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Highlights

• ChromaTech is presented to solve a liquid chromatography general rate
model.

• The discontinuous Galerkin spectral element method is shown to be stable
and fast.

• The performance of ChromaTech is tested by comparing against CADET.

• Superior efficiency of spectral methods over second order spatially accurate
methods is shown.

• ChromaTech is suitable as a building block in advanced model-based dig-
italization strategies.
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Abstract

ChromaTech is a simulator for preparative liquid chromatography processes with mass transport described by the pore and surface
diffusion general rate model. A discontinuous Galerkin spectral element method is used for spatial discretization with exponen-
tial decay of approximation errors within elements. The code is validated by numerically reproducing a high-precision reference
obtained with CADET-semi-analytic. The performance of ChromaTech is tested by comparing against CADET, a dedicated code
based on a weighted essentially non-oscillatory finite volume method with second (low) order spatial accuracy. Reassuringly,
ChromaTech provides exactly the same chromatograms as CADET for multicomponent protein purification cases with linear and
non-linear adsorption dynamics. However, the numerical results show, that ChromaTech has superior efficiency in terms of compu-
tational cost and discrete problem size without compromising stability. The spatial discretization is the major difference between
the two codes for solution of the pore and surface diffusion general rate model. Thus, it demonstrates, that spectral methods are
not just competitive with second (low) order accurate methods often used by default, but simply a superior approach for spatial
discretization of liquid chromatography flow problems in terms of computational efficiency.

Keywords: High-order; Discontinuous Galerkin Spectral element method; Liquid chromatography; Steric-mass-action isotherm;
General rate model; Parallel pore/surface diffusion

1. Introduction

Biopharmaceuticals provide important therapeutic options
for many serious clinical conditions (Sanchez-Garcia et al.,
2016). Unfortunately, access to these products remains a signif-
icant problem for patients. That is often because of high treat-
ment cost (Kozlowski et al., 2011; Monk et al., 2017; Cherny
et al., 2016), e.g. a monoclonal antibody treatment for cancer
can cost up to $35,000 annually per patient (Farid, 2007).

Today, it is globally accepted to develop biopharmaceticals
that are similar to a reference product (biosimilars) to reduce
drug prices (Cazap et al., 2018). With the blossoming of the
biosimilar market (Walsh, 2018), biopharmaceutical companies
are challenged by increased economical pressure from biosim-
ilars (Ahmed et al., 2012). Therefore, reduction of production
cost is likely to gain importance relative to speed-to-market as
the main market driver (Nfor et al., 2009).

The production costs are typically dominated by downstream
bioprocessing (McGlaughlin, 2012). Here, liquid chromatogra-
phy columns operated in batch-mode are core unit operations
used to recover and purify biopharmaceuticals from complex
fermentation broth. It seems unlikely that it will lose its place

∗Corresponding Author. Tel.: +45 91824054
Email address: km@meyerct.com (Kristian Meyer)

in biomanufacturing in the foreseeable future (Hanke and Ot-
tens, 2014).

In industry, chromatography columns are typically oper-
ated based on robust and fixed manufacturing schedules (Close
et al., 2014) without feedback control and plant-wide coordina-
tion. This causes a loss of performance that can potentially be
avoided, by adjusting the process with inputs that are on-time
and that are optimized, based on on-line measurements. Model
predictive control is used to reduce production costs in other
industries where efficient manufacturing has been important for
decades (Lee, 2011; Huusom, 2015), e.g. for manufactures that
uses distillation columns (Meyer et al., 2017).

Recently, the benefits of plant-wide process control for
biomanufacturing has been demonstrated in small-scale equip-
ment (Gomis-Fons et al., 2020; Feidl et al., 2020). Moreover,
the benefits of model predictive control have been demonstrated
for several chromatographic systems, see e.g. Papathanasiou
et al. (2017); Engell (2007). However, the solution of optimal
control problems constrained by non-linear chromatographic
models is computationally demanding (Holmqvist and Mag-
nusson, 2016), especially if combined with non-linear state es-
timation such as the extended Kalman filter to handle process
uncertainty and plant-model mismatch (Hrsholt et al., 2019a,b).
Other relevant numerical challenges arise for e.g. Bayesian in-
ference applications (Briskot et al., 2019), process synthesis

Preprint submitted to Computers and Chemical Engineering July 8, 2020

                  



of detailed flow-sheets (Pirrung et al., 2017, 2019), simulation
of 2D general rate models (Qamar et al., 2017), and for sim-
ulation of chromatography models with inhomogeneous resin
beads (Gerontas et al., 2013; Püttmann et al., 2014).

Thus, the current digitalization of biomanufacturing pro-
cesses (Nargund et al., 2019) can benefit from more efficient al-
gorithms to solve non-linear mechanistic-type process models.
For this reason, ChromaTech (Meyer Chroma Technology ApS,
Technical University of Denmark) (Meyer, 2020) has been de-
veloped. In this work, the attention will be on batch chromatog-
raphy, although the presented method can be extended to e.g.
continuous chromatographic systems (Rathore et al., 2018).

ChromaTech is based on a discontinuous Galerkin spec-
tral element method in nodal form (Hesthaven and Warburton,
2002, 2008), that allows arbitrary high-order (spectral) conver-
gence within elements while retaining stability of the method
(Meyer et al., 2018b, 2019). Moreover, the method is mass-
conservative and can be naturally extended to support mesh
refinement with adaptive element sizes and polynomial orders
(hp-adaptivity), see e.g. Palm et al. (2017). The discontinuous
Galerkin method can be considered a high-order generalization
of the finite volume method (Dumbser et al., 2008).

A multi-element formulation is used to discretize the
convection-dominated mobile phase flow to localize steep con-
centration fronts within elements. The purely diffusive flow in
the pore phase is discretized within a single-element domain
with global spectral convergence rate.

