this, this study incorporates the benefits of MILP on a 
synthetic but realistic case study. The obtained solutions of the MILP and that of the original MINLP 
are compared and an evaluation of the impact of the number of linearisation breakpoints on the solution 
time, accuracy, modelling effort and ease of automation is performed. It is ensured that high accuracy 
in the nonlinear models and piecewise approximations in comparison to the simulation data is 
maintained while carrying out optimisation calculations.  

The novelty of this work lies in the comparative analysis of two linearisation strategies, using an already 
established linearisation technique in literature (Special Ordered Sets of type 2 – SOS2). The first 
strategy is to linearise nonlinear terms that appear in the MINLP formulation; whereas, the second 
strategy is to use data points in a generated look-up table (LKT).  To the best of our knowledge, no 
previous study has quantified the performance of these two strategies. Rather than directly applying 
LKTs which result in a large number of variables (as many as 100,000 in the work of Silva and 
Camponogara, 2014, for a similar production system size to ours, cf. Case Study 3/CS3 here), we show 
that the first strategy yields significantly fewer variables (with a shorter implementation time) and good 
optimal solutions. The work of Silva and Camponogara (2014) comparatively analysed mathematical 
techniques of piecewise linearization on a broad spectrum using Disaggregated Convex Combination 
(DCC), Logarithmic Disaggregated Convex Combination (DLog), Aggregated Convex Combination 
(CC), Logarithmic Convex Combination (Log) and the SOS2 technique. From their analysis, they 
showed superior performance of the SOS2 type formulation compared to other linearisation techniques. 
Based on this finding, we delve deeper into the SOS2 type technique and explore the performances of 
different strategies of performing this linearisation in comparison to the original MINLP. Thus, the 
analysis presented herein is an extension of their work, with emphasis placed on the best performing 
linearisation technique. This novel analysis presented herein enables quality assessment of the relative 
performances of the respective MILP formulations and their impact on the overall oil production. We 
also address and discuss the impact of enlarging the optimisation search space on the quality of solutions 
of MILP reformulations compared to those computed via a global solver (SCIP) for the original MINLP. 

Another novel element of this study is the combination of operationally distinct well behaviours with 
complex flow physics within an optimisation formulation. Flow routings at two levels (well to 
manifolds and pipelines to separators) are also modelled as shown in Fig. 4. Previous production 
optimisation studies have mainly considered well-to-manifold routing constraints within their 
optimisation formulations while assuming fixed pipeline-to-separator connections. However, 
determining the optimal connections between pipelines and separators is an operationally relevant 
decision, because of the interplay of several interconnected factors (separator capacity, internal pipeline 
roughness, pipeline diameter, resultant pipeline pressure drop and the operating pressure of the 
separators). To the best of our knowledge, only the work of Kosmidis et al. (2005) took this into 
consideration with gas lift and naturally flowing wells. In this work, we include more complex well 
pressure responses by utilising ESP- and PCP-assisted wells in our formulation. Comparisons with the 
newly launched PIPESIM’s® network optimiser are made to demonstrate the robustness of the proposed 
formulation (solved with both local and global optimisation solvers); thus strengthening our 
contribution. This study also incorporates water coning behaviour which is a key operational problem 
in upstream systems, but hardly accounted for in production optimisation literature (Hasan et al., 2013). 
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3. Methodology 

The surface network model is first constructed in a steady-state multiphase flow simulator (PIPESIM® 
v 2019. 3). As shown in Fig. 4, the model consists of the wells, chokes, flowlines, manifolds, pipelines 
and separators, which are all connected. Robust multiphase flow correlations are adopted to capture 
complex flow physics in the respective network components. Some of these phenomena include water 
coning behaviour, non-vertical/deviated well trajectories and downhole pressure assistance to maintain 
production by means of Progressive Cavity Pumps (PCPs) and Electrical Submersible Pumps (ESPs).  

3.1 Steady-state model development 
Water coning is a common problem in the oil and gas industry; it involves the upward movement of 
water into the perforations of a producing well due to drawdown pressure fluctuations and changes in 
the oil-water contact (to a bell-shaped form) in the reservoir (Fig. 2a). Although water coning is a 
transient process, the steady-state simulator (PIPESIM®) is capable of modelling this process using data 
tables (implemented herein) that describe oil production rate as a function of the water cut. This could 
cause changes to the Vertical Flow Performance (VFP) curves of a well and eventually reduce the oil 
production rate (Figs. 2b and c). In addition, several design considerations are also made during the 
selection of the PCPs and ESPs for optimal oil delivery from the wells. Some of the considered factors 
include: the depth at which the pumps should be placed in the well, the main influencing parameter on 
pump performance (to be used in the optimisation formulation), viscosity correction factors (due to oil-
water emulsions downhole) and the downhole clearance for the pump’s liquid intake.  

 

Figure 2: Water coning in a vertical production well (a) VFP curves of a well with water coning (b) 
VFPs of a well without water coning; IPR represents the Inflow Performance Relationship curve. 

To model the flow behaviour in the wells and pipelines, the Hagedorn and Brown (1965) correlation is 
adopted (for the vertical multiphase flow), whereas the revised Beggs and Brill (1973) correlation is 
utilised for horizontal multiphase flow calculations in PIPESIM®. The vertical wells’ performance are 
modelled in the simulator by supplying a productivity index value, while, the Joshi inflow performance 
relationship (IPR) is employed for horizontal wells.  

3.2 Optimisation formulation 
The surface network design procedure was followed by the generation of large data tables. This 
involved performing several simulations at different well and pipeline conditions, which correspond to 
different wellhead pressures and liquid production rates. Using these data, algebraic (polynomial) proxy 
models are developed for each network component. These proxy models are then utilised together with 
an objective function (Eq. 5) to optimise the oil production rate of the surface network. The performance 
of these proxy models is dependent on the data range used in their development. Once the network’s 
operating conditions significantly change, the model parameters are recalibrated. This methodology 
takes advantage of the decomposable nature of the production network, in that separate equations can 
be written for each component, and these constitute the optimisation constraints. The complexity of the 
optimisation problem herein stems from the presence of discrete routing variables at different levels: 
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the well to manifold level and the pipeline to separator level. The nonlinear pressure-rate responses of 
the wells and pipelines coupled with these routing decisions inevitably result in an MINLP, (Bussieck 
and Pruessner, 2003; Wächter and Biegler, 2006; Gunnerud and Foss, 2010) described in Table 1. 

