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Abstract

In the processing and manufacturing industries, there has been a large push to produce higher

quality products and ensure maximum efficiency of processes, which requires approaches to effectively

detect and resolve disturbances to ensure optimal operations. While many types of disturbances can

be compensated by a control system, it cannot handle some large process disruptions. As such,

it is important to develop monitoring systems to effectively detect and identify those faults such

that they can be quickly resolved by operators. This article proposes a novel probabilistic fault

detection and identification method which adopts a newly developed deep learning approach using

Bayesian recurrent neural networks (BRNNs) with variational dropout. The BRNN model is general

and can model complex nonlinear dynamics. Moreover, compared to traditional statistic-based

data-driven fault detection and identification methods, the proposed BRNN-based method yields

uncertainty estimates which allow for simultaneous fault detection of chemical processes, direct

fault identification, and fault propagation analysis. The performance of the method is demonstrated

and contrasted to (dynamic) principal component analysis, which is widely applied in the industry,

in the benchmark Tennessee Eastman process (TEP) and a real chemical manufacturing dataset.

Keywords: fault detection, fault identification, recurrent neural networks, variational dropout,

Bayesian inference, Tennessee Eastman process.

1. Introduction

In industrial manufacturing processes, a fault is defined as any abnormal deviation from the

normal operating conditions (NOC). Faults are a concern because even small faults in a complex

industrial system can initiate a series of events that result in loss of efficiency and reliability. As a

result, there is a need for techniques to improve the process’s reliability and up-time. Effective fault

detection and identification (FDI) is important for monitoring components for making appropriate

maintenance decisions. First, fault detection determines whether a fault has occurred in the system

(also characterized as anomaly detection in other applications). Then fault identification determines
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which observation variables are most relevant to diagnosing the fault detected, thereby helping

operators to focus on specific subsystems. Systems that can accurately and promptly detect and

identify faults can more effectively inform operators and engineers and significantly reduce the effort

and time to recover the system.

A number of FDI methods have been proposed in the literature. Since analytical and knowledge-

based methods are impractical in most large-scale modern industrial processes, data-driven methods

have dominated the literature for the past decade and have been effective in practice, taking advan-

tage of increasing levels of instrumentation and widespread availability of sensor data (Qin, 2009;

Ge et al., 2013; Yin et al., 2014; Chiang et al., 2000a). The choice of model used to characterize the

NOC and deviations thereof is still a crucial aspect in these methods because the limitations of the

model lead to decreased detection rates or increased occurrence of fault alarms.

A number of data-driven methods including principal component analysis (PCA) (Jolliffe, 2011),

partial least squares (Kourti and MacGregor, 1996), Fisher discriminant analysis (Fisher, 1936;

Chiang et al., 2000a), and support vector machines (Chiang et al., 2004), have been applied for

fault detection and identification in industry with varying degrees of success. The most widely

used method is PCA which models the correlations between the process variables. PCA can detect

faults effectively when the sensor measurements are highly correlated, which is often the case. For

many processes, the temporal dynamics also need to be taken into consideration, especially when

fast sampling rates are used, because the dynamics provide additional information through which to

detect deviations from the NOC. To that end, DPCA has been proposed to handle serially correlated

multivariate observations (Ku et al., 1995). DPCA can be viewed as a multivariate autoregressive

model with exogenous inputs (ARX). PCA and DPCA are both limited by the linear model structure

and correlations in the process’ dynamics. Methods for extending PCA to nonlinearities such as

kernel PCA and neural network-based PCA (Lee et al., 2004; Hsieh, 2006) have been well studied

only for static systems. As such, the development of approaches that can effectively model nonlinear

system structure and dynamics has been an active research field.

Neural network (NN) based methods have also received significant attention because of their

capability and flexibility for modeling complex structure and temporal dynamics. NN models have

been used for fault detection in three general frameworks: (1) as a fault classification tool between

normal and known faulty conditions (Zarei et al., 2014; Chine et al., 2016; Ince et al., 2016; Jia

et al., 2016; Wu and Zhao, 2018; Hu and Jiang, 2019; Lee et al., 2017; Li et al., 2014; Zhang and

Zhao, 2017), (2) as a model of the input-output variable relationships during NOC (Malhotra et al.,

2015; Patan et al., 2008; Moustapha and Selmic, 2007; Talebi et al., 2009; Wang et al., 2017; Nie

et al., 2018), or (3) as a generalization of the basic fault detection methods such as NN-based PCA

(Kramer, 1992; Dong and McAvoy, 1996) using statistical indices to monitor the process. The

first two approaches are dominant for NN-based fault detection. The first approach can be highly
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effective due to the up-front knowledge of specific fault conditions to detect. It can also be set up

to classify each fault which directly enables fault diagnosis. On the other hand, training these NNs

requires substantial amounts of data under fault conditions but these data are usually quite limited

for chemical manufacturing processes compared to NOC data. Moreover, it is hard to assess the

performance of these methods for fault conditions other than for which the classifier is explicitly

trained for. In the second approach, NNs are used to model the process by capturing the nonlinear,

multivariate, and temporal dependencies from inputs to outputs. In this approach, the NN models

are typically trained on NOC data to predict the system outputs. This NN is then used for fault

detection during runtime by comparing the predictions of the NN with the actual system output

measurements, and a fault is detected if the difference is significantly large. This approach has the

advantage that the NNs are trained using only NOC data, which is usually abundant, and that

the NNs are not constrained by the type of fault because detection is marked from any significant

deviation from the NOC. On the other hand, the model must accurately characterize these complex

and potentially nonlinear structures between inputs and outputs in the process, or its fault detection

will perform poorly as a result. Moreover, only faults that break the input-output relationships are

considered, meaning that faults due to input disturbances will likely not be detected. In the third

approach, NNs are used to account for nonlinearities in the process but, like other PCA-based

methods, fail to appropriately model the process dynamics.

There are other challenges regarding both approaches, which have limited the application of NNs

in industrial process monitoring. First, fault identification has not yet been properly addressed. Once

a fault is detected, it is typically difficult to identify the input variables most relevant to the fault

from a complex NN model. Even if an NN is trained to directly classify the fault, the underlying

cause may still be unclear if there are multiple explanations for the observed fault type. Secondly,

standard NNs are deterministic models which lack an estimate of the uncertainty in the model

outputs. However, uncertainty and probabilistic estimates are important to assess the confidence

level associated with the decision of detecting a fault and for fault identification. Lastly, NNs are

prone to overfitting, meaning that they ‘memorize’ the particular characteristics of the training data

that are not relevant for new data. This overfitting must be addressed to ensure good generalization

to the full space of operating conditions of a complex industrial process.

For fault identification, contribution plots (Miller et al., 1998) are one of the most popular

techniques for providing information on the variables that are most strongly related to the faults. In

the context of PCA-based methods, contribution plots are obtained by quantifying the contribution

of each process variable to the individual scores of the PCA representation (Westerhuis et al., 2000).

Methods based on the contribution of each process variable in the residual space have also been

developed (Wise et al., 1989). However, the aforementioned limitations of PCA-based approaches

will also be reflected in the identification procedure and those methods require extra processing
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steps after fault detection. Moreover, those methods only provide the relative contribution value

of each variable which is not very useful. A more valuable and precise measure to aid operators in

diagnosis would be the probable severity of each affected variable. On the other hand, it has been

hard to extend contributions plots to NNs due to the complex and nonlinear relationships between

predictions and model inputs.

This article proposes a novel end-to-end FDI framework, which adopts a recently developed

Bayesian recurrent neural network (BRNN) architecture (Gal and Ghahramani, 2016b). The pro-

posed FDI framework is fundamentally different from the two types of frameworks that have been

previously used in the NN-based fault detection literature. The proposed framework uses BRNNs to

model the joint distribution and dynamics between all process variables. This framework provides

estimates of the prediction uncertainty, which capture both model uncertainty and the inherent noise

in the data. The BRNN is realized using the variational dropout approach proposed in (Gal and

Ghahramani, 2016a,b) due to its simplicity, regularization capability, strong generalization ability,

and scalability.

To the best of our knowledge, this work is the first time that Bayesian spatio-temporal models,

and BRNNs in particular, have been successfully applied to FDI in the chemical manufacturing

industry. The proposed approach tackles three key challenges typical of manufacturing systems:

(1) nonlinearity, (2) non-Gaussian distributed variables, and (3) high degree of spatio-temporal cor-

relations (i.e., temporal and sensor correlations). Furthermore, the probabilistic framework provided

by BRNNs enables more sensitive and robust FDI. Fault identification through the proposed BRNN-

based approach provides easily interpretable visualizations to the plant operators, for quick fault

type categorization, analysis of the possible fault propagation path, and root cause determination

using engineering judgment.