Such spectral methods are in general gaining prominence in
science and engineering over traditional methods with second
(low) order spatial accuracy due to improved accuracy at re-
duced computational costs (Xu et al., 2018). However, their use
is often limited by their complexity, which makes them chal-
lenging to implement and use. ChromaTech encloses the math-
ematical complexities of these methods in efficient C++ routines,
with the aim of making them accessible to the biomanufactur-
ing industries.

Here, the objective is to demonstrate the computational bene-
fits of using spectral discontinuous Galerkin methods compared
to second (low) order methods often used by default for spatial
discretization of chromatography models. The performance is
measured in terms of computational cost and discrete problem
size (i.e. the length of the state-vector) while stability must be
retained. A small discrete problem size is beneficial since a
smaller system has to be stored and integrated in time. More-
over, it is beneficial for non-linear state estimation (Hrsholt
et al., 2019a).

The Chromatography Analysis and Design Toolkit (CADET)
(Jlich Research Center) (von Lieres and Andersson, 2010;
Püttmann et al., 2013; Leweke and von Lieres, 2018) is used
for benchmark comparisons. It is based on a second (low) or-
der accurate weighted essentially non-oscillatory finite volume
method typically used due to strong built-in stability properties.
It is well suited as a benchmark, since its C++ implementation
has been optimized over long development time lines. More-
over, it is the only chromatography simulator that is open source
and free of charge with unlimited functionality enabling us to
extract relevant information for benchmarking purposes. Such

information is often difficult to extract from commercial prod-
ucts such as Aspen Chromatography (AspenTech), Virtual Col-
umn (Dionex), Chrom Works (Ypso-Facto), ChromX (GoSil-
ico) and Chromulator (Ohio University). Finally, the major dif-
ference between ChromaTech and CADET is the spatial dis-
cretization procedure, enabling us to compare different strate-
gies.

This paper is organized as follows: Section two presents
the pore and surface diffusion general rate model. In section
three, the numerical solution procedure used in ChromaTech
is described and its implementation is compared with CADET.
Section four presents an analytical solution technique which is
used to validate correct implementation of ChromaTech in sec-
tion five. Additionally, section five presents benchmark com-
parisons of ChromaTech against CADET. Finally, concluding
remarks are collected in section six.

2. The chromatography model

In this section, the governing equations are given for the
pore and surface diffusion general rate model (Costa and Ro-
drigues, 1985a,b; Ma et al., 1996; Schmidt-Traub et al., 2012)
with ion-exchange adsorption (Brooks and Cramer, 1992). The
model accounts for axial mass transport by forced convection
and dispersion in the mobile phase percolating through the col-
umn, mass transport from the mobile phase through the lam-
inar boundary layer surrounding the porous column particles
(beads) by film diffusion, and mass transport inside the particle
pore system by pore and surface diffusion. A conceptual illus-
tration of the mass transport phenomena and the ion-exchange
adsorption process involved is given in Fig. 1.

2.1. Mass transport in the mobile phase

The mass balance for the mobile phase (the interstitial col-
umn volume) is given by (Schmidt-Traub et al., 2012)

∂ci

∂t
(z, t) = −∂ fi

∂z
(z, t) − Fc

3
Rp

ji(z, t) , (1a)

fi(z, t) = vintci(z, t) − Dax
∂ci

∂z
(z, t) , (1b)

ji(z, t) = kfilm,i

(
ci(z, t) − cp,i(z, t)

∣∣∣
r=Rp

)
, (1c)

for all the components i ∈ [0,Nc]. Here, i = 0 represents the
salt component, and i = 1, . . . ,Nc represents Nc proteins. More-
over, ci and cp,i are the (unbound) mobile phase and pore phase
concentrations, respectively, fi are mobile phase convective-
dispersive fluxes, vint is the interstitial velocity, Dax is the axial
dispersion coefficient, Fc = (1 − εc) /εc is the column phase ra-
tio, εc is the column porosity, Rp is the radius of the porous
particles, ji are fluxes from the mobile phase into the pore
phase, and kfilm,i are film mass transfer coefficients. Addition-
ally, z ∈ Ωz = [0, L] is the axial position in the axial domain
Ωz, L is the column length, t ∈ [0,∞) is the time variable,
r ∈ Ωr = [0,Rp] is the position along the radius of the porous
particles in the radial domain Ωr.
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Figure 1: Conceptual illustration of the transport phenomena included in the pore and surface diffusion general rate model and of the ion-exchange adsorption
processes to ligands attached to the inside of the porous particles.

2.2. Mass transport in the pore phase
The mass balance for the pore phase (the pore volume) is

modelled as Fick’s diffusion in spherical coordinates (Schmidt-
Traub et al., 2012). It is given by

(
∂cp,i

∂t
(z, r, t) + Fp

∂qi

∂t
(z, r, t)

)

=
1
r2

∂

∂r

[
r2

(
Dp,i

∂cp,i

∂r
(z, r, t) + Ds,iFp

∂qi

∂r
(z, r, t)

)]
,

(2)

for all the components i ∈ [0,Nc]. Here, Dp,i and Ds,i are pore
and surface diffusion coefficients, respectively, Fp = (1−εp)/εp

is the particle phase ratio, εp is the particle porosity, q0 is the
(bound) stationary phase concentration of salt counter-ions, and
qi, i = 1, . . . ,Nc are (bound) stationary phase concentrations of
proteins.