3.2.1 Piecewise linearization  
Piecewise linear formulations split the domain of a nonlinear function into a set of polytopes 𝑷 ∈ ℘; 
where each polytope has a set of vertices 𝑉(𝑷), and for each vertex 𝑣 ∈ 𝑉(𝑷) of a polytope, there exists 
a corresponding continuous variable, 𝜆𝑷,௩ (Silva and Camponogara, 2014) as shown in Fig. 3. 

According to Vilema (2010), if 𝐷 ⊆ ℝ௡ is a compact set, a continuous function 𝑓: 𝐷 ⊂ ℝ௡ → ℝ is 
piecewise linear if and only if there exists {𝑚௉}௉∈℘ ⊆ ℝ௡, {𝑐௉}௉∈℘ ⊆ ℝ, and a finite family of 

polytopes ℘ such that 𝐷 = ⋃ 𝑷௉∈℘  and 𝑓(𝑥) = {𝑚௉𝑥 + 𝑐௉ ,     𝑥 ∈ 𝑷 ∀ 𝑷 ∈ ℘. If 𝑥 ∈ 𝑷𝟏 ∩ 𝑷𝟐 for 2 

polytopes 𝑷𝟏, 𝑷𝟐 ∈ ℘, the above definition infers that 𝑚௉భ
𝑥 + 𝑐௉భ

= 𝑚௉మ
𝑥 + 𝑐௉మ

; this ensures the 

continuity of 𝑓 on 𝐷. Thus, a convex combination of the vertices of each polytope represents a point 
(on a graph) of the function. A disaggregated convex combination of polytopes is given by (Eqs. 1–4): 

෍ ෍ 𝜆௉,௩𝑣 = 𝑥

௩∈௏(𝑷)𝑷∈℘

,    ෍ ෍ 𝜆𝑷,௩(𝑚𝑷𝑥 + 𝑐𝑷) ≤ 𝑓(𝑥)

௩∈௏(𝑷)𝑷∈℘

 (1) 

𝜆𝑷,௩ ≥ 0      ∀𝑷 ∈ ℘,   𝑣 ∈ 𝑉(𝑷) (2) 

෍ 𝜆𝑷,௩ = 𝑦𝑷   ∀𝑷 ∈ ℘

௩∈௏(௉)

 (3) 

෍ 𝑦𝑷 = 1    𝑦𝑷 ∈ {0, 1}  ∀𝑷 ∈ ℘

𝑷∈℘

 (4) 

 
A better representation of piecewise linear functions was proposed by Beale and Tomlin (1970) based 
on the convex combination of 𝜆𝑷,௩. They proposed that only 2 consecutive weighting variables can be 
non-zero in the branch and bound (BB) algorithm. These sets are named Special Ordered Sets of Type 
II (SOS2) and are implemented in this study. This MINLP formulation is linearised in 3 ways to 
generate MILPs; the computational performance of these 4 formulations (including the MINLP) are 
compared. The first MILP formulation (MILP-3) applies standard algebraic transformation and SOS2 
constraints to linearise nonlinear terms (quadratic and bilinear terms – products of 2 continuous 
variables and products of a continuous and binary variable) in the MINLP formulation using 3 
breakpoints. 

The second MILP formulation (MILP-5) uses 5 breakpoints; whereas the third (MILP-LKT) directly 
utilises the look-up data tables for linear interpolation in 1 and 2 dimensions. Table 1 presents the 
detailed formulations for the MINLP and MILP, respectively. The aim is to maximise the objection 
function (in terms of the Net Present Value – NPV, Eq. 5); where the Revenue from Oil Production 
(ROP) and Cost of Water Production (CWP) are given by Eqs. 6 and 7 respectively; ro is the oil price 
(USD/STB), rwt denotes the water production unit cost (USD/STB) and Nprod is the number of wells. 
Eq. 8 ensures that the wellhead pressure (Pwh) is tightly bounded. The proxy models for the Naturally 
Flowing (NF) well, ESP well, PCP well and pipelines are given by Eqs. 8–11 respectively; q represents 
the flowrate, fESP the ESP frequency, Ω, the PCP impeller rotation speed and ΔPp, the pipeline pressure 
drop. The indices o, wt, i, w, p, wh, m, s represent the oil phase, water phase, all phases, wells, pipelines, 
wellheads, manifolds, and separators respectively. Whereas, Pm and Ps denote the manifold and 
separator pressure. 
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Table 1: Optimisation formulations (MINLP and MILP) 

Objective function 

(5) 
𝑞௪,ாௌ௉ = ෍ ෍ 𝜆௝,௞𝑞(௪,ாௌ௉)௝,௞

௞∈௄௝∈௃

 (23) 
Max (𝑁𝑃𝑉) = 𝑅𝑂𝑃 − 𝐶𝑊𝑃 

𝑅𝑂𝑃 = 𝑟௢ × ෍ 𝑞௢

ே௣௥௢ௗ

௪ୀଵ

 (6) ෍ ෍ 𝜆௝,௞ = 1

௞∈௄௝∈௃

 (24) 

𝐶𝑊𝑃 = 𝑟௪௧ × ෍ 𝑞௪

ே௣௥௢ௗ

௪ୀଵ

 (7) 𝛿௝ = ෍ 𝜆௝,௞

௞∈௄

     ∀ 𝑗 (25) 

Constraints of the MINLP formulation  𝛿௞ = ෍ 𝜆௝,௞       ∀ 𝑘

௝∈௃

 (26) 

𝑃௪,௠௜௡
௪௛ ≤ 𝑃௪

௪௛ ≤ 𝑃௪,௠௔௫  
௪௛    ∀ 𝑤 (8) 𝜆௝,௞ , 𝛿௝ , 𝛿௞ ≥ 0 (27) 