The remainder of this paper is organized as follows. Section 2 provides a brief introduction to

RNNs and BRNNs, and describes the variational dropout approach used in this paper for inference

in BRNNs. Section 3 presents the proposed BRNN-based FDI methodology. In Section 4, the

effectiveness of the proposed approach is demonstrated and compared to (D)PCA-based methods in

the Tennessee Eastman process and a real chemical manufacturing process, followed by the conclusion

in Section 5.

2. Background

2.1. Recurrent Neural Networks

RNNs were developed in the 1980s (Rumelhart et al., 1986). Since then, RNNs have been shown

to achieve state-of-the-art performance on a wide range of sequential data modeling tasks, including

language modeling, speech recognition, image captioning, and music composition (Wu et al., 2016;

Jozefowicz et al., 2016; Merity et al., 2016). Generally speaking, an RNN comprises an input layer,
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Figure 1: A simple RNN structure with one recurrent layer and showing the unfolding in time of the sequence of its
forward computation. The RNN includes the input variable xt, state variable st and outputs ŷt. The state variable st
is calculated based on the previous state st−1 and the current input xt. The RNN output ŷt is then calculated based
on the current state. In this way, the input sequence xt is mapped to output sequence ŷt with each ŷt depending on
all previous inputs. The model parameters ω = {Ws,Us,Ws, bs, by} are shared at each time step.

one or more hidden recurrent layers, and an output layer. The input layer corresponds directly to the

input data, and hidden recurrent layers capture the state with the response of its nodes being added

to the inputs on the next time step. At each time t, denote the input to the network as xt ∈ Rmx ,

the state (i.e., output of the hidden layer) as st ∈ Rms , and the RNN output as ŷt ∈ Rmy . They

are represented as row vectors in the equations. Accordingly, the state and output layers have the

general form

st = fs(xt, st−1| θs)

ŷt = Wyst + by

(1)

where the subscript s = 1, . . . ,ms is the index over hidden layer nodes, θs and fs denote the

corresponding hidden layer parameter/weights and nonlinear operator for each node, and Wy ∈

Rmy×ms and by ∈ Rmy are the output layer parameters. The new state of the network depends on

its value at the previous time step, emblematic of recurrent architectures. This dependency, and

the unfolding through time, is depicted in Figure 1. A linear output layer is commonly used for

regression tasks.

In the simpler form of nodes, the state is computed as (Elman, 1990)

st = φ(Wsxt +Usst−1 + bs) (2)

where Ws ∈ Rms×mx , Us ∈ Rms×ms , and bs ∈ Rms are the hidden layer parameters (denoted θ

above), and φ is an element-wise activation function such as the logistic, hyperbolic tangent, or a

rectifier linear function.

As can be explicitly observed from the mathematical formulation in Equation 1, RNNs are essen-

tially state-space models capable of modeling nonlinear dependencies. RNNs can capture complex

nonlinear dynamics of a system in the state. Also, by appropriately training the parameters, RNNs
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can adapt to the right level of temporal depth. Thus, RNN models are considerably more powerful

for modeling complex industrial processes in comparison to traditional statistical methods.

It is worth noting that different RNN architectures have been proposed (Jordan, 1997), with the

formulation in Equation 1 corresponding to Elman’s architecture (Elman, 1990), which has been

widely used in the recent deep learning RNN implementations and applications.

In order to learn the parameters of the RNN, an optimization problem is defined with regard

to an appropriate loss function. For regression tasks, the loss function is typically chosen to be the

mean squared loss,

J(Θ) =
1

N

N∑
t=1

‖yt − ŷt‖22, (3)

or the cross-entropy loss for classification purposes,

J(Θ) = −
N∑
t=1

yt log ŷt (4)

where Θ denotes the collection of all RNN model parameters, and yt is the desired output at time

step t. In addition, L2 regularization terms are often added to help prevent overfitting, resulting in

the overall minimization objective

L(Θ) = J(Θ) + λ
(
‖Ws‖2 + ‖Wy‖2 + ‖Us‖2

)
(5)

where λ is the regularization (aka weight decay) parameter.

Because the recurrence introduces dependencies between time steps, training RNNs involves

backpropagation through time (BPTT) to compute the gradient update of the model parameters

that minimizes the loss function (Werbos, 1974, 1990). BPTT corresponds to an unfolding of the

network over a number of time steps, as depicted in Figure 1. For BPTT, the difference between

network outputs and target values is first calculated and stored for each time step in a forward

pass, and then the weight gradient updates are calculated as the network is “rolled back”. However,

simple RNNs trained with BPTT can have difficulties learning long-range time dependencies due to

the vanishing gradient problem (Bengio et al., 1994). To alleviate the vanishing gradient problem,

recurrent node gating mechanisms have been recently developed. These gating mechanisms allow

information and the gradients to flow through the unrolled network with minimal attenuation if

determined to be necessary by BPTT. These gating mechanisms resulted in two popular variations

on RNN hidden units: LSTM units (Hochreiter and Schmidhuber, 1997) and GRUs (Cho et al.,

2014). RNNs with LSTM and GRU units have been reported to show salient performance (Graves

et al., 2013; Cakir et al., 2015).
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2.2. BRNNs

BRNNs combine statistical modeling of RNN parameters to obtain a probabilistic model of

input-output mapping. As such, instead of point estimates, BRNNs can effectively perform Bayesian

inference which provides probabilistic distributions over the outputs.

To realize that capability, BRNNs view the model parameters ω = {Ws,Wy,Us, bs, by} as

random variables from a prior distribution p(ω). Expressing the functional dependence in Equation 1

as st = fωs (xt, st−1) and ŷt = fωy (st), the likelihood of the output for each data point is

p(yt|ω,xt, st, τ) = N
(
yt|fωy

(
fωs (xt, st−1) , τ−1ID

))
(6)

where τ is the precision parameter that reflects the intrinsic noise in the data, and the likelihood

function is assumed to have a normal distribution for simplicity. Note how the likelihood function

is evaluated with respect to forward passes through the NN.

Then, given a training dataset comprising X and Y , learning entails estimating the posterior

distribution p(ω|X,Y ) over the space of parameters. With the updated distribution, the distribution

of a predicted output y∗ can be obtained by integration

p(y∗|x∗,X,Y ) =

∫
p(y∗|x∗, ω)p(ω|X,Y )dω (7)

where the dependency on the precision parameter, state, and past inputs are not shown to simplify

the expression. For the prior distribution, standard zero-mean Gaussian priors over the weight

matrices p(W ) and p(U) are typically chosen, with point estimates for the bias vectors assumed for

simplicity. The uncertainty in the prediction will be directly reflected in the posterior distribution

p(y∗|x∗,X,Y ).

In complex models such as NNs, however, the exact inference of the posterior is not possible.

Moreover, traditional algorithms for approximating the Bayesian inference are generally not appli-

cable to train RNNs having a large number of parameters or complex architectures. To overcome

this limitation, several approximation inference methods have been proposed, including variational

dropout (Gal and Ghahramani, 2016b,a), Bayes by BackProp (Pawlowski et al., 2017; Fortunato

et al., 2017), multiplicative normalizing flows (Louizos and Welling, 2017), and probabilistic back-

propagation (Hernández-Lobato and Adams, 2015). Among all those techniques, the variational

dropout technique proposed by Gal and Ghahramani (2016b) is adopted in this paper because of

its simplicity and generalization capability. In particular, variational dropout can be applied to any

RNN architecture without modification on the underlying NN structure, and only concurrent runs

of the trained model are needed for online application. Details of this algorithm are reviewed in the

next section.
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2.3. Variational Dropout as Bayesian Approximation

Gal and Ghahramani (2016a) showed how dropout could be used as a general variational ap-

proximation to the posterior of Bayesian neural networks (BNNs), which can be applied directly to

a variety of NN architectures. The main advantage of this ‘variational dropout’ approach is that

it does not require significant modifications to the model architecture and training method, unlike

other probabilistic approximation methods. Moreover, the uncertainty estimation incurs only the

computation cost due to multiple stochastic forward passes through the network to generate samples

of the posterior distribution.