2.3. Adsorption isotherm
Assuming that the stationary phase salt counter-ions that are

accessible for exchange qacc
0 are monovalent, the ion-exchange

stoichiometric scheme is

cp,i + νiq
acc
0 ⇔ qi + νicp,0, ∀i = 1, . . . ,Nc , (3)

where νi are characteristic charges of the adsorbing proteins.
The concentration of accessible salt counter-ions are calculable
from the electroneutrality condition

Λ = qacc
0 +

Nc∑

j=1

(
σ j + ν j

)
q j , (4)

where Λ is the ionic capacity, and σi are the number of inac-
cessible (shielded) binding sites due to the ith adsorbed protein.
The total salt concentration is

q0 = qacc
0 +

Nc∑

j=1

σ jq j = ω0 . (5)

The thermodynamic equilibrium constant Keq,i for the stoichio-
metric scheme Eq. (3) is defined in terms of concentrations by
(Atkins and de Paula, 1998)

Keq,i =
qi

cp,i

(
cp,0

qacc
0

)νi

, (6)

where it is assumed that none of the involved components con-
tribute to non-ideal behaviour of the mixture. Combining Eqs.
(6) and (4) gives the steric-mass-action isotherm (Brooks and
Cramer, 1992)

qi = cp,iAi

1 −
Nc∑

j=1

q j

qmax, j



νi

= ωi , (7)

where Ai = Keq,i

(
Λ/cp,0

)νi
are initial isotherm slopes, and

qmax, j = Λ/(σi + νi) are maximum binding capacities.
For dilute systems, the stationary phase concentrations are

much lower compared to the capacities, i.e. qi � qmax,i, i =

1, . . . ,Nc. Then, Eq. (7) simplifies for the ith component to the
linear isotherm

qi ≈ cp,iAi . (8)

2.4. Boundary conditions and initial values
To complete the model, appropriate boundary and initial con-

ditions are specified. Danckwerts boundary conditions (Danck-
werts, 1953) are applied at the column inlet and outlet. The
inlet Robin conditions are given by

fi(t)|z=0 = vintcinj,i(t), ∀i ∈ [0,Nc] , (9)

such that the injected fluxes vintcinj,i(t) are dispersed immedi-
ately upon entering the column. For simplicity, a rectangular
injection profile can be assumed, i.e.

vintcinj,i(t) =

{
vintcf,i, 0 ≤ t ≤ tinj,
0, t > tinj ,

(10)
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for all the proteins i ∈ [1,Nc]. Here, cf,i are protein feed concen-
trations and tinj is the injection time. The salt injection profile
cinj,0 can be chosen to manipulate the equilibrium conditions in
the column using e.g. step or gradient profiles. Neumann con-
ditions are used on the column outlet

∂ci

∂z
(t)

∣∣∣∣∣
z=L

= 0, ∀i ∈ [0,Nc] , (11)

such that the concentration does not change after leaving the
column. At the particle surface, the following flux boundary
conditions are used:

Dp,i
∂cp,i

∂r
(z, t)

∣∣∣∣∣∣
r=Rp

+ FpDs,i
∂qi

∂r
(z, t)

∣∣∣∣∣
r=Rp

=
ji(z, t)
εp

, ∀i ∈ [0,Nc] .

(12)

Due to symmetry, Neumann conditions are used at the center of
the particles, i.e.

∂cp,i

∂r
(z, t)

∣∣∣∣∣∣
r=0

= 0, ∀i ∈ [0,Nc] . (13)

The mobile phase concentrations representing a column
which is initially empty from proteins and equilibrated with
running salt buffer are given by

ci(z)|t=0 = 0, ∀i ∈ [1,Nc] , (14a)

c0(z)|t=0 = c0,init , (14b)

where c0,init is the salt concentration of the buffer used to equili-
brate the column. Initial pore phase concentrations representing
particles that are equilibrated are given by

cp,i(z, r)
∣∣∣
t=0

= 0, ∀i ∈ [1,Nc] , (15a)

cp,0(z, r)
∣∣∣
t=0

= c0,init . (15b)

Finally, the stationary phase concentrations for initially equili-
brated particles are

qi(z, r)|t=0 = 0, ∀i ∈ [1,Nc] , (16a)

q0(z, r)|t=0 = Λ , (16b)

such that the electroneutrality condition is fulfilled.

3. Numerical solution techniques used in ChromaTech

In this section, the numerical techniques used in ChromaTech
to solve the chromatography model are given. A method of
lines approach is considered. The spatial differential operators
are discretized first resulting in a semi-discrete system (discrete
in space, continuous in time) of differential algebraic equations
to be integrated in time from consistent initial conditions.

3.1. The standard nodal element

A standard nodal element (Hesthaven and Warburton, 2002,
2008) is constructed with reference region I = [−1, 1] and ref-
erence variable ξ ∈ I. The core element-level operations are
implemented on this standard element, such that only one set of
operators has to be stored.

The numerical approximation yh to the exact solution y can
be expressed through a polynomial dual interpolation of the
form

y(ξ, t) ≈ yh(ξ, t) =

Np∑

m=1

yh(t)|ξm
lm(ξ) =

Np∑

m=1

ŷm(t)P̃m−1(ξ) , (17)

which is valid provided that the grid nodes {ξm}Np

m=1 are distinct.
Here, ŷm are interpolatory expansion coefficients, P̃m−1 are or-
thonormal Legendre polynomials, and lm are Lagrange interpo-
lating polynomials defined in terms of the Np distinct grid nodes
ξm with cardinal property ln(ξm) = δnm (δnm is the Kronecker
delta). The grid nodes {ξn}Np

n=1 are chosen as the Legendre-
Gauss-Lobatto quadrature (the Fekete/Fejr) nodes since this set
is near-optimal in terms of the Lebesgue constant (Hesthaven,
1998) and includes the interval boundaries.

The non-singular generalized Vandermonde matrix V with
elementsVnm = P̃m−1(ξn) can be used to relate the interpolatory
expansion coefficients ŷm to the nodal coefficients y(ξm) by

yh = Vŷ , (18)

where
yh =

[
yh(t)|ξ1

, . . . , yh(t)|ξNp

]ᵀ
, (19)

is a vector of nodal coefficients, and

ŷ =
[
ŷ1(t), . . . , ŷNp (t)

]ᵀ
, (20)

is a vector of interpolatory expansion coefficients. Moreover,
it expresses the Lagrange interpolating polynomials in terms of
the orthonormal Legendre polynomials

Vᵀ l = P̃ , (21)

where
l =

[
l1(ξ), . . . , lNp (ξ)

]ᵀ
, (22)

is a vector of Lagrange interpolating polynomials and

P̃ =
[
P̃0(ξ), . . . , P̃N(ξ)

]ᵀ
, (23)

is a vector of orthonormal Legendre polynomials of order at
most N = Np − 1.