𝑞௜,௪,ேி = 𝑓(𝑃௪
௪௛)  ∀ 𝑖, ∀ 𝑤  (9) 𝛿௝  𝑎𝑛𝑑 𝛿௞  𝑎𝑟𝑒 𝑆𝑂𝑆2 (28) 

𝑞௜,௪,ாௌ௉ = 𝑓൫𝑃௪
௪௛, 𝑓௜,௪,ாௌ௉൯    ∀ 𝑖, ∀ 𝑤 (10) Piecewise linearization in 1 dimension  

𝑞௜,௪,௉஼௉ = 𝑓൫𝑃௪
௪௛, 𝛺௜,௪,௉஼௉൯  ∀ 𝑖, ∀ 𝑤 (11) 𝑃௪

௪௛ = ෍ 𝜆௝

௝∈௃

𝑃(௪)௝
௪௛  (29) 

∆𝑃௣ = 𝑓൫𝑞௣,௢, 𝑞௣,௪௧൯    ∀ 𝑝      (12) 𝑞௪ = ෍ 𝜆௝

௝∈௃

𝑞(௪)௝ (30) 

𝑦௪,௣𝑃௠ ≤ 𝑃௪
௪௛       ∀ 𝑤, ∀ 𝑝 (13) ෍ 𝜆௝

௝∈௃

= 1 (31) 

𝑧௣,௦𝑃௦ ≤ 𝑃௠    ∀ 𝑝, ∀ 𝑠 (14) 𝜆௝  𝑖𝑠 𝑆𝑂𝑆2 (32) 

𝑄௜,௣ = ෍(𝑦௪,௣ × 𝑞௜,௪)

௪

  ∀ 𝑖, ∀ 𝑝 (15) Linearizing bilinear terms of type (C1·C2 and B·C)  

𝐿𝐶௦ = ෍(𝑧௣,௦ × 𝑄௜,௣)

௣

  ∀ 𝑖, ∀ 𝑠 (16) 𝐶ଵ ∙ 𝐶ଶ = 𝜉ଵ
ଶ − 𝜉ଶ

ଶ (33) 

෍ 𝑦௪,௣ = 1

௣

 (17) 𝐿ଵ ≤ 𝐶ଵ ≤ 𝑈ଵ;    𝐿ଶ ≤ 𝐶ଶ ≤ 𝑈ଶ    (34) 

෍ 𝑧௣,௦ = 1

௦

 (18) 𝜉ଵ = 0.5(𝐶ଵ + 𝐶ଶ);     0.5(𝐿ଵ + 𝐿ଶ) ≤ 𝜉ଵ ≤ 0.5(𝑈ଵ + 𝑈ଶ) (35) 

𝑃௦ = 𝑃௠ − ∆𝑃 (19) 𝜉ଵ = 0.5(𝐶ଵ − 𝐶ଶ);     0.5(𝐿ଵ − 𝑈ଶ) ≤ 𝜉ଶ ≤ 0.5(𝑈ଵ − 𝐿ଶ) (36) 

෍ 𝑞௣ ≤ 𝐿𝐶௦

௣

 (20) τ = 𝐵 ∙ 𝐶;   0 ≤ 𝐶 ≤ 𝑈 (37) 

Piecewise linearization in 2 dimensions  τ ≤ 𝑈 ∙ 𝐵 (38) 

𝑃௪
௪௛ = ෍ ෍ 𝜆௝,௞𝑃(௪)௝

௪௛

௞∈௄௝∈௃

 (21) τ ≥ C − 𝑈(1 − 𝐵) (39) 

𝑓௪,ாௌ௉ = ෍ ෍ 𝜆௝,௞𝑓(௪,ாௌ௉)௞

௞∈௄௝∈௃

 (22) τ ≥ 0;    τ ≤ C (40) 

Proxy model structure                                        𝑞௢,ாௌ௉ = 𝛼଴ + 𝛼ଵ𝑃௪௛ + 𝛼ଶ𝑓ாௌ௉ + 𝛼ଷ𝑃௪௛
ଶ + 𝛼ସ𝑓ாௌ௉

ଶ + 𝛼ହ𝑃௪௛𝑓ாௌ௉ (41) 
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Figure 3: Piecewise linearization in 1 (a) and 2 (b) dimensions. 

Binary variables yw,p assigned to each well ensure that the produced fluids from a well are routed by the 
choke (Eq. 13) to one of the pipelines. Similarly, zp,s in Eq. 14 ensures that the fluids in the pipelines 
are routed to the separator.  The mass balance constraint between wells and pipelines is represented by 
Eq. 15; whereas, Eq. 16 ensures material balance between the pipelines and the separators (which 
operate at a fixed pressure). The selection of only 1 binary variable is enforced using Eqs. 17–18. The 
constraint defined by Eq. 19 ensures the target separator pressure is met, while the liquid capacity 
constraints of the separators are represented by Eqs. 20. The procedure for linearising functions in 2D 
and 1D are shown in Eqs. 21–32, respectively; where j and k represent the breakpoints associated with 
the different variables. Bilinear terms which occur in the MINLP formulation as shown in the typical 
proxy model structure (Eq. 41) are linearised using Eqs. 33–40. In these equations, C represents, a 
continuous variable, and B a binary variable; L and U denote the lower and upper bounds of a continuous 
variable. ξ and τ are additional variables introduced in the linearisation procedure. BONMIN (v.1.8.6), 
CBC (v.2.9.8), SCIP (v.3.2.1 & 5.0.1) and CPLEX (v.12.8.0.0) are adopted for solving the MINLP and 
MILP formulations respectively. We present 3 case studies, which are all solved using the formulation 
described in Table 1. Concise definitions of all variables and parameters are also provided in Table A1. 