Therefore, variational dropout is used here as a variational inference approach for BNNs. Varia-

tional inference is a technique used to approximate an intractable posterior distribution p(ω|X,Y )

with a simpler parameterized distribution q(ω). Then, the integration in Equation 7 can be ap-

proximated simply by MC integration using q(ω). Specifically, the approximation distribution is

factorized over the weight matrices in ω. For each row wk, variational dropout imposes a variation

distribution comprising a mixture of two Gaussian distributions with small variances,

q(wk) = pN(wk|0, σ2I) + (1− p)N(wk|mk, σ
2I), (8)

where p is the predefined dropout probability, σ2 is a small precision parameter, and mk is a varia-

tional parameter. The learning problem is then casted into an optimization problem by minimizing

the KLD between q(ω) and p(ω|X,Y ). It can be shown that optimizing the loss function using

dropout is equivalent to minimizing KL(q(ω)‖p(ω|X,Y ))) (Gal and Ghahramani, 2016a), which

updates the variational parameter. Although variational inference is a biased approximation, it has

been shown to work well in practice.

Variational dropout requires caution when applied in the context of RNNs, however. Because

of the recurrence, näıvely applying standard dropout (Srivastava et al., 2014) with different masks

at each time step of an RNN can lead to model instabilities and disrupt an RNN’s capability to

model a sequence (Pham et al., 2014; Pachitariu and Sahani, 2013). We use the approach in (Gal

and Ghahramani, 2016b) to resolve these issues. Under these circumstances, variational dropout has

been shown to also act as an effective regularization method for reducing overfitting by preventing

co-adaptions in RNNs (Gal and Ghahramani, 2016b).

The implementation of BRNNs with variational dropout is relatively straightforward. During

both training and testing, the variational approximation involves sampling the model distribution

with regard to the variational distribution over the weights, which is implemented by dropping out

(i.e., forcing to zero) randomly chosen inputs, outputs, and hidden states. This step results in

multiple random realizations of the RNN model, each obtained by implicitly removing a portion of

the inputs, outputs, or hidden states. However, as detailed in (Gal and Ghahramani, 2016b), it is
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Figure 2: Illustration of the variational dropout technique (right) compared to standard dropout technique (left) for a
simple RNN. Each graph shows units unfolded over time, with the lower level for inputs, middle level for state units,
and upper level for output units. Vertical arrows represent the connections from inputs to outputs while horizontal
arrows represent recurrent connections. The arrows with dashed grey lines represent the standard connection without
dropout. Colored lines represent dropout connections with different colors for different dropout masks. (Left) In
the standard dropout technique, no dropout is applied for the recurrent layers, while other connections have different
dropout masks at different time steps. (Right) For the variational dropout approach proposed in (Gal and Ghahramani,
2016b), dropout is applied to both input, recurrent, and output layers with the same dropout mask at different time
steps. Variational dropout is applied during both training and testing.

crucial for RNNs that the dropout mask used for each model realization be kept fixed between time

steps. In other words, the dropout mask of which elements are zeroed out is sampled and frozen

for each time sequence sample. This sampling characteristic is contrasted to standard dropout in

Figure 2.

Variational dropout applied during testing can be viewed as an approximation to MC samples

from the posterior predictive distribution, p (ω|X,Y ). Given a new observation x∗, by forward

passing it N times, N samples {ŷ∗(i)}i=1,...,N are collected of the approximate predictive posterior.

The corresponding empirical estimators for the posterior predictive mean, standard deviation, and

covariance are

E(ŷ∗) ≈ 1

N

N∑
i=1

ŷ∗(i) (9)

std(ŷ∗) ≈

√√√√τ−1 +
1

N

N∑
i=1

(ŷ∗(i))
2 − E(ŷ∗)2 (10)

cov(ŷ∗) ≈ τ−1ID +
1

N

N∑
i=1

ŷ∗(i)
>
ŷ∗(i)− E(ŷ∗)>E(ŷ∗) (11)

where τ can be estimated as τ = pl2

2Nλ given a predefined regularization/weight-decay parameter λ,

and prior length scale l (Gal and Ghahramani, 2016a). Higher order statistics can also be estimated

using the samples by moment-matching.

Since the forward passes involve simply a number of independent and fixed realizations of the

RNN model distribution, they can be done concurrently, thus making variational dropout a good
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Figure 3: General procedure for process monitoring system development (left) versus procedure for developing BRNN-
based FDI system (right). The general framework to establish a monitoring system begins with a model to characterize
NOC behavior, such as using the BRNN model to learn the NOC pattern from the training data. Then, the method to
measure the deviation of a particular observation to the NOC region is chosen. In our case, the process observations
are compared to the BRNN posterior predictive distributions. Finally, the decision will involve determining whether
the acquired observation is from the NOC or not (i.e., compare deviations of observations for fault detection and
assess which variables significantly deviate from the NOC for identification).

candidate for online monitoring. In the next section, the proposed novel FDI scheme is explained

in detail. While this methodology is described here in the context of chemical process monitoring,

it can be observed that it could be readily extended to other manufacturing industries.

3. Methodology for FDI

The design of a FDI system generally begins with the development of a model to characterize

the normal operating characteristics of a process. Historical data collected during the NOC are used

to build the model, which means this learning problem is unsupervised. Then, an approach must be

established to characterize the magnitude of the deviation from the NOC based on the developed

model and to determine when deviations are considered to be outside of the NOC. For example,

the T 2 and Q statistics are commonly used to measure the distance of the observation to the NOC

region in PCA-based models and thresholds thereon (Chiang et al., 2000a). Finally, given a new

observation x∗, these measures are calculated to determine whether x∗ deviates substantially from

the NOC (fault detection) and, if that is the case, which variables are significantly affected (fault

identification), thereby assisting in locating and troubleshooting the fault.

Specifically, this paper proposes using a BRNN with variational dropout to build the probabilistic

model, denoted as fω(·), and characterize the NOC and its intrinsic variability. As discussed earlier,

BRNNs are capable of extracting the nonlinear spatial and temporal signatures in the data that

are critical for characterizing complex chemical processes. Moreover, BRNNs provide probabilistic

estimates of the likelihood of the observations with regard to its inferred posterior distribution

of the variable values. These likelihood estimates lend themselves to be used to assess the current

deviation level from the NOC region. Accordingly, observations are detected as faults whenever their
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Figure 4: Depiction of BRNN model using variational dropout (left) for FDI. The BRNN model uses the current
observation and state to predict the next system observation. The BRNN model is unrolled in two dimensions (right):
the time of the computation involved in its forward computation and the stochastic repetition by variational dropout.
At each time step, stochastic variational dropout is applied N times and the corresponding MC prediction samples
{x̂t(i)}i=1,...,N are used to approximate the posterior predictive distribution for that time step. For the next time

step, the same procedure is repeated and MC samples {x̂t+1(i)}i=1,...,N are collected and used to approximate the
distribution.

deviation is above a threshold, determined such that the number of false alarms under the NOC

does not exceed a predefined level. Fault identification then involves determining which process

attributes are deviating significantly. This general framework for BRNN-based FDI is summarized

in Figure 3 and described in detail in the next sections.

3.1. Fault Detection

The first step toward fault detection is to learn a model to characterizing the NOC. This step

involves training a BRNN with variational dropout to model the dynamics in time, correlations

between sensors, and the prediction uncertainty resulting from model mismatch and inherent system

variability/noise.

The BRNN model is trained directly on historical NOC data. Specifically, this step involves

setting a training problem wherein the BRNN model uses the past context (as captured by its state)

and current observation to predict the next observation, as depicted in Figure 4. During training,

BPTT is applied to batches of time subsequences with one variational dropout mask sampled per

sequence, as explained in Section 2.3.

After training, the model output x̂t+1 from the BRNN is sampled from the posterior predictive

distribution for next observation xt+1 via variational dropout model realizations. That is, at each

time step t, the stochastic forward pass is repeated N times, each with a different dropout mask,

and the predictive distribution of the output for t + 1 is approximated based on the MC samples

of the BRNN model, {x̂t+1(i)}i=1,...,N . Then, when the true observation xt+1 is available, it is

compared to the predictive distribution and deemed as abnormal if it significantly deviates from the

predictive distribution. Finally, the true observation is fed into the BRNN model and the procedure

is repeated for the next time step.
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Notice that the predictive distribution is evolving, which provides an adaptive decision boundary

for the next measurement. This adaptive decision boundary is calculated based on all the useful

past system information, which takes into consideration both the spatial and temporal correlations

in the data. Further combined with the potential ability to model nonlinear correlations, this

property increases both the detection sensitivity and robustness because of the increasing accuracy

in modeling NOC pattern.