Choosing a nodal representation, the following matrices are
needed to design spectral methods

Mnm =

∫ 1

−1
ln(ξ)lm(ξ)dξ, M = (VVᵀ)−1 , (24a)

Snm =

∫ 1

−1
ln(ξ)

dlm
dξ

(ξ)dξ, S =MD, (24b)

where orthonormality of the basis functions is exploited instead
of using a quadrature rule to calculate the integrals. Here,M is
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the nodal mass matrix, S is the nodal first-order stiffness matrix
and the differentiation matrixD has element values

Dnm =
dlm
dξ

∣∣∣∣∣
ξn

. (25)

It is calculable as

D = VξV−1, Vξ,(nm) =
dP̃m−1

dξ

∣∣∣∣∣∣
ξn

. (26)

Moreover, the lifting matrixL is introduced to compute surface
integrals,

L =M−1E, Ei,1 = li(−1), Ei,2 = li(1) , (27)

where E is a zero matrix with E1,1 = 1 and ENp,2 = 1 due to the
property ln(ξm) = δnm.

Alternatively, the interpolant yh can be expressed as

yh(ξ, t) =

Np∑

m=1

yh(t)|ξm
lm(ξ) =

Np∑

m=1

ŷm(t)P̃(0,2)
m−1(ξ) , (28)

where P̃(0,2)
m−1 are orthonormal Jacobi polynomials with weight

function w = (1 + ξ)2. Using this formulation, the following
matrices can be computed exactly by exploiting the weighted
orthonormality of the basis:

M(0,2)
nm =

∫ 1

−1
ln(ξ)lm(ξ)(1 + ξ)2dξ,

M(0,2) =
(
V(0,2)

(
V(0,2)

)ᵀ)−1
,

(29a)

A(0,2)
nm =

∫ 1

−1

dln
dξ

(ξ)
dlm
dξ

(ξ)(1 + ξ)2dξ,

A(0,2) =
(
D(0,2)

)ᵀM(0,2)D(0,2) ,

(29b)

leaving the implementation quadrature-free. Here, M(0,2) is a
weighted nodal mass matrix,A(0,2) is a weighted nodal second-
order stiffness matrix,V(0,2) is a non-singular generalized Van-
dermonde matrix with elementsV(0,2)

nm = P̃(0,2)
m−1(ξn), and the dif-

ferentiation matrixD(0,2) is computed using

D(0,2) = V(0,2)
ξ

(
V(0,2)

)−1
, V(0,2)

ξ,(nm) =
dP̃(0,2)

m−1

dξ

∣∣∣∣∣∣∣
ξn

. (30)

Finally, the weighted lifting matrix Lw is introduced as

L(0,2) =
(
M(0,2)

)−1 E . (31)

3.2. Spatial discretization in the axial direction

In this section, the axial differential operators in Eq. (1)
are discretized using a discontinuous Galerkin spectral element
method.

3.2.1. The computational domain
The computational domain Ωz is divided into Ne non-

overlapping axial elements Ωk
z , such that Ωz =

⋃Ne

k=1 Ωk
z . Each

Ωk
z is mapped to the standard element by an affine mapping

ξk
z (z) =

2
(
z − zk

L

)

∆zk
− 1 , (32)

where ∆zk = zk
R − zk

L is the element size of Ωk
z , zk

L and zk
R are

the left and right edges of Ωk
z , respectively, and Jk

z = 2/∆zk is
Jacobian of the affine mapping.

3.2.2. General formulation
To apply the discontinuous Galerkin spectral element method

on second order differential operators, the approach of Bassi
and Rebay (1997) is used. That is, Eq. (1) is rewritten as an
equivalent first order system to give for the ith component

∂ci

∂t
= −∂hi

∂z
− Fc

3
Rp

ji , (33a)

gi =
√

Dax
∂ci

∂z
, (33b)

where gi are gradient variables and hi = vintci −
√

Daxgi are
mobile phase fluxes.

The starting point is to cast Eq. (33) in a finite-dimensional
weak form by multiplying (33) by test functions vz

h ∈ Vz
h, inte-

grating over the domain Ωz, and finally performing integration
by parts. In spectral element methods, the approximate solu-
tions ch,i and ghi to the exact functions ci and gi, respectively,
are chosen to belong to a finite-dimensional trial space Uz

h. The
finite dimensional spaces of trial Uz

h and test Vz
h functions are

chosen to coincide according to the Galerkin method. To obtain
a discontinuous Galerkin method, these spaces are chosen to be
broken spaces. That is

Uz
h = Vz

h =

Ne⊕

k=1

Vk
h =

Ne⊕

k=1

span
{(

lm ◦ ξk
z

)}Nz
p

m=1
, (34)

where the local finite dimensional spaces Vk
h are populated with

Lagrange interpolating polynomials lm of degree at most Nz =

Nz
p − 1 giving a nodal method.
Since Vz

h is a broken space, a strictly local finite-dimensional
weak form can be considered. It can be expressed for the ith
component, and for the kth axial element as follows: find uh ∈
Vk

h and gh ∈ Vk
h such that

∫

Ωk
z

∂ch,i

∂t
lkmdz =

∫

Ωk
z

hh,i
∂lkm
∂z

dz −
∫

∂Ωk
z

n̂hh,il
k
mdz

− Fc
3

Rp

∫

Ωk
z

jh,il
k
mdz ,

(35a)

∫

Ωk
z

gh,il
k
mdz = −

√
Dax

∫

Ωk
z

ch,i
∂lkm
∂z

dz

+
√

Dax

∫

∂Ωk
z

n̂ch,il
k
mdz ,

(35b)

5

                  



for all Lagrange interpolating polynomials lkm, m = 1, . . . ,Nz
p.