3.2.2 Case Study 1 (CS1) 
In this case study (Fig. 4), a production network consisting of 4 production wells, 4 choke valves, 2 
manifolds, 2 pipelines and 3 separators is optimised. Flow routing constraints at 2 levels (from wells to 
manifolds and from pipelines to separators) are applied to the MINLP and MILP formulations 
respectively. A wellhead pressure range of 300 – 380 psia is employed for all wells in the proxy model 
development phase. Further details of the production network, which were the input parameters for the 
modelling phase of the procedure are given in Table 2. 

Table 2: Reservoir, well and pipeline parameters for CS1 and CS2. 

Parameter W–1 W–2 W–3 W–4 P–1 P–2 
Reservoir pressure (psia) 3,800 3,800 3,800 3,800 – – 
Well type  Vertical Deviated Vertical Deviated  – – 
Well PI (STB/day/psi) 1.7 3.7 2.5 3.3 – – 
GOR (SCF/STB) 500 500 500 500 – – 
WC (%) 20-32 20-32 20-32 20-32 – – 
TVD (ft) 10,000 10,000 10,000 10,000 – – 
Tubing diameter (in) 3.5 3.5 4.5 4.5 – – 
Pipeline length (ft) – – – – 6,000 4,000 
P-ID (in) – – – – 10 11 
P-IR (in) – – – – 0.001 0.001 

RP: Reservoir Pressure; P-ID: Pipeline Internal Diameter; P-IR: Pipeline Internal Roughness; PI: Productivity Index 
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3.2.3 Case Study 2 (CS2) 
This case study is similar to CS1 in terms of size and the parameters shown in Table1. However, we 
increase the optimisation search space in this case study by widening the wellhead pressure range (50 
– 500 psia). We then examine the performance of this case study in comparison to CS1, for differences 
in the optimal routing structures, NPV and computation time.  

 

Figure 4: Surface production network and routing superstructure for CS1 and CS2. 

3.2.4 Case Study 3 (CS3) 
In this case study (Fig. 5), a larger production network consisting of 12 production wells with varying 
operating modes is solved. CS3 demonstrates the scalability and adaptability of the proposed 
formulation to bigger production systems. The wider wellhead pressure range is adopted here, and the 
parameters for each well are shown in Table 3.  

Table 3: Reservoir, well and pipeline parameters for CS3. 

Parameter W–1 W–2 W–3 W–4 W–5 W–6 P–1 
Reservoir pressure (psia) 3,800 3,800 3,800 3,800 3,800 – – 
Well type  Vertical Deviated Vertical Vertical Deviated Deviated – 
Well PI (STB/day/psi) 1.5 3.7 2 2.5 2.5 2.5 – 
GOR (SCF/STB) 500 500 500 500 500 500 – 
WC (%) 20-32 20-32 20-32 20-32 20-32 20-32 – 
TVD (ft) 10,000 10,000 10,000 10,000 10,000 10,000 – 
Tubing diameter (in) 3.5 3.5 4.5 4.5 4.5 4.5 – 
Pipeline length (ft) – – – – – – 6000 
P-ID (in) – – – – – – 10 
P-IR (in) – – – – – – 0.001 

Parameter W–7 W–8 W–9 W–10 W–11 W–12 P–2 
Reservoir pressure (psia) 3800 3800 3800 3800 3800 – – 
Well type  Vertical Deviated Vertical Deviated Vertical Deviated – 
Well PI (STB/day/psi) 1 3.1 1.2 4.5 1.8 1.9 – 
GOR (SCF/STB) 500 500 500 500 500 500 – 
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WC (%) 20-32 20-32 20-32 20-32 20-32 20-32 – 
TVD (ft) 10,000 10,000 10,000 10,000 10,000 10,000 – 
Tubing diameter (in) 3.5 3.5 3.5 3.5 3.5 3.5 – 
Pipeline length (ft) – – – – – – 4000 
P-ID (in) – – – – – – 11 
P-IR (in) – – – – – – 0.001 

 

 

Figure 5: Surface production network and routing superstructure for CS3. 

Other input data applied in the surface network simulator for data generation include the oil specific 
gravity (45 API) and the pipeline temperature (100oF). The separators liquid handling capacities and 
operating pressures are also shown in Table 4. 

Table 4: Separator capacities and operating pressures for all cases studies. 

Case study  Separator  Operating pressure 
(psia) 

Liquid capacity 
(STB/day) 

Case Study 1 (CS1) 
Sep – 1  45 8,000 
Sep – 2 
Sep – 3 

35 
25 

10,000 
12,000 

Case Study 2 (CS2) 
Sep – 1  35 12,000 
Sep – 2 
Sep – 3 

25 
20 

10,000 
8,000 

Case Study 3 (CS3) 
Sep – 1  35 25,000 
Sep – 2 
Sep – 3 

25 
20 

18,000 
15,000 

 

4. Results and Discussion 

The proposed formulations were programmed in MATLAB® R2016a (using OptiToolbox v2.28) and 
solved on an Intel Core i7-6700 processor at 3.40 GHz running on a 64 bit Windows workstation with 
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16GB of RAM. By implementing the proposed formulations, repeated calls to the simulator are avoided, 
thus enabling faster computations. The three separate MILP formulations and the MINLP problem are 
solved to optimise the production networks of CS1, CS2 and CS3 respectively.  

4.1 Case Study 1 
The MILP-LKT formulation consisted of 25 polytopes (squares) for the well performance function (5 
breakpoints for the ESP frequency/rotational speed and 5 breakpoints for the wellhead pressure). For 
the pipelines, 144 polytopes (squares) were adopted (12 breakpoints for the oil and water phases 
respectively). This resulted in a total of 8,702 variables; this is significantly larger than the number of 
variables required in the other formulations (as shown in Table 5). Despite this number of variables, it 
is solved in a shorter time compared to the MINLP formulation with only 36 variables. This increase in 
problem size (number of constraints and variables) that ensues with an increasing number of data points, 
makes the implementation of the SOS formulation laborious; this is a significant drawback of this 
formulation; hence, it is only suitable for low dimensional problems. With the MINLP, the increase in 
the number of data points would hardly affect the approximations of the simulator output. In this regard, 
the MINLP formulation can be regarded as more scalable compared to the MILP.  