Depending on the complexity of the system and observed properties of the predictive distribution

from the BRNN model, below is a description of two methodologies to quantify the deviation mag-

nitude of each observation to its corresponding predictive distribution. The first method is faster

and simpler to implement, but is limited to Gaussian predictive posterior distributions. The second

method approximates the posterior distribution non-parametrically and is much more flexible, but

requires tuning an additional density estimation parameter.

3.1.1. Method 1: Squared Mahalanobis distance for Gaussian predictive distributions

If the predictive distribution is Gaussian, or well approximated as such, the squared Mahalanobis

distance can be used to characterize the magnitude of the deviation. First, the MC samples at time

t of the predictive distribution, {x̂t(i)}i=1,...,N , are used to approximate the sample mean µt and

covariance St:

µt ≈
1

N

N∑
i=1

x̂t(i) (12)

St ≈ τ−1ID +
1

N

N∑
i=1

x̂t(i)
>
x̂t(i)− µ>t µt. (13)

Then, when the true observation xt is available, the squared Mahalanobis distance is calculated as

M2 = (xt − µt)>S−1t (xt − µt). (14)

A larger value of M2 indicates that the observation xt is far away from the predicted mean

and there is a higher likelihood that it corresponds to a fault. The detection threshold M2
th is

determined with regard to a chosen maximum FAR α on a validation dataset. That is, the threshold

is the 100(1 − α)th percentile of the M2 statistic in the MC samples of the validation dataset.

Therefore, any data point with M2 exceeding the threshold (M2 > M2
th) should be detected as a

fault.

3.1.2. Method 2: Local density ratio (LDR) for non-Gaussian predictive distributions

If the predictive distribution is not well characterized by a Gaussian distribution (e.g., is multi-

modal), then non-parametric methods are necessary to quantify the abnormality of each observation.

12



For those cases, a LDR method is proposed, which is closely related to the so-called local outlier

factor (Breunig et al., 2000). The LDR statistic quantifies the abnormality of each new observation

with respect to its predictive distribution using an estimate of the density around the observation

based on its kNN.

The kNN local density estimate f̂ (x) can be calculated as (Duda et al., 2001)

f̂(x) =
k∑

p∈Nk(x)
d(p,x)

(15)

where Nk(x) denotes the set of kNN of x in {x̂t(i)}i=1,...,N and d(p,x) is the Euclidean distance

between x and a point p ∈ Nk(x). Intuitively, the points close to its kNN will have high local density

values, whereas points in more sparsely sampled or spread out areas will have low density.

Then, the LDR for an observation xt is defined as

LDR(xt) =

1
k

∑
p∈Nk(xt)

f̂(p)

f̂(xt)
(16)

which is the ratio of the averaged local density of the kNN of xt in {x̂t(i)}i=1,...,N to the local

density of xt. A larger value of the LDR(xt) means that the observed point is far away from the

samples of the prediction posterior and thus indicates higher likelihood that the observation xt is

abnormal.

The number of kNN specifies the smallest number of data points in a cluster that will be con-

sidered as abnormal and is crucial for the algorithm to perform properly. In general, this number

defines a tradeoff, because a small value of k will result in large fluctuations, whereas a very large

value of k will reduce the detection sensitivity. As recommended in (Breunig et al., 2000), a mini-

mum and maximum k can be chosen and, for each observation, the final value can be set equal to

the maximum of LDR over k. The detection threshold LDRth is obtained similarly to M2
th.

3.2. Fault Identification

Once a fault is detected, the next goal is to identify the main variables associated with the fault.

Without using labeled fault examples, this step involves determining the observation variables with

the abnormal deviations, which are most relevant to locate and troubleshoot the fault.

BRNN fault identification is obtained by applying the fault detection approach but independently

for each variable. To determine which variables deviate abnormally, each observation variable is

compared to its corresponding predicted marginal posterior distribution estimated from the BRNN

samples. More specifically, the observation xjt , corresponding to the jth system variable at time t, is

compared to the predictive posterior distribution characterized by the samples {x̂jt (i)}i=1,...,N . This

variable-wise comparison allows the identification of variables with values in low probability areas

and thus more likely to be relevant for diagnosing the fault.
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The marginal posterior distributions used for identification still take into consideration the spatial

and temporal correlations in past data observations. Hence, the marginal distribution for each

variable also evolves with dynamics that depend on other variables and past observations. This

analysis sacrifices some information with regard to the complete joint distribution, as considered

during fault detection, but is necessary to obtain variable specificity.

As with fault detection, two methodologies to quantify the fault identification deviation are

described here, depending on the properties or assumptions placed on the predictive distribution.

The same considerations apply to these methodologies.

3.2.1. Method 1: Standard deviation for Gaussian predictive distributions

Assuming that the predictive distribution can be approximated by a Gaussian distribution, the

number of standard deviations of each variable to its predictive mean can be used to measure the

deviation. Using the same MC samples of the posterior predictive distribution generated for fault

detection at time t,
{
x̂t(i) = {x̂lt(i)}l=1,...,mx

}
i=1,...,N

, the mean µlt and standard deviation σlt of

each variable x̂lt can be estimated by

µlt ≈
1

N

N∑
i=1

x̂lt(i) (17)

σlt ≈

√√√√τ−1 +
1

N

N∑
i=1

(
x̂lt(i)

)2 − (µlt)
2 (18)

The deviation for each variable Dl, l ∈ {1, . . . ,mx}, is then calculated from

Dl =
xlt − µlt
σlt

(19)

The Dl can be either negative or positive, unlike M2 which can only be positive. Under a Gaussian

approximation, variables are identified as significantly affected by the disturbance based only on

whether Dl has a large magnitude (i.e., absolute value). Still, the sign of the deviation (positive or

negative) can be helpful to operators because the sign explicitly indicates whether the variable is

significantly higher or lower than expected. For a predefined significance level, the NOC validation

dataset can be used to determine thresholds {Dl
th}i=1,...,N such that variables with (Dl > Dl

th) are

explicitly highlighted as abnormal.

3.2.2. Method 2: LDR for non-Gaussian predictive distributions

For more general distributions, and similarly to the fault detection procedure, the LDR can be

used element-wise for fault identification by considering each variable separately in the calculation

of the LDR. Given the true measurement xt =
{
xlt
}
l=1,...,mx

and MC samples from predictive
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distribution
{
{x̂lt(i)}l=1,...,mx

}
i=1,...,N

, the LDR for variable l can be calculated by

f̂(xlt) =
k∑

pl∈Nk(xl
t)
d(pl, xlt)

(20)

LDRl(xlt) =

1
k

∑
pl∈Nk(xl

t)
f̂(pl)

f̂(xlt)
(21)

where pl is one of the kNN of xlt and d(pl, xlt) is the Euclidean distance between the pl and xlt

sample. The same rule for selecting the number of nearest neighbors k discussed with regard to

fault detection can be used here.

The variables associated with a large value of LDRl can be explicitly selected as significantly

affected by the fault. This is done similarly as for fault detection using the NOC validation dataset

to determine a threshold LDRl
th above which variables are considered abnormal. Alternatively, the

variables can simply be sorted from the largest to the smallest such to emphasize the system variables

that deviate the most.

3.2.3. Fault identification plots

The fault identification statistics of each variable can be visualized by plotting their values over

time. The resulting plots are visually similar to contribution plots (Miller et al., 1998; Zhu and

Braatz, 2014). Their interpretation and analysis, however, are fundamentally different and are

referred to here as identification plots. The main distinction is that the statistics in identification

plots are specific to the current status of each variable and its dynamics, rather than as a relative

component of a global statistic. These plots provide greater specificity in the analysis and allows

the interpretation of the status of each variable directly.

3.3. FDI Scheme

For completeness, the overall methodology is summarized in Figure 5. Although the figure

explicitly shows the two methods for detecting and identifying faults, this decision of which method

to use is actually done at the design stage rather than during operations. In either case, the BRNN

model with variational dropout is crucial to the methodology by providing samples that characterize

the uncertainty and directly enable both FDI. The M2 or LDR statistics are used to detect the fault

in the system, while the Dl or LDRl statistics are used to identify the impacted variables useful

for locating the fault and possible root cause analysis. Minimal computation is needed for fault

identification, having to calculate only some additional statistics on the same samples.
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Figure 5: Flowchart of the BRNN-based FDI methodology. The offline training stage (left) and the online monitoring
stage (right) are shown in the figure. The procedure starts with offline training, and then the offline-trained model is
used during online monitoring. The choice of statistics for detection and identification is made at design time.