In Eq. (35), n̂ is the outward pointing unit normal, ∂Ωk
z are

the edges of Ωk
z , hh,i = vintch,i −

√
Daxgh,i is an approximate

solution to hi, jh,i = kfilm,i

(
ch,i − ch,p,i

∣∣∣
r=Rp

)
is an approximate

solution to ji and ch,p,i is an approximate solution to the pore
phase concentration cp,i defined later in section 3.3.

As a consequence of the finite dimensional test space Vz
h be-

ing broken, the fluxes hh,i

∣∣∣∂Ωk
z

and
√

Daxch,i

∣∣∣∂Ωk
z

are multiply
defined on all axial element interfaces (see Fig. 2). To obtain
a unique and global solution, these are replaced by the numer-
ical flux functions h∗i

∣∣∣∂Ωk
z

and
√

Daxc∗i
∣∣∣∂Ωk

z
, respectively, which

depend on both the internal and external axial element edge val-
ues. The numerical flux functions are specified later in section
3.2.3.

The following weak form is obtained after replacing the
nonunique fluxes in Eq. (35) by uniquely defined numerical
fluxes:

∫

Ωk
z

∂ch,i

∂t
lkmdz =

∫

Ωk
z

hh,i
∂lkm
∂z

dz −
∫

∂Ωk
z

n̂h∗i lkmdz

− Fc
3

Rp

∫

Ωk
z

jh,il
k
mdz ,

(36a)

∫

Ωk
z

gh,il
k
mdz = −

√
Dax

∫

Ωk
z

ch,i
∂lkm
∂z

dz

+
√

Dax

∫

∂Ωk
z

n̂c∗i lkmdz ,
(36b)

for all Lagrange interpolating polynomials lkm, m = 1, . . . ,Nz
p.

It is assumed that the approximate solutions ch,i and gh,i can
be represented on the kth element as

[
ci(z, t)
gi(z, t)

]
≈

[
ch,i(z, t)
gh,i(z, t)

]
=

Nz
p∑

m=1


ch,i(t)

∣∣∣
zk

m

gh,i(t)
∣∣∣
zk

m

 lm(ξk
z (z)) , (37)

where
{
zk

m

}Nz
p

m=1
is a set of axial grid nodes in the physical element

Ωk
z . Inserting Eq. (37) into (36) gives a system of ordinary

differential equations to recover the local solution on the kth
element as,

∂ck
h,i

∂t
= Jk

zM−1ST hk
h,i − Fc

3
Rp

jkh,i

− Jk
zLn̂h∗i

∣∣∣∂Ωk
z

,

(38a)

gk
h,i = −

√
DaxJk

zM−1ST ck
h,i

+
√

DaxJk
zLn̂c∗i

∣∣∣∂Ωk
z

,
(38b)

where

ck
h,i =

[
ch,i(t)

∣∣∣
zk

1
, . . . , ch,i(t)

∣∣∣
zk

Nz
p

]ᵀ
, (39)

is a vector of nodal mobile phase concentrations,

hk
h,i =

[
hh,i(t)

∣∣∣
zk

1
, . . . , hh,i(t)

∣∣∣
zk

Nz
p

]ᵀ
, (40)

is a vector of nodal mobile phase fluxes,

jkh,i =

[
jh,i(t)

∣∣∣
zk

1
, . . . , jh,i(t)

∣∣∣
zk

Nz
p

]ᵀ
, (41)

is a vector of nodal fluxes from the mobile phase into the pore
phase, and

gk
h,i =

[
gh,i(t)

∣∣∣
zk

1
, . . . , gh,i(t)

∣∣∣
zk

Nz
p

]ᵀ
, (42)

is a vector of nodal gradient variables.

Ωk−1
z (z)

Ωk
z(z)

c	h,i

∣∣∣
∂Ωk

z,L

c⊕h,i

∣∣∣
∂Ωk−1

z,R

n	

n⊕

{{ch,i}}|∂Ωk
z,L

[[ch,i]]|∂Ωk
z,L

Ωr(r) Ωr(r)

Ωr(r) Ωr(r)

Figure 2: A discontinuous Galerkin interface with notation given for the left
interface on the kth axial element with k = 2, . . . ,Ne − 1. Note that two radial
elements are associated with each interface. ∂Ωk

z,L is the left interface of the kth

element and ∂Ωk−1
z,R is the right interface of the k − 1th element.

3.2.3. Numerical fluxes
To complete the scheme, suitable numerical fluxes must be

specified. The notation

{{y}} = 0.5
(
y	 + y⊕

)
,

[[
y
]]

=
(
n̂	y	 + n̂⊕y⊕

)
, (43)

is used for the average and jump at boundary interfaces ∂Ωk
z ,

respectively (see Fig. 2). In Eq. (43), the superscripts 	 and ⊕
denote the interior and exterior boundary values, respectively.

The numerical flux h∗i is composed of a convective and a dif-
fusive part, i.e.

h∗i = h∗i,conv + h∗i,diff , (44)

where

h∗i,conv = vintc
∗
i

(
c	h,i, c

⊕
h,i

)
, (45a)

h∗i,diff = −
√

Daxg∗i
(
g	h,i, g

⊕
h,i

)
. (45b)

The convective part of the flux is for the ith component approx-
imated by a Lax-Friedrichs flux

h∗i,conv = vint
{{

ch,i
}}

+ 0.5vint
[[

ch,i
]]

, (46)

which simplifies to an upwind flux due to linearity of the con-
vective flux. For the diffusive flux, an internal penalty flux
(Douglas and Dupont, 1976; Douglas et al., 2002) is chosen

h∗i,diff =
√

Dax
({{

gh,i
}} − τ [[

ch,i
]])

, (47)
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where τ is a penalizing constant to control jumps in the solution
of ck

h,i. It is chosen using the following scaling

τ =
(Nz)2

∆zk
, (48)

where a central flux is obtained by specifying τ = 0.
Finally, the numerical flux

√
Daxc∗i is specified for the ith

component as the central flux
√

Daxc∗i =
√

Dax
{{

ch,i
}}

, (49)

such that gk
h,i can be eliminated locally in Eq. (38).