The convergence of the proposed formulations to different optimal routing configurations (Table 5) is 
an indication of the non-convexity of the optimisation problem. However, good quality solutions were 
obtained from all formulations, as demonstrated in the relative gap obtained (Table 5). The MINLP 
formulation gave the best solution in terms of the NPV. Our computational analysis has also shown that 
the improvement in resolution quality affects the solution quality of the MILP-5 and MILP-3 
formulations. With 5 breakpoints (MILP-5), the NPV obtained is closer to that of the MINLP compared 
to the lower resolution formulation, consisting of 3 breakpoints (MILP-3). The MILP-LKT formulation 
gave the lowest NPV (1% lower than the MINLP). This may be attributed to the fact the solutions are 
always approximated by linear segments (in the SOS formulation), which are generated between 
nonlinear data points. Water coning behaviour is a known source of nonlinearity in the wellbore model. 
The complex multiphase flows between each network component, and also the system pressures within 
a narrower search space is another possible explanation. However, as will be presented in CS2 and CS3 
(with a broader optimisation search space), the MILPs show improved results. 

Table 5: Computational performance of optimisation formulations for CS1. 

Optimisation formulation MINLP  
MILP-3  
(SOS2) 

MILP-5  
(SOS2) 

MILP-LKT 
(SOS2) 

Solver used  BONMIN CPLEX CPLEX CPLEX 

Number of constraints 34 184 184 340 

Number of variables 36 134 170 8702 

Relative optimality gap 0.00 0.00 0.00 0.00 

Solution time (s) 0.536 0.111 0.152 0.287 

Number of nodes 0 229 253 292 

NPV (USD) 989,228 979,934 986,832 979,261 

Total oil production rate (STB/day) 15,219 15,076 15,182 15,066 

Total water production rate (STB/day) 3,803 3,767 3,794 3,766 

It can also be observed that the high-pressure separator with lower capacity (S1) is the least preferred 
option for routing fluids from the manifolds (Fig.6). The pipeline diameter and length, and the high-
pressure drop that ensues, make it difficult for fluids to be delivered to S1, which operates at 45 psia 
compared to S2 and S3 at 35 psia and 25 psia respectively.  
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Figure 6: Optimal discrete routing structure for all formulations of CS1; MINLP (a) solved by 
BONMIN and MILP (b-d) by CPLEX. 

The algorithm has shown good utilisation of separator capacities for routing the fluids. As shown in 
Table 5, the MILP formulations converge faster than the MINLP. Furthermore, the time required for 
proxy model development if incorporated, will further make the MINLP slower compared to the MILP 
(which directly use the table data points). It can also be observed that the oil and water production rates 
of the respective formulations are similar, despite the different optimal routing structures obtained. This 
indicates that the algorithmic treatment of discrete variables is complicated, especially when they exist 
at different levels. However, the number of nodes utilised for finding the optimal solution in all 
formulations reflects the efficiency of the CPLEX solver (which uses the Branch and Bound algorithm). 
However, on applying the CBC solver (based on the Branch and Cut algorithm) to our problem, the 
number of nodes reduces by an order of magnitude, although with a higher relative gap and a longer 
computational time. A detailed comparison of solver performances is presented in Section 4.4.  

4.2 Case Study 2 
Fig. 7 shows the optimal routing structure for CS2. Although different optimal routing strategies are 
obtained between the formulations, the MILP-5 and MINLP formulations yield exactly the same 
optimal configuration.  Furthermore, the MILP-3 and MILP-5 formulations yield improved oil 
production rates (Table 6) and correspondingly increased NPVs compared to the MINLP formulation. 
Thus, it can be stated that widening the optimisation search space causes the local trapping of the 
MINLP formulation at suboptimal solutions; whereas, MILP-3 and MILP-5 are able to further explore 
the optimisation search space for improved results. However, the MILP-LKT formulation does not yield 
improved results compared to the MINLP. This may be attributed to the adopted table resolution, which 
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will affect the accuracy since the obtained solutions lie on linear segments generated by the SOS2 
formulation. The MILP-LKT formulation is also unable to extrapolate beyond the sampled region in 
which the quadratic approximation of the MINLP was fitted. Thus the MINLP, MILP-3 and MILP-5 
formulations are able to check for the existence of better-operating conditions, despite their significantly 
smaller problem size.  The work of Gupta and Grossmann (2012) illustrates a similar observation. 

 

Figure 7: Optimal discrete routing structure for all formulations of CS2. MINLP (a) solved by 
BONMIN and MILP (b-d) by CPLEX. 

It is also observed that improving the resolution quality (i.e. when the number of sampled breakpoints 
is increased from MILP-3 to MILP-5) positively impacts the performance of the MILP formulation. 
The MILP-5 formulation reached a better solution, yielding a slight increase in the NPV.   

Table 6: Computational performance of optimisation formulations for CS2. 

Optimisation formulation MINLP  
MILP-3  
(SOS2) 

MILP-5  
(SOS2) 

MILP-LKT 
(SOS2) 

Solver used  BONMIN CPLEX CPLEX CPLEX 

Number of constraints 34 184 184 340 

Number of variables 36 134 170 8702 

Relative optimality gap 0.0057 0.00 0.00 0.00 

Solution time (s) 23.4 0.182 0.188 0.460 

Number of nodes 46 316 388 514 

NPV (USD) 1,013,938 979,934 986,832 979,261 

Total oil production rate (STB/day) 16,083 16,202 16,207 15,787 

Total water production rate (STB/day) 5,593 5,635 5,637 5,494 
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Compared to the MILP formulations which are solved in less than a second, the MINLP solution to 
CS2 was obtained in 23.4 s (without exploring the possibility of parallel computing). These rapid 
computational times are due to the decomposable nature of the entire production network with proxy 
models developed for each component. Hence the simulator search space is considerably reduced (fewer 
dimensions) compared to the scenario in which an optimisation search occurs over the entire network. 
Furthermore, as shown in Fig. 7, S3 is the most preferred separator; since fluids are routed to this vessel 
after solving all formulations. This is attributable to its lower operating pressure, which in turn 
accommodates a lower operating wellhead pressure and thus increased production. This was also 
observed in CS1. 