4. Case Studies

In this section, the effectiveness of the proposed BRNN-based FDI method is demonstrated in

two case studies: the benchmark Tennessee Eastman process synthetic dataset and a real dataset

from a chemical plant.

For comparison, results are also shown for PCA (Jackson and Mudholkar, 1979; Kourti and

MacGregor, 1996) and DPCA (Ku et al., 1995) FDI methods. For each method, both models with

and without dimension reduction are considered, and identified by prefix ‘r-’ or ‘f-’, respectively. For

the models with reduced dimension, parallel analysis (Downs and Vogel, 1993) is used to determine

the number of PCs a to retain in the model. These (D)PCA-based methods are commonly accepted

benchmark methods for algorithm comparison in the FDI community (Chiang et al., 2000a; Yin et al.,

2014; De Ketelaere et al., 2015; Venkatasubramanian et al., 2003). DPCA in particular provides an

interesting contrast to the proposed BRNN method because DPCA also models both spatial and

temporal correlations, albeit in a limited form. As mentioned in the introduction, DPCA is limited

to linear dynamics and correlations and scale poorly with increased temporal memory depth. The

proposed BRNN method does not have these limitations.

In both case studies, the BRNN model constructions were implemented in TensorFlow (Abadi

et al., 2015), and a number of BRNN model configurations and hyperparameters were tested.

The choices included different recurrent node types (regular RNN, GRU, and LSTM cells), acti-

vation functions (i.e., linear, sigmoid, hyperbolic tangent, and rectifier linear), number of recurrent

nodes/states ms, number of recurrent layers, regularization hyperparameter values λ, dropout prob-

abilities pd, and RNN training parameters (e.g., learning rate). BRNN models were trained for each

variation of these configurations and hyperparameters. The final model configuration and hyper-
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Figure 6: A process flowsheet for the TEP with the second control structure in (Downs and Vogel, 1993).

parameters were selected as the ones that gave the maximum likelihood on the validation dataset.

Only the results for the final BRNN model are shown in the next sections.

4.1. Tennessee Eastman Process

The Tennessee Eastman process (TEP) is a well-known benchmark by the Eastman Chemical

Company for process monitoring and control studies. It is based on a realistic industrial process

with properly modified components, kinetics, and operating conditions (Downs and Vogel, 1993). In

this study, the second plant-wide control strategy was utilized, with the process flowsheet as shown

in Figure 6. The process contains eight components (A, B, C, D, E, F, G, and H) and five major

units (a reactor, condenser, compressor, separator and stripper).

In this case study, mx = 52 variables are used to construct the monitoring system, of which 41

are sensor measurements (XMEAS(1)–XMEAS (41)) and 11 are manipulated variables (XMV(1)–

XMV(11)). During the NOC, the system is operating under one production mode and the sampling

period is set to 3 min. The training data contains 480 samples and the validation data contains 960

samples. The TEP simulation contains 21 preprogrammed faults with different disturbance types

and locations. Once a fault is introduced in the system, the system will either behave normally

if the control system is effective in controlling the disturbance, or it will evolve outside the NOC

region. For each set of data with a fault condition, the simulator first runs for 160 time points in

the normal state, and then the corresponding fault disturbance is introduced with the simulator

continuing to run for another 800 samples. The dataset used in this case study can be downloaded

from the website of Prof. Richard Braatz (Chiang et al., 2000b). For further details about the TEP

dataset, the reader is referred to Downs and Vogel (1993) or Chiang et al. (2000a).
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Although a number of BRNN model architecture variations were tried as previously mentioned,

the final BRNN model used in this case study contains one recurrent layer with regular RNN cell

and linear activation function. A linear dense layer is used for the output layer, as is commonly

done for regression tasks. This structure means that, in this case, the BRNN model implements a

probabilistic linear state-space model. Although this architecture is simpler, it is also easier to train

and achieved better performance than more complex structures and neuron types. The results are

likely due to the fact that the inherent correlations and dynamics in the NOC data of TEP are well

modeled as linear (Sun, 2020). The final model has ms = 80 hidden nodes in the recurrent layer,

and is trained with regularization parameter λ = 10−4 and dropout rate pd = 0.1. Given the linear

structure of the model and by the central limit theorem, the predictive distribution by the final

BRNN model is well approximated by the Gaussian distribution in this case. Thus, the M2 and Dl

statistics are used for FDI. In any event, the results are quite similar for a number of configurations

of the hyperparameters within a reasonable tuning range.

For the reduced dimensionality (D)PCA models used in the comparison, the number of PCs

determined by parallel analysis is a = 12 for r-PCA and a = 25 for r-DPCA (with lag = 1). The

fault detection procedure for r-PCA and r-DPCA use both the T 2 and Q statistics, whereas f-PCA

and f-DPCA use only the T 2 statistic for fault detection, which plays the same role as the M2

statistic. Contribution plots are used for (D)PCA-based fault identification. For implementation

details on the (D)PCA methods, the reader is referred to (Russell et al., 2000), (Zhu and Braatz,

2014), or (Chiang et al., 2000a).

The false alarm rate (FAR) and fault detection rate (FDR) are used to evaluate the fault detection

performance of different algorithms:

FAR =
# of samples with alarm during NOC

total # of samples during NOC
(22)

FDR =
# of samples with alarm after the fault is introduced in the system

total # of samples after the fault is introduced in the system
(23)

In words, the FAR corresponds to the frequency of spurious detection of faults under NOC, and

FDR is the sample frequency of a fault being detected when a fault situation is present.

The dataset contains three types of faults: controllable faults, back-to-control faults, and uncon-

trollable faults. Controllable faults are disturbances that can be well compensated by the control

system, and therefore the disturbance does not significantly affect the process state. In these situa-

tions, since the operator is not required to intervene, the FDR should ideally be as low as the FAR

to avoid distracting the operators. Back-to-control faults are disturbances that are large enough to

cause the system to initially deviate from the NOC, but for which the control system is able to com-

pensate at least some aspects of the disturbance after some time. The process measurements return

to the normal region after some time, but certain manipulated or input variables remain outside
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the normal regime. These represent sub-optimal or off-spec conditions that ought to be handled by

an operator and to be detected accordingly. Moreover, the FDI result should accurately reflect the

system state, such that its evolution back to control is apparent. Finally, uncontrollable faults are

faults that cannot be handled adequately by the control system and require operator intervention.

For both back-to-control and uncontrollable faults, the fault detection algorithm should ideally yield

high FDR to notify the operator that the system has been disturbed outside the original NOC. It is

worth noting that this “classification” is based on prior knowledge of the faults and used here only

to facilitate the interpretation of the results; it was not used anywhere in the model training.

For fault identification, the proposed BRNN-based identification plots are compared with the

(D)PCA-based contribution plots, which are shown for a representative fault of each of the afore-

mentioned types. Note that, ideally, fault identification should accurately pinpoint the variables

that are affected by the fault to provide the operators with specific information for them to analyze

the situation and quickly diagnose the underlying root cause. Accordingly, it should be verified

that no variable should be identified as abnormal for controllable faults. For back-to-control faults,

the abnormal variables should first be identified, and only the corresponding tuned manipulated

variables should remain identified once the system is back to control. For uncontrollable faults, the

identification procedure should correctly locate the abnormal variables as soon as they are outside

the NOC regime.

4.1.1. Training and validation results on the NOC data

The training and validation results are first shown to demonstrate how the posterior predictions

of the BRNN model characterize the NOC. The training results of the total 52 variables with centered

and normalized values are shown in Figure 7. The dark blue lines are the real data and the light

blue lines are the posterior prediction samples by the BRNN model with N = 400 model samples by

variational dropout. The results do not differ significantly for N > 100. When the real measurements

are within the predictive distribution (in dark and light blue in the figures, respectively), the system

is considered normal. This condition can be observed in Figure 7, which indicates that the trained

BRNN model accurately captures the NOC pattern.

Then, to validate the model, the trained BRNN model is applied to a separate NOC validation

dataset. These results are shown in Figure 8. As observed in the training results, the real validation

measurements lie within the predictive distribution. This result indicates that the model generalizes

well, meaning that it is able to capture the normal pattern without overfitting to the training data,

which is crucial to avoiding high FARs.