3.2.4. Boundary conditions
The boundary conditions are imposed weakly through the nu-

merical fluxes by exploiting a symmetry principle.
The inlet Robin condition Eq. (9) is imposed for the ith com-

ponent by specifying the external convective flux at the column
inlet z = 0 as

vint c⊕h,i(t)
∣∣∣
0

= 2vintcinj,i(t) − vint c	h,i(t)
∣∣∣
0

⇒ vint
{{

ch,i(t)
}}∣∣∣

0
= vintcinj,i(t) ,

(50)

and the external diffusive flux as
√

Dax,i g⊕h,i(t)
∣∣∣
0

= −
√

Dax,i g	h,i(t)
∣∣∣
0

⇒
√

Dax,i
{{

gh,i(t)
}}∣∣∣

0
= 0 ,

(51)

such that the convective-dispersive mobile phase flux equals the
inlet flux on average.

The outlet Neumann condition Eq. (11) is implemented for
the ith component by defining the external convective flux on
the column outlet at z = L as

vint c⊕h,i(t)
∣∣∣
L

= vint c	h,i(t)
∣∣∣
L

⇒ vint
{{

ch,i(t)
}}∣∣∣

L
= vint c	h,i

∣∣∣
L

,
(52)

such that it is unmodified and the external diffusive flux as
√

Dax,i g⊕h,i(t)
∣∣∣
L

= −
√

Dax,i g	h,i(t)
∣∣∣
L

⇒
√

Dax,i
{{

gh,i(t)
}}∣∣∣

L
= 0 ,

(53)

such that it is zero on average.
Since the boundary conditions are imposed through the nu-

merical flux h∗i , the external fluxes required to compute
√

Daxc∗i
on the domain end points are specified such that the solution is
unmodified. That gives for the ith component

√
Dax,i c⊕h,i(t)

∣∣∣
0

=
√

Dax,i c	h,i
∣∣∣
0

⇒
√

Dax,i
{{

ch,i(t)
}}∣∣∣

0
=
√

Dax,i c	h,i(t)
∣∣∣
0

,
(54a)

√
Dax,i c⊕h,i

∣∣∣
L

=
√

Dax,i c	h,i
∣∣∣
L

⇒
√

Dax,i
{{

ch,i(t)
}}∣∣∣

L
=
√

Dax,i c	h,i(t)
∣∣∣
L

.
(54b)

3.3. Spatial discretization in the radial direction

In this section, the radial differential operators in Eq. (2) are
discretized using a discontinuous Galerkin spectral method.

3.3.1. Computational domain
The computational domain Ωr is composed of a single radial

element. The domain Ωr is mapped to the standard element by
an affine mapping

ξr(r) =
2r
Rp
− 1 , (55)

where Jr = 2/Rp is the Jacobian of the affine mapping.

3.3.2. General formulation
The finite-dimensional weak formulation for the pore phase

concentrations takes the following form for the ith component
and the kth axial element: Find ch,p,i ∈ Vr

h and qh,i ∈ Vr
h such

that
∫

Ωk
z

∫

Ωr

(
∂ch,p,i

∂t
+ Fp

∂qh,i

∂t

)
r2lm(r)drlkn(z)dz

= −
∫

Ωk
z

∫

Ωr

(
Dp,i

∂ch,p,i

∂r

+Ds,iFp
∂qh,i

∂r

)
r2 ∂lm
∂r

drlkn(z)dz

+

∫

Ωk
z

∫

∂Ωr

n̂
(
Dp,i

∂ch,p,i

∂r

+ Ds,iFp
∂qh,i

∂r

)
r2lm(r)drlkn(z)dz ,

(56)

for all Lagrange interpolating polynomials lm(r), m = 1, . . . ,Nr
p

and lkn(z), n = 1, . . . ,Nz
p. Here, ∂Ωr are edges of the radial

domain Ωr, qh,i are approximate solutions to qi, and the finite
dimensional space of test functions Vr

h consists of Lagrange in-
terpolating polynomials lm(r) of order at most Nr = Nr

p − 1 and
lkn(z) of order at most Nz, i.e.

Vr
h =

Ne⊕

k=1

span
{
ln ◦ ξk

z

}Nz
p

n=1
⊗ span {lm ◦ ξr}N

r
p

m=1 . (57)

It is assumed that the approximate solutions ch,p,i and qh,i can
be represented on the kth axial element as

[
cp,i(z, r, t)
qh,i(z, r, t)

]
≈

[
ch,p,i (z, r, t)
qh.i(z, r, t)

]

=

Nz
p∑

n=1

Nr
p∑

m=1


ch,p,i(t)

∣∣∣(zk
n,rm)

qh.i(t)|(zk
n,rm)

 ln
(
ξk

z (z)
)

lm (ξr (r)) ,

(58)

where {rm}N
r
p

m=1 is a set of radial grid nodes in the physical ele-
ment Ωr. Inserting Eq. (58) and the boundary conditions (12)
and (13) into (56) gives the following system of ordinary differ-
ential equations

∂ck,n
h,p,i

∂t
= −J2

r

(
M(0,2)

)−1A(0,2)
(
Dp,ic

k,n
h,p,i + Ds,iFpqk,n

h,i

)

+J3
rL(0,2)

[
0(

ji/εp

)
R2

p

]
,

(59)

for all axial grid nodes zk
n, n = 1, . . . ,Nz

p. Here,

ck,n
h,p,i =

[
ch,p,i(t)

∣∣∣
zk

n,r1
, . . . , ch,p,i(t)

∣∣∣
zk

n,rNr
p

]
, (60)
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is a vector of nodal pore phase concentrations, and

qk,n
h,i =

[
qh,i(t)

∣∣∣
zk

n,r1,
, . . . , qh,i(t)

∣∣∣
zk

n,rNr
p

]
, (61)

is a vector of nodal stationary phase concentrations.