4.3 Case Study 3 
In this case study, we increase the number of production wells in the network (from 4 to 12) and 
evaluated the performance of the MINLP, MILP-3 and MILP-5 formulations. As a result of the number 
of variables involved in the MILP-LKT formulation and the lower NPV’s obtained compared to the 
other formulations in CS1 and CS2, the MILP-LKT formulation was not applied in CS3. Just as 
previously observed, improved solutions (in terms of the total oil production and NPV) are obtained for 
the MILPs in comparison to the MINLP. It is thus illustrated via CS2 and CS3 that, increasing the 
optimisation search space favours the MILPs over the MINLPs. 

 

Table 7: Computational performance of optimisation formulations for CS3. 

Optimisation formulation MINLP  
MILP-3  

(SOS2) 

MILP-5  

(SOS2) 

Solver used  BONMIN CPLEX CPLEX 

Number of constraints 80 396 396 

Number of variables 78 270 334 

Relative optimality gap 0.0327 0.00 0.00 

Solution time (s) 607.26 0.498 0.438 

Number of nodes 758 25,644 22,514 

NPV (USD) 2,585,310 2,609,320 2,612,370 

Total oil production rate (STB/day) 41,145 41,520 41,571 

Total water production rate (STB/day) 14,742 14,854 14,880 

 

While the MILPs are solved in less than a second (just as in CS1 and CS2) for this case study, the 
MINLP takes approximately 10 mins to solve with a higher optimality gap compared to the MILP 
solutions; thus demonstrating the increased computational efficiency of the proposed MILPs (Table 7). 

Compared to CS1 and CS2, the optimal routing configurations obtained in this case study (CS3) are 
rather similar. Fig. 8 shows exactly the same routing structure from wells to manifolds for all 
formulations. However, the manifold to separator routings are different for the MILPs and MINLPs. In 
this case study, S2 is the most utilised, as seen in Fig. 8. 
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Figure 8: Optimal discrete routing structure for all formulations of CS3. MINLP (a) solved by 
BONMIN and MILP (b-c) solved by CPLEX. 
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4.4 Solver performance and comparison with PIPESIM’s® network Optimiser 

Table 8 summarises the computational performance in terms of the number of nodes, relative optimality 
gap and the solution times for the different optimisation solvers (CBC, CPLEX, SCIP and BONMIN) 
applied to the respective formulations. Table 8 shows that the fewest number of nodes are utilized by 
the CBC solver, although with the highest relative optimality gap compared to the other solvers. 
However, the overall solution quality obtained from all solvers is good, as illustrated by the obtained 
optimality gaps. As expected, longer simulation times are observed with the larger case study (CS3); 
however, CPLEX still solves this problem in less than a second; thus making it the best performing 
solver for our presented case studies compared to CBC and SCIP. In this section, the performance of 
the global optimisation solver (SCIP) in solving the MINLPs for the three case studies is also reported 
in comparison to the local MINLP solver BONMIN. It is observed that SCIP slightly outperforms 
BONMIN in terms of the optimality gap and the NPVs obtained, but is still inferior to the MILP 
solutions. However, the computational time required by the SCIP solver is significantly higher than the 
other solvers (Tables 8). 

One of the case studies presented in a recent study of Gupta and Grossmann (2012) discusses a similar 
observation of inferior performance of a global MINLP solver (in their case,  BARON) compared to 
solutions obtained from an equivalent MILP formulation (solved by CPLEX). Computational 
experiments performed and published by Klanšek (2015) echo and corroborate this observation. This 
phenomenon may be attributed to several factors: model complexity, nonconvexities, model sensitivity 
to perturbed inputs, optimisation search space and, most importantly, the reformulation strategy applied. 
By reformulating the problem as an MILP, we address the nonconvexity challenges of MINLPs and the 
difficulties they pose to global MINLP solvers (we convexify the problem, provided all functions are 
separable); thus better performance can be achieved. This is why all 3 solvers applied to the MILP 
problem (SCIP, CPLEX, CBC) produce the same NPV, except CS3 (SCIP fails to converge, Table 8). 
Besides applying the standard Branch-and-Bound or Branch-and-Cut or decomposition algorithms, 
solvers may also include the implementation of special presolving/preprocessing procedures to which 
the disparities in performance can be attributed. A more detailed investigation exceeds our scope but 
seems in order, considering the two cited precedents which feature similar performance observations. 

We also compare the performance of PIPESIM’s® (v. 2019.3) new optimisation toolbox with our 
optimisation methodology. In comparison to this toolbox, we generally observe faster solution times 
for all solvers with the presented formulations (except in CS3, MINLP-BONMIN); thus demonstrating 
the superior performance of our implemented formulation (Fig. 9). Although the computational time 
requirement is expected to increase with larger production networks, the fast solution times obtained 
herein are more attributable to the nature of our optimisation formulation than the size of the production 
network. The network size considered herein is comparable to those utilised previous comparative 
studies such as Silva and Camponogara (2014). Furthermore, by using the SCIP solver for the MINLP 
problem, a long solution time of up to 36 mins is obtained as reported in Table 8; thus demonstrating 
that the run times achieved are also dependent on the type of optimisation solver implemented. 
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Figure 9: Comparison of computational times for the different optimisation solvers and case studies.
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Table 8: Summary of optimal objective function values (NPV) and computational performance achieved by different optimisation solvers. 