4.1.2. Fault detection results

The fault detection results for the 21 predefined faults are shown in Table 1. The results are

grouped according to one of the above-mentioned three types of faults. For all algorithms, the FDRs
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Figure 7: BRNN model outputs for TEP NOC training data. The plot shows all 52 variables in TEP. The dark
blue lines are the TEP measurements and the light blue lines correspond to the BRNN model predictive distribution
outputs for the NOC data. For measurements under the NOC, the dark blue lines should lie within the predictive
distribution.

are estimated with regard to the threshold estimated for a FAR of 5%, and validated on NOC data

as shown on the first row of the table.

As shown in Table 1, the proposed BRNN-based method yields close to 5% FDR on controllable

faults, which is almost as low as the pre-determined FAR level. On the other hand, (D)PCA-based

methods are overly sensitive in these cases, especially the models without model reduction, f-PCA

and f-DPCA. These results show that (D)PCA-based methods cannot accurately differentiate the

controllable faults from the other cases, because they do not appropriately characterize the dynamics

of NOC, such as to determine if the situation is ultimately controllable. As previously explained,

controllable faults should not trigger an alert because they are handled directly by the control

system. The ability of the fault detection approach to differentiate between these situations is of

crucial practical importance because alerts due to these situations will often be perceived as false

alarms and can erode an operator’s confidence in the method and the significance of its alerts. The

BRNN method is observed to be more robust to controllable fault than the (D)PCA methods.

For both back-to-control and uncontrollable faults, the BRNN method reliably detected faults

20



Figure 8: BRNN model outputs for TEP NOC validation data.

with high FDRs. Full PCA and DPCA models with the squared Mahalanobis distance were also

able to detect the back-to-control and uncontrollable faults with high FDR. However, the (D)PCA

models were overly sensitive for general fault detection purposes because they overreacted to con-

trollable faults. Compared to the BRNN method, (D)PCA models emphasized higher sensitivity to

disturbances at the expense of an increased likelihood of unwarranted alerts. The reduced dimen-

sionality (D)PCA models (i.e., r-PCA and r-DPCA), with the number of PCs determined by parallel

analysis, responded more reasonably to controllable faults but also yield much worse performance

compared to the BRNN method. In fact, they fail to reliably detect several back-to-control and

uncontrollable faults (Faults 5, 16, and 19, for example).

It is insightful to consider how the temporal dynamics interact with the detection approach to

lead to the measured FDR results. If a disturbance is such that the measurements oscillate around

the NOC region, there will be moments in time that are momentarily indistinguishable from those in

the NOC region. Since the BRNN is trained such that its state characterizes the NOC distribution

in state space, it is understandable that some of these time points may not be detected as faulty.

This observation explains the slightly lower FDR of the BRNN method for those cases. Unlike the

21



Table 1: TEP fault detection percentage results. The FAR is shown for the NOC (in the first row), and the FDR is
given for the 21 fault conditions.

Type Fault ID BRNN
r-PCA

(a = 12)
f-PCA

(a = 52)
r-DPCA
(a = 25)

f-DPCA
(a = 104)

NOC – 4.75 5.00 4.88 5.00 5.00

controllable
faults

IDV(3) 5.00 7.00 19.75 6.12 22.25
IDV(9) 5.00 7.88 15.25 8.87 21.37
IDV(15) 7.12 10.62 26.87 11.13 36.63

back to control
faults

IDV(4) 100.00 98.88 100.00 100.00 100.00
IDV(5) 100.00 32.62 100.00 34.50 100.00
IDV(7) 100.00 100.00 100.00 100.00 100.00

uncontrollable
faults

IDV(1) 99.75 99.75 100.00 99.75 99.25
IDV(2) 99.00 98.75 99.12 98.62 99.12
IDV(6) 100.00 100.00 100.00 100.00 100.00
IDV(8) 98.12 98.00 98.25 97.75 98.38
IDV(10) 87.38 54.13 93.50 55.75 94.63
IDV(11) 74.75 74.25 87.25 80.75 92.75
IDV(12) 99.75 99.00 100.00 99.25 100.00
IDV(13) 95.75 95.50 95.75 95.50 96.25
IDV(14) 100.00 100.00 100.00 100.00 100.00
IDV(16) 90.38 46.50 95.50 48.50 97.00
IDV(17) 96.13 93.13 97.75 94.78 98.12
IDV(18) 90.63 90.38 91.50 90.50 92.87
IDV(19) 88.25 25.12 96.00 34.00 99.50
IDV(20) 78.63 58.25 92.13 61.75 92.37
IDV(21) 48.00 48.50 61.62 47.88 59.38

BRNN, the (D)PCA methods do not model internal system dynamics under the NOC. Hence, since

the internal dynamics are not considered when explaining the observed data, these models do not

have this detection ambiguity. This lack of ambiguity is achieved at the expense of the inability by

(D)PCA to assess whether a fault is controllable. In summary, the fault detection results indicate

the BRNN has high detection accuracy and is able to more robustly detect faults when operator

intervention is truly necessary.

Specific FDI results are presented and discussed in detail below. Faults 1, 3, and 5 are presented

because they are representative of each type. There was no significant differences between fault

within the same type. The use of the BRNN contribution plot results for fault propagation analysis

and one example is given for Fault 6.

4.1.3. Controllable fault: Fault 3

Fault 3 is considered first as a demonstrative controllable fault. For Fault 3, the D feed tempera-

ture in Stream 2 has a step change at the 160th time point. Since this change in feed temperature is

handled immediately and directly by the control system, the process is not driven outside its normal
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Figure 9: BRNN model outputs for TEP Fault 3.

operating state. In this case, a data-driven fault detection algorithm should not trigger the alarm

(beyond the chosen FAR).

The prediction results by the BRNN model are shown in Figure 9. Similarly to the NOC case, the

dark blue lines (i.e., real measurements) are within the distribution high-likelihood area characterized

by the light blue lines, which indicates that the system is operating under the NOC.

Fault identification results by the BRNN and (D)PCA methods are shown in Figures 10 and 11,

respectively. The color indicates the deviation from the NOC over time for each of the 52 variables.

The Dl statistic (c.f. Equation 19) is used in the BRNN identification plot. As shown in Figure 10,

the BRNN model identifies that no variable has its normal operating dynamics significantly affected

by Fault 3, as is expected. In contrast, the contribution plots in Figure 11bd, by the full PCA

and DPCA models, incorrectly identify several variables as being affected by the disturbance even

before the introduction of the disturbance (at the 160th sample). This further demonstrates the

oversensitiveness of those models. The r-PCA and r-DPCA models have identification results that

are similar to those of the BRNN model and are somewhat robust to controllable faults, but at the

expense of robustness in fault detection.
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Figure 10: Fault identification plot of the BRNN-Dl statistic for Fault 3. The
{
Dl

}
l=1,...,52

values for the 960

timesteps are color coded in the identification plot. Variables with dark blues have high values of Dl, meaning that
the variable has positively deviated from the NOC region. Conversely, variables with dark red have low values of Dl

and have negatively deviated from the NOC region. A light color means the variable is not significantly affected by
the disturbance. As expected, no variable significantly deviates from the NOC.

Figure 11: Contribution plots for Fault 3 from (a) r-PCA, (b) f-PCA, (c) r-DPCA, and (d) f-DPCA. The plot shows
the contribution factor and with the darkness of the blue color indicating the amount of deviation of the variable from
the NOC region.
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In summary, for controllable faults, BRNN-based FDI is robust and successfully characterizes

those disturbances as corresponding to NOC. r-PCA and r-DPCA methods gave similar fault iden-

tification results but have lower detection rates (c.f. Table 1). The f-PCA and f-DPCA models were

clearly oversensitive, have high FARs, and incorrectly characterized the controllable faults in the

contribution plots.

4.1.4. Back-to-control fault: Fault 5

Fault 5 is a representative example of a back-to-control fault. This fault involves a step change in

condenser cooling water inlet temperature. This step change requires a step change in the condenser

cooling water flow rate XMV(11) by the control system. While the fault is ultimately controllable,

the fault causes the system at first to operate off-spec, or at least sub-optimally. In this particular,

immediately after the fault occurs, the system oscillates with about 32 variables exhibiting this

similar transient oscillation behavior. The process returns to control after about 10 hours, at which

point the sensor measurements XMEAS(1)–XMEAS(41) are back to their pre-disturbance set-points,

and only the manipulated variable XMV(11) remains outside the NOC regime, tuned so as to

compensate the step change in condenser cooling water inlet temperature.