3.4. Discretization of the stationary phase concentrations

The finite-dimensional weak formulation for the stationary
phase concentrations takes the following form for the ith com-
ponent and the kth axial element: Find ch,p,i ∈ Vr

h and qh,i ∈ Vr
h

such that
∫

Ωk
z

∫

Ωr

qh,ilm(r)drlkn(z)dz =

∫

Ωk
z

∫

Ωr

ωh,ilm(r)drln(z)dz , (62)

for all Lagrange interpolating polynomials lm(r), m = 1, . . . ,Nr
p

and lkn(z), n = 1, . . . ,Nz
p. Here,

ωh,i = ch,p,iAh,i

1 −
Nc∑

j=1

qh, j

qmax, j



vi

, (63)

are approximations to the isotherm functions ωi and Ah,i =

Keq,i

(
Λ/ch,p,0

)νi
are approximations to the initial isotherm

slopes Ai.
It is assumed that the approximate isotherm functions ωh,i

can be represented on the kth axial element as

ωi(z, r, t) ≈ ωh,i(z, r, t)

=

Nz
p∑

n=1

Nr
p∑

m=1

ωh,i(t)
∣∣∣
zk

n,rm
ln

(
ξk

z (z)
)

lm (ξr(r)) .
(64)

Note that such an interpolation can introduce aliasing errors on
coarse grids since ωi is a non-linear function. These errors can
be reduced without increasing the discrete problem size by us-
ing e.g. spectral filtering or over-integration techniques at in-
creased computational cost (Gassner and Beck, 2013; Engsig-
Karup et al., 2016). In this work, it is accepted that aliasing
errors might occur on coarse grids and they are removed by in-
creasing the grid resolution if necessary.

Inserting Eq. (64) into (62) gives a set of algebraic con-
straints

qk,n
h,i = ωk,n

h,i , (65)

for all axial grid nodes zk
n, n = 1, . . . ,Nz

p. In Eq. (65),

ωk,n
h,i =

[
ωh,i(t)

∣∣∣
zk

n,r1
, . . . , ωh,i(t)

∣∣∣
zk

n,rNr
p

]
, (66)

is a vector of nodal isotherm functions.

3.5. Temporal discretization

In this section, the time-integration of the system of differen-
tial algebraic equations obtained after spatial discretization is
described.

0 20 40 60 80 100 120 140 160 180 200

0
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Dynamic

∂ (·)
∂ch

∂ (·)
∂ch,p

∂ (·)
∂qh

∂qh

∂ (·)

∂ch,p
∂ (·)

∂ch
∂ (·)

Figure 3: Sparsity pattern for the matrix dF/du in Eq. (71) for a four compo-
nent system (Nc = 4, Ne = 5, Nz = 1, Nr = 1). The blue triangles and red
circles represent static and dynamic dependencies, respectively.

3.5.1. The residual formulation
The semi-discrete system of differential algebraic equations

is advanced in time in fully implicit form:

F(t,u,u′) = 0, u|t=0 = u0, u′
∣∣∣
t=0

= u′0 , (67)

where u =
[
ch, cp,h, qh

]ᵀ ∈ RNcNeNz
p+2NcNeNz

pNr
p is the state vector

with ch ∈ RNcNeNz
p , ch,p ∈ RNcNeNz

pNr
p and qh ∈ RNcNeNz

pNr
p , u0 con-

tains the initial conditions, and u′ contains the time derivative
of the state vector.

Eq. (67) is advanced in time using the implicit differential-
algebraic (IDA) solver from the suite of non-linear and
differential-algebraic equation solvers (SUNDIALS) (Hind-
marsh et al., 2005). While implicit-explicit operator split-
ting is useful in special cases (Meyer et al., 2018a), IDA uses
a more generally applicable variable-order variable-coefficient
backward differentiation formula in fixed-leading-form (Brenan
et al., 1996) to represent the temporal operator, i.e.

u′l = ∆t−1
l

Nq∑

n=0

ψl,nul−n , (68)

where u′l = u′|tl and ul−n = u|tl−n∆t, l is the current time step in-
dex, ∆tl is the current time step length, Nq ∈ [1, 5] is the order of
the method and ψl,n are coefficients uniquely determined by the
order and the history of the time step sizes. IDA uses an inter-
nal strategy to adaptively change the time step length, the order
of the method, and the corresponding coefficients. Combining
Eqs. (67) and (68) results in the following nonlinear algebraic
system to be solved at each time step:

G(ul) = F

tl,ul,∆t−1
l

Nq∑

n=0

ψl,nul−n

 = 0 . (69)

8

                  



Eq. (69) is solved using modified Newton iterations. In each
modified Newton iteration, a linear system of the following
form is solved:

J[up+1
l − up

l ] = −G(up
l ) , (70)

where p is the current Newton iteration. In Eq. (70), J is an
approximation to the system Jacobian

J =
dG
du

=
dF
du

+ ψ
dF
du′

, (71)

where ψ = ψl,0/∆tl. IDA uses an internal strategy to adaptively
update the Jacobian when required.

3.5.2. Computing the Jacobian
The Jacobian Eq. (71) is derived by hand and computed an-

alytically. Fig. 3 shows a sparsity pattern S of the Jacobian
dF/du for a four component system (Ne = 4, Nz = 1, Nr = 1).
The sparsity pattern is defined such that

Snm =


1, if (dF/du)nm 6= 0,

0, otherwise .
(72)

The discontinuous Galerkin spectral element method is a lin-
ear discretization method. Therefore, the dependencies on Eqs.
(38) and (59) result in static entries in the Jacobian. These en-
tries are pre-computed and reused in every Jacobian update.
The entries due to the non-linear steric-mass-action isotherm
Eq. (65) are dynamically changing and have to be re-computed
each time the Jacobian is updated.