  
Case 
Studies 

Solvers 

OBJECTIVE FUNCTION: NET PRESENT VALUE NPV (USD) 
COMPUTATIONAL PERFORMANCE 

Number of Nodes Relative Optimality Gap Solution Time (sec) 

MILP3 MILP5 
MILP-
LKT 

MINLP 
(BONMIN) 

MINLP 
(SCIP) 

PIPESIM  
NPV 
Increment 
(%) 

MILP3 MILP5 
MILP-
LKT 

MINLP 
(BONMIN) 

MINLP 
(SCIP) 

MILP3 MILP5 
MILP-
LKT 

MINLP 
(BONMIN) 

MINLP 
(SCIP) 

MILP3 MILP5 
MILP
-LKT 

MINLP 
(BONMIN) 

MINLP 
(SCIP) 

PIPESIM 

CS1  
(4 Wells) 

CBC 979,934 986,832 979,261 

989,228 989,230 912,000 8.47 

2 24 150 

0 39 

0.029 0.022 0.02 

0.000 0.000 

0.05 0.08 5.42 

0.54 0.73 28.21 
CPLEX 979,934 986,832 979,261 229 253 292 0.000 0.000 0.00 0.11 0.15 0.29 

SCIP 979,934 986,832 979,261 87 347 7 0.000 0.000 0.00 0.17 0.46 1.14 

CS2  
(4 Wells) 

CBC 1,021,457 1,021,739 995,198 

1,013,938 1,013,944 912,000 12.03 

6 7 117 

46 85 

0.032 0.032 0.08 

0.006 0.000 

0.06 0.09 2.65 

23.41 1.27 31.11 
CPLEX 1,021,457 1,021,739 995,198 316 388 514 0.000 0.000 0.00 0.18 0.19 0.40 

SCIP 1,021,457 1,021,739 995,198 28 222 114 0.000 0.000 0.00 0.16 0.38 4.13 

CS3  
(12 Wells) 

CBC 2,609,320 2,612,370 – 

2,585,310 2,585,350 2,437,896 7.16 

8,563 1,734 – 

758 4,222,889 

0.018 0.016 – 

0.003 0.000 

35.04 9.19 – 

607.26 2134.10 178.12 CPLEX 2,609,320 2,612,370 – 25,644 22,514 – 0.000 0.000 – 0.50 0.44 – 

SCIP 2,609,320 2,596,330† – 6,517 10,000 – 0.000 0.021† – 14.46 35.50 – 
†: SCIP terminated after reaching the maximum number of nodes. 
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The implemented optimisation methods see decreased speed when the network components increase. 
Furthermore, the SOS2 formulations are significantly affected because of the drastic increase in the 
number of data points and variables with bigger-sized production systems (more wells, manifolds, 
pipelines, and separators). However, this will hardly be a problem for the MINLP (when evaluating the 
proxy models). Hence there is always a trade-off between the quality of obtained solutions, the solution 
time and the model development time. Thus, the increased difficulty of handling SOS2-based 
formulations is reflected in the number of variables involved, which require significant effort for their 
implementation/development compared to the MINLP with considerably fewer variables.  

It is particularly observed in Table 8 that the time taken by the CBC solver to find a solution for MILP3 
is higher than that for MILP5. A possible explanation to this is that stronger/more rigorous branching 
and interpolation are required for the optimisation problem with just 3 breakpoints (MILP3) compared 
to the problem with 5 (MILP5), as reported in the iteration history of the CBC solver (for a good solution 
to be found). It may be argued that the time required for this strong branching supersedes the extra 
computational effort resulting from an increased number of variables in the MILP5 formulation. 
However, this is not the case with other solvers. 

Table 8 and Fig. 10 summarize the obtained NPVs using all solvers for the different formulations in 
comparison to those obtained from PIPESIM’s® network optimisation module (The NPVs in PIPESIM 
were calculated by optimising the oil production rate while constraining the water production rate 
according to the objective function) presented in Eq. 5. For all formulations, the obtained NPVs for CS1 
and CS2 are the same. However, when the SCIP solver was applied to the MILP-5 formulation of CS3, 
a lower NPV was obtained compared to CBC and CPLEX. The reason for this is that the SCIP solver 
timed out when the maximum number of nodes was reached for the MILP5 problem of CS3. Regardless 
of the initial settings for the optimisation run, the solver did not converge to the global solution. This 
effect is also clearly observed in Table 8, where the relative optimality gaps are reported. However, as 
CBC is not a global solver, it fully converged within the default setting of the relative optimality gap.  

Compared to CS1, the NPVs obtained in CS2 are generally higher. By widening the optimisation search 
space (in terms of the operating wellhead pressures), increased oil production can thus be attained. 
However, depending on the field’s operation, this range is often bound by constraints that prevent sand 
production due to excessively high drawdown pressures and poor fluid lifting capacity in the well tubing 
due to liquid loading. Furthermore, it is observed that the NPVs obtained by applying PIPESIM’s 
optimisation toolbox are 8%, 12% and 7% lower than our best-case scenario (in bold) for CS1, CS2 and 
CS3 respectively. This also demonstrates the computational efficiency of the proposed formulation. 

The presented approach is thus useful for real-time decision support in the oil and gas industry 
considering its competing performance with an industry applied simulator and optimiser. However, it 
is important for further implementations of this method to incorporate network changes that extend the 
boundaries of applicability. For example, the change in the physical properties of the system, reservoir 
dynamics, network expansion (addition of new wells and pipelines) and flow regime changes are 
possible occurrences that may significantly change the production data; thus, necessitating proxy model 
reconstruction and updating the respective optimisation formulations (Ursin-Holm et al., 2014). 
However, the presented formulations are easily adaptable to these changes with some considerable 
effort required.  
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Figure 10: Comparison of the NPVs obtained for the different optimisation solvers and case studies. 

5. Conclusion 

This study proposed MINLP and MILP formulations for optimising production from a synthetic oil 
field consisting of 3 separators, 2 manifolds and 4-12 wells with complex downhole/ multiphase flow 
physics. The nonlinear models were developed using regression analysis that resulted in algebraic 
polynomial models; whereas piecewise linear models were developed from production points sampled 
from the look-up table and via linearization of the MINLP formulation. The following conclusions can 
be derived from the computational analyses performed herein. 

 The resulting number of variables and the model development time for the MILP are 
significantly larger than that of the MINLP. 

 Increased resolution of the MILP formulations from 3 to 5 breakpoints resulted in an improved 
NPV. 