The BRNN results for all of the variables are shown in Figure 12. As expected, when the

fault is introduced, several measurements in dark blue lines deviate from the posterior predictive

distribution under the NOC shown in light blue. After about 200 data points the system returns

to control, verified by the fact that all the system measurements (XMEAS(1)–XMEAS(41)) are

back within the predictive NOC region while only the manipulated variable XMV(11) maintains a

systematic deviation off-the-center of the BRNN model prediction distribution. These results show

that the BRNN model is able to correctly identify the NOC pattern and how the deviation from the

predictive distribution accurately locates the faulty variable under disturbance. The BRNN model

is also able to better assess the state of the system, distinguishing the back to control faults from

the uncontrollable faults by showing the transient deviation of the process variables and their return

to the NOC region.

The fault identification plot by BRNN is shown in Figure 13. This example showcases the typical

pattern of back to control faults, with several measurements outside the predictive region after the

fault is introduced and only the manipulated variables deviating once the system is back to steady

state. In this case, about 32 variables are affected once the disturbance is introduced to the system,

and the color switches between blue and red, indicating the system is oscillating. The plot also

clearly shows how, after the 360th time point, all system variables except XMV(11) are undoubtedly

back to normal. XMV(11) remains consistently above the predictive mean after the fault as that

is forced by the controller to compensate for the fault. However, the magnitude of the deviation of

XMV(11) is relatively small, indicating that the disturbance is no longer critical.
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Figure 12: BRNN model outputs for TEP Fault 5.

Figure 13: Fault identification plot by BRNN-Dl for Fault 5. The switch between dark blue and red colors shows
that the system is undergoing large fluctuation.
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Figure 14: Contribution plots for Fault 5 from (a) r-PCA, (b) f-PCA, (c) r-DPCA, and (d) f-DPCA.

The BRNN identification plot also contains crucial information for locating the likely root cause

of the fault. The plot clearly shows that XMEAS(22) is the first variable positively deviated from

the predictive distribution, which indicates the higher than normal separator cooling water outlet

temperature. Combined with the fact that the condenser cooling water flow rate is increased to

compensate for the disturbance to the system, one would reason that the root cause is the increase in

the condenser cooling water temperature. After the condenser cooling water temperature increases,

the outlet stream from the condenser to the separator also increases the temperature, resulting in

an increase in the temperature in the separator, which finally results in the increase in separator

cooling water outlet temperature.

For comparison purposes, the contribution plots by PCA and DPCA methods are shown in Figure

14. The r-PCA and r-DPCA model results in Figures 14ac fail to identify the consistent deviation

in XMV(11), which clearly explains their detection results for this fault. These results demonstrate

again that the r-PCA and r-DPCA models can exhibit much lower detection and identification

sensitivity than the BRNN method. The results of the f-PCA and f-DPCA models in Figures 14bd

clearly identify the deviations in several variables. However,the f-PCA and f-DPCA are oversensitive
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Figure 15: BRNN model outputs for TEP Fault 1.

and identify variables in an unspecific manner, which prevents those statistics from being used, at

least directly, by operators for diagnosing the root cause of the fault.

For the back-to-control fault, BRNN FDI had high accuracy and robustness. Moreover, this

method yielded more specific information for evaluating the state of the system. By inspecting the

identification plot, operators have a clear view about which variables are affected by the disturbance

and are able to assess the type of the fault occurring and the current stage of the system.

4.1.5. Uncontrollable fault: Fault 1

An uncontrollable fault is now considered. Fault 1 involves a step change in the A/C feed ratio in

Stream 4, which results in an increase in the C feed and a decrease in the A feed. This subsequently

leads to a decrease in feed A in the recycle Stream 5 and the controller reacts by increasing the A

feed flow in Stream 1. These two effects conflict with each other, thereby shifting the system to an

uncontrollable operating situation.

The BRNN model output results are shown in Figure 15. After the fault is introduced to
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Figure 16: Fault identification plot by BRNN-Dl for Fault 1. The root cause for this uncontrollable fault can be
assessed by looking at the variables that are persistently off the NOC region.

the system, more than half of the variables are observed to deviate significantly from the BRNN

predictive NOC region. All of the (D)PCA methods are also capable of detecting this fault.

The corresponding BRNN fault identification statistics are shown in Figure 16. Since the system

is seriously affected by the disturbance and several variables associated with material balances (e.g.,

composition, pressure) change significantly, this fault is easily detected. The long-term and uncon-

trollable nature of the fault on these measurements and manipulated variables can also be observed

in the identification plot, making the fault easy to diagnose based on those variables.

As before, the contribution plots by (D)PCA methods are shown in Figure 17. The r-PCA and

r-DPCA models, in Figure 17ac, both give somewhat results similar to those of the BRNN model in

Figure 16. However, both of them fail to identify the continued deviation in XMV(4) (shown between

XMV(3) and XMV(5) in Figure 17) for instance, which is the manipulated variable for total feed

flow in Stream 4 and clearly plays a central role in the fault. In contrast, it is clearly identifiable

from the BRNN results in Figure 16 that XMV(4) has negatively deviated from the NOC region.

The contribution plots of f-PCA and f-PCA in Figure 17bd show the identification of the involved

variables, but again highlight several other variables that are unrelated to the fault and operating

within their normal pattern (such as XMV(11)). As previously observed, this again shows that the

f-PCA and f-DPCA models are overly sensitive and their identification results require substantial

additional processing such that operators cannot directly use them to diagnose the fault.

In summary, the BRNN model is able to accurately and robustly detect and identify uncon-

trollable faults. Perhaps most crucially, BRNN identification plots provide clear information that

is directly useful for root cause analysis. While several (D)PCA models are also able to detect

uncontrollable faults, their identification results are less accurate and precise than for the BRNN

model.
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Figure 17: Contribution plots for Fault 1 from (a) r-PCA, (b) f-PCA, (c) r-DPCA, and (d) f-DPCA.

4.1.6. Fault propagation path analysis: Fault 6

This section shows how the accuracy and specificity of the BRNN identification statistics can be

used for fault propagation path analysis. The key observation is that the chronological sequence of

events of when each variable deviates significantly from its NOC is useful information to understand

the start and evolution of the disturbance through the process (Chiang and Braatz, 2003). The

BRNN method can extract this information with a high degree of temporal precision. This infor-

mation can then be combined with expert knowledge of the process to examine the propagation of

the fault through the system.

This approach is exemplified here using Fault 6, which is an uncontrollable fault induced by a

loss of feed A in Stream 1. The loss of component A thus causes the control system to increase the

manipulated variable XMV(3) in order to increase A in the system and attempt to compensate for

the disturbance. However, since there is no component A in Stream 1, the control system fails to

take the system back to NOC. Due to the severity of this fault, a large portion of system variables

is affected.

The temporal sequence of the fault through the process is achieved by sorting the identification

plot according to the time when each variable significantly deviates from the NOC. For this approach,
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Figure 18: Sorted fault identification plot according to the detected deviation occurrence time of BRNN-Dl for Fault
6.

one needs to estimate the threshold used to determine when the deviation is significant. In our case,

this is estimated using the NOC validation set and determined to be Dl
th = 4.8. Then, once a fault

is detected, the process variables are sorted according to the time index at which its Dl statistic

first exceeds the threshold, yielding the sorted identification plot shown in Figure 18. The y-axis

numbers 1–52 correspond to [XMEAS(1), . . . ,XMEAS(41),XMV(1), . . . ,XMV(11)].

A diagram of the fault propagation path is then obtained by combining the timing results of

the sorted BRNN identification plot with the knowledge of the process, as demonstrated in Figure

19 for Fault 6. When the fault is introduced in the system, XMEAS(1) and XMV(3) are affected

and deviates from the NOC first. Then, after a few minutes, the reactor pressure measurement

XMEAS(7) is affected. Then the reactor cooling water system is also affected due to the change

in the mass inside the reactor and both XMEAS(21) and XMV(10) deviate from the NOC. The

diagram in Figure 19 highlights that, after 1 hour, the fault has already propagated to the final

product and the concentration of A and C have been affected, thus clearly showing the impact of

the fault in the system at that point in time.

The approach outlined here shows how the properties of the BRNN method can be used to easily

determine and visualize the fault propagation path. This information is crucial to operators to

accurately diagnose the fault and determine which parts of the process have been affected.

4.2. Real Industrial Dataset

The next case study further demonstrates the efficiency of the proposed BRNN method on a

real dataset from a chemical manufacturing process. The use of this method for real-time FDI is

a promising application for the next generation of process monitoring systems in chemical plants.

The complex nature of real chemical manufacturing processes and their intricate control system
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Figure 19: Fault 6 propagation path at the 180th data point (1 hour after the fault occurs). Colored nodes indicate
that the corresponding variable has been detected as deviating significantly from the NOC.

dynamics, make BRNN the best-suited tool to extract and recognize these patterns from data in

comparison to traditional methods.

The dataset pertains to the operation of an amine tower. The column experienced foaming

issues resulting in faults that decrease the efficiency of the process. There are a total of 20 sensor

measurements with a sampling time of t = 1 min. A total of two months of data are available. Two

events has been recorded by operators as a result of the foaming issue in the tower. However, it is

also possible that additional disturbances are encountered during the two-month operating window

that have been previously missed.

The final BRNN model uses standard RNN cells with the sigmoid activation function. There

is one hidden recurrent layer with 40 units (i.e., ‘state variables’). The dropout probability is set

to pd = 0.1 and the regularization parameter to λ = 10−5. The BRNN model using LSTM or

GRU cells yield similar performance in spite of the higher complexity and thus those results are

omitted. Similar to the TEP data, the results are similar for a number of configurations of the

hyperparameters within a reasonable tuning range.

For comparison, the PCA and DPCA models, with the number of PCs determined by parallel

analysis and full models without dimension reduction, are also applied. The number of PCs from

parallel analysis is determined to be a = 6 for r-PCA and a = 9 for r-DPCA.

Due to the sensitivity of the data, the actual measurement values and the BRNN model pre-

dictions are omitted and only the detection and identification results are shown. The posterior

predictive distribution is observed to be multi-modal and thus the LDR statistics are used for FDI.

The number of kNN is set to the range of 10 to 20. The dataset is divided into a 35-day training
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Figure 20: FDI by the BRNN model on the Fault 1 testing data. The red box indicates the period with the foaming
event recorded by the operator.

dataset, a 17-day validation dataset, and two testing datasets. The first testing dataset spanned 7

days containing Fault 1, and the second testing dataset spanned 14 days containing Fault 2.

4.2.1. Fault 1 results

The BRNN FDI results for Fault 1 are shown in Figure 20. The BRNN model successfully detects

the documented event, marked by the red box in the figure. The model also accurately pinpoints

the variables that are most affected by the foaming issue, X1.PV and X6.PV. Moreover, it also

highlights several points after the 8000th time point that may have been originally missed. During

these later periods, the X1.MV sensor measurement is identified by the BRNN method. This is

subsequently verified to have been the result of large unexplained fluctuations in that variable and

that the BRNN has performed as expected.

For comparison, the corresponding FDI results by (D)PCA methods are shown in Figure 21. The

r-PCA and r-DPCA models simply fail to detect the fault. In the contribution plots, the r-PCA and

r-DPCA models also fail to identify any variable that is noticeably affected by the foaming event.

While (D)PCA models with reduced dimensionality determined by parallel analysis have been widely

applied (Chiang et al., 2000a; Yin et al., 2014; De Ketelaere et al., 2015; Valle et al., 1999), they

are incapable of accurately detecting the main fault in this case. For f-PCA and f-DPCA models,

the T 2 statistic is able to detect the documented fault. The contribution plots also identify X1.PV

and X6.PV as being associated with the fault. However, X1.MV and X6.MV are also identified

as abnormal and as more significantly than X1.PV and X6.PV. While those variables are likely

affected by the fault, they are operating normally with respect to the control system dynamics and

thus should not have been identified. Furthermore, some of these variables continue to be highlighted
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Figure 21: FDI by (D)PCA methods for Fault 1: (a) r-PCA, (b) f-PCA, (c) r-DPCA, and (d) f-DPCA. The red box
indicates the period with the foaming event recorded by the operator.

well after the issue is resolved. The (D)PCA models also only scantly detect the deviations in the

later time that are correctly highlighted by the BRNN.

4.2.2. Fault 2 results

The BRNN FDI results for Fault 2 are shown in Figure 22. The proposed method successfully

detects the documented fault and identifying the related variables, as marked by time interval with

the red box. For the earlier period around the 6000th time point, the BRNN model detects a

disturbance and identifies the deviation in X14.PV, X15.PV, and X9.PV. The relative magnitude

of the deviation during those periods is not as significant as that during the documented fault

period. This assessment was then verified to be fully warranted by inspection of the recorded sensor

measurements. Analysis of the period around the 15000th data point yield similar results.

As before, the (D)PCA FDI methods are also applied. Their results are shown in Figure 23.

As observed for Fault 1, the r-PCA and r-DPCA models are not as sensitive to the fault and only
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Figure 22: FDI by BRNN for Fault 2. The red box indicates the period with the foaming issue as recorded by the
operator.

Figure 23: FDI by (D)PCA methods for Fault 2: (a) r-PCA, (b) f-PCA, (c) r-DPCA, and (d) f-DPCA. The red box
indicates the period with the foaming issue as recorded by the operator.
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partially detect the documented fault period, and they did not detect the earlier event highlighted

by the BRNN method. The identification plots by the r-PCA and r-DPCA models in Figures 23ac

also only identify a limited number of faulty variables. The f-PCA and f-DPCA models are again

overly sensitive for both FDI, flagging much of the data period. After the foaming issue occurred

and the operator intervention, the control system is able to compensate for the disturbance after

a while. However, f-PCA and f-DPCA models incorrectly continue to assess the system as in an

abnormal state even though the foaming issue has been fully resolved. This can also be observed

from the contribution plots in Figures 23bd, wherein variables X1.PV and X6.MV are identified as

problematic during and long after the resolution of the fault.

To summarize, this case study on real data from a chemical process demonstrates the higher ac-

curacy, specificity, and robustness in FDI of the BRNN-based method over (D)PCA-based methods.

The proposed method is also shown to provide precise and easily interpretable results for prompt

diagnosis and mitigation of fault events in real manufacturing processes.

5. Conclusion

This article proposes a novel BRNN-based FDI method for manufacturing processes. The pro-

posed method simultaneously tackles three key challenges in modeling real process data: (1) con-

current spatio-temporal correlations, (2) nonlinearity, and (3) incomplete characterization of the

uncertainty in process noise and dynamics. The BRNN model addresses these challenges because of

its probabilistic framework built on RNN models. And, for implementation efficiency, the inference

is made using variational dropout, which both regularizes the NN during training and efficiently

estimates the uncertainty as it evolves through time.

The uncertainty estimates of the BRNN model play a crucial role in FDI. By continuously

estimating the uncertainty, the BRNN model provides adaptive confidence intervals that fully char-

acterize the system dynamics based on the current and past information. As demonstrated here,

the BRNN framework therefore enables:

(1) fault detection in processes with nonlinear dynamics, and

(2) direct fault identification with easily interpreted identification plots and fault propagation path

analysis.

The effectiveness of the proposed BRNN method is demonstrated in two case studies: (1) the

benchmark TEP dataset and (2) a real chemical manufacturing dataset. The proposed method is

compared to the widely applied PCA and DPCA methods, using either full and reduced dimension

models. The comparisons show that the BRNN model provides results that are accurate and more

specific and directly relevant for fault identification. Furthermore, based on its results, one can

distinguish the nature of the faults, between controllable, back to control, or uncontrollable faults.
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More broadly, the application of Bayesian methods to fault detection is not a widely explored

field. To that end, this paper demonstrates a novel framework involving the systematic application

of spatio-temporal models with Bayesian estimation such that the posterior inference results are

directly relevant for detection and identification. In this case, a BRNN is used, but the strategy

could be adapted for other spatio-temporal models such as dynamic process models.

The proposed BRNN-based FDI framework can be directly applied to any manufacturing process

with historical NOC measurements without significant modifications. Moreover, the easy implemen-

tation of variational dropout to any model architecture and concurrent online calculating capability

make BRNN feasible for large-scale industrial applications.

Some considerations for future work might include:

(1) The online adaptation of the BRNN model for changing NOC. In real chemical processes, the

process conditions evolve and it is unlikely that the training data can cover all of the NOC

modes. Thus, online adaptation is crucial for reducing false alarms and maintenance costs.

(2) While proposed here for FDI, the BRNN model framework also has broad potential applications

in industrial manufacturing processes related to time series analysis. The variational dropout

can be applied to any deep learning model without modification of the model architecture, which

makes it a preferable probabilistic model as compared to other recent advanced techniques.
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