 CPLEX was the best performing solver with rapid computational speeds and low optimality 
gaps obtained for all MILP formulations.  

 A computational analysis performed on the 4 formulations of CS1 showed superior 
performance of the MINLP formulation in terms of the NPV compared to the MILPs. However, 
for this case study (CS1), all formulations were solved in less than a second.  Despite the 
similarities in the oil and water production rates of CS1, the optimal routing strategy for all 
formulations of CS1 were different.  

 Increasing the optimisation search space (in terms of the wellhead pressure) as demonstrated in 
CS2 and CS3 favours the MILP-3 and MILP5 formulations. Higher NPVs are obtained in 
comparison to the MINLP because of the reformulation, even vs. a global MINLP solver. 
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 Compared to PIPESIM’s® optimisation module, our optimisation formulation solves faster and 
yields higher NPVs. 

 Future research could analyse in greater detail how the obtained solution times scale up with 
increased problem size (e.g. for fields containing hundreds of wells, manifolds and separators). 
This will further verify the adaptability of these formulations for real-time decision support. 
Incorporating the effect of temperature on the pressure drop functions, as well as other 
downhole phenomena like sand production is also worth investigating.  
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7. Nomenclature 

Variables 

fESP ESP operating frequency (Hz) 

GOR Gas Oil Ratio (SCF/STB) 

NPV Net Present Value (USD) 

ΔP Pressure drop in pipeline (psi) 

P Pressure (psia) 

Pm  Manifold pressure (psia) 

Pwf Bottomhole flowing pressure (psia) 

Pwh Wellhead pressure (psia) 

ΔPp Pipeline pressure drop (psia) 

Q,q Flowrates (STB/day or MMSCF/day) 

WC Water cut (%) 

y Binary routing variable (-) 

z Binary routing variable (-) 

Parameters 

CWP Cost of Water Production (USD) 

LCs Separator liquid capacity (STB/day) 

Nprod Number of production wells (-) 

Ng,inj Number of gas lift wells (-) 

Nl,ESP Number of ESP-assisted wells (-) 

PI Productivity Index (STB/day.psi) 

P-ID Pipeline Internal Diameter (m) 

P-IR Pipeline Internal Roughness (m) 

rop Unit oil sales price (USD/STB)  

rwp Unit water production cost (USD/STB) 

ROP Revenue from Oil Production (USD) 

RGP Revenue from Gas Production (USD) 

Pr Reservoir pressure (psia) 

Ps  Separator pressure (psia) 

TVD True Vertical Depth (ft) 

Sets and other formulation properties 

B Binary variables 

C1, C2 Continuous variables  

cP Intercept 

D Compact set 

f Continuous function 

mP Slope 

L, L1, L2 Lower Bound 

P Polytope 

℘ Set of polytopes 

ℝn Real coordinate space of n dimensions 

U, U1, U2 Upper Bound (-) 
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v Vertex 

V Set of vertices 

Acronyms 

CBC  Coin-or Branch and Cut 

B·B Branch and Bound 

B·C Product of a binary and a continuous 
variable  

BONMIN  Basic Open-source Nonlinear Mixed 
INteger Optimiser  

C·C Product of 2 continuous variables 

ESP  Electrical Submersible Pump 

HP High-Pressure Separator 

IP Intermediate Pressure Separator 

IPR Inflow Performance Relationship 

LKT Lookup Table 

LP Low-Pressure Separator 

MILP Mixed Integer Linear Program 

MINLP Mixed-Integer Nonlinear Program 

MPWLP  Multicapacitated Platforms and Wells 
Location Problem  

NF Natural Flowing 

PCP Progressive Cavity Pump 

RTPO Real-Time Production Optimisation 

SCIP Solving Constraint Integer Programs 

SOS2 Special Ordered Sets of type 2 

STB Stock Tank Barrel 

VFP Vertical Flow Performance 

Greek symbols (parameters and variables) 

α 0 – α5 Proxy model coefficients 

λ SOS weights 

ξ Linearisation variable 

τ Linearisation variable 

ΩPCP PCP impeller rotation speed (RPM) 

δ SOS2 variables – sum of SOS weights 

Subscripts and superscripts 

i Fluid phase index 

j Linearisation breakpoint 

k Linearisation breakpoints 

m Manifold index 

o Oil phase index 

p Pipeline index 

s Separator index 

w Production well index 

wh wellhead 

wt water phase index 
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8. Appendix 

Table A1: Definitions of key variables and parameters of the optimisation formulation. Most of these 
definitions are adapted from the Schlumberger oilfield glossary (Schlumberger, 2020). 

Variable  Symbol Definition 
Wellhead pressure Pwh The pressure at the surface component over a well that contains the flow 

from the well to other processing equipment.  
Manifold pressure Pm The manifold is an arrangement of piping or valves designed to gather, 

control, distribute and monitor fluid flow. The pressure of this system is 
the manifold pressure. 

Bottomhole pressure Pwf The pressure at the bottom of the well, near the producing formation. 
Gas Oil Ratio GOR The ratio of produced gas to produced oil. 
Water cut WC The ratio of produced water to the volume of the total liquids produced. 
ESP frequency fESP The frequency of the impeller used to provide sustaining power to the 

Electrical Submersible Pump. The pump power can be obtained from this 
variable using the manufacturer’s pump curves. 

Pipeline pressure drop ΔP The decrease in pressure as fluid flows through a pipeline due to the 
pipe’s roughness, friction, flowrate and geometrical properties of the pipe 
or conduit. 

Routing variables y, z Binary (0,1) variables which are employed to select one of many 
manifolds or separators to channel the produced fluids. 

Parameter  Symbol Definition 
Productivity index PI The ability of a reservoir to deliver fluids to the wellbore. 
Reservoir pressure Pr The pressure of fluids within the pores of a reservoir. 
Separator pressure Ps The operating pressure necessary for the efficient separation of gas and 

liquid phases or two liquid phases. 
True Vertical Depth TVD The vertical distance from a point in the well (usually the current or final 

depth) to a point at the surface. 
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