The Jacobian dF/du′ is fully static and is pre-computed and
reused in every Jacobian update.

3.5.3. Consistent initial conditions
The time derivative of the initial state u′0 must be consistent

with u0 for the chosen inlet conditions cinj,i

∣∣∣
t=0

, ∀i = 0, . . . ,Nc.
Choosing the initial states u0 as described in section 2.4 en-

sures that the algebraic constraints are satisfied. Using these
initial states, a consistent state derivative u′ can be computed
from Eq. (67) by evaluating it at the initial time point t = 0.

3.6. Implementation details

ChromaTech has been implemented in C++ for performance.
To enable cross-platform compatibility, the CMake build sys-
tem (CMake, 2019) is used. It allows the development of build
scripts, that simplify the configuration and installation proce-
dure. The code is compiled with the LLVM 9.0.0 compiler us-
ing the Clang front-end (LLVM, 2019). IDA 4.1 is built using
sequential operations, since the overhead of using a parallel im-
plementation is too large for the relatively small systems solved
here. The generic SUNDIALS modules NVECTOR, SUNMatrix
and SUNLinearSolve have been overridden using custom im-
plementations based on Eigen 3.3.7 (Gaël et al., 2010), a C++
template library for linear algebra, matrices and vectors. Sparse
matrices are stored in compressed column major order, and
dense matrices in column-major order. Linear systems are

solved using Eigen’s sparse supernodal LU factorization, a gen-
eral purpose library for the solution of large, sparse, nonsym-
metric systems of linear equations. Other linear solvers includ-
ing a direct shared-memory parallelized supernode-based LU-
factorization (Demmel et al., 1999a,b) have also been tested.
However, the parallelization of the decomposition method was
not beneficial for the relatively small linear systems solved in
this work (results are not shown).

3.7. Differences in ChromaTech compared to CADET

Both ChromaTech and CADET are based on a method of
lines approach. CADET uses a second (low) order accurate
finite volume method for spatial discretization both in the axial
and radial directions leading to a relatively large state vector u.
In comparison, the state vector u obtained by ChromaTech has
a much smaller dimension due to its spectral engine.

ChromaTech advances the semi-discrete scheme in time us-
ing IDA which is similar to CADET. ChromaTech uses a mod-
ified Newton’s method to solve the nonlinear system Eq. (69).
That is, the Jacobian Eq. (71) is formed and factorized adap-
tively and not at every iteration using IDA’s internal strategy as
mentioned previously in section 3.5.1. In comparison, CADET
uses a full Newton’s method where the Jacobian is formed and
decomposed in every Newton iteration. Forming the Jacobian
matrix in every iteration speeds up the nonlinear solution pro-
cedure such that less Newton iterations are required to meet the
tolerance. However, the Jacobian matrix has to be formed and
factorized often which can be costly. The impact of this trade-
off on computational efficiency is problem dependent.

Due to the different dimensions of the state vector u, different
strategies for solving the linear system Eq. (70) are employed.
ChromaTech solves the linear system Eq. (70) using a direct
method, since its dimension is small. In comparison, CADET
splits the Jacobian Eq. (71) into smaller subsystems by domain
decomposition. Here, additional algebraic constraints are in-
troduced to link the subsystems. Then, the linear subsystems
can be solved independently in parallel (details are given by
von Lieres and Andersson (2010)). Due to the efficiency of this
strategy for solving linear systems, it is beneficial to use a full
Newton’s method in CADET.

4. Analytical solution technique

Analytical solutions have been derived for single-component
chromatography models including pores, linear adsorption and
no axial dispersion (Rosen model) but lacking a closed-form so-
lution (Rodrigues, 1984). However, there is no closed-form an-
alytical solution known to us in the time-domain for the single
component general rate model presented in this work. There-
fore, an analytical solution in the Laplace domain is used (Qa-
mar et al., 2014; Miyabe, 2014; Leweke and von Lieres, 2016).
The mobile phase concentration c in the Laplace domain c̄ is

c̄(s, z) = c̄in(s)
β1(s)
c̄in(s)

exp (λ1(s)z)

+ c̄in(s)
β2(s)
c̄in(s)

exp (λ2(s)z) ,
(73)
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Table 1: Simulation parameters taken from Qamar et al. (2014). They are used in the validation case with a single component (section 5.1)

Parameters Symbol Values Unit

Components Nc 1 -
Column porosity εc 0.4 -
Particle porosity εp 0.333 -
Particle radius Rp 0.004 cm
Film diffusion coefficient kfilm,1 0.01 cm min−1

Interstitial velocity vint 0.1 cm min−1

Axial dispersion coefficient Dax 0.002 cm2 min−1

Pore diffusion coefficient Dp,1 6.3845 · 10−5 cm2 min−1

Surface diffusion coefficient Ds,1 0 cm2 min−1

Initial isotherm slope A1 2.5 -
Feed concentration cf,1 1 g l−1

Table 2: Mobile phase errors measured in the continuous L1
Ωz

- (g l−1 cm), L2
Ωz

- (g l−1 √cm), and L∞
Ωz

-norms (g l−1) and corresponding convergence rates for the
validation case (see fully resolved simulation in Fig. 4). The polynomial order in the radial direction Nr

p and the time integration tolerances was chosen carefully
not to affect the accuracy of the simulations.

Nz Ne L1
Ωz

-error L2
Ωz

-error L∞
Ωz

-error L1
Ωz

-order L2
Ωz

-order L∞
Ωz

-order Theor.

1 128 1.24E−04 1.30E−04 8.54E−05 - - - 2
256 2.74E−05 2.76E−05 1.83E−05 2.18 2.23 2.22
512 6.34E−06 6.28E−06 4.18E−06 2.11 2.14 2.13

1024 1.52E−06 1.49E−06 9.94E−07 2.06 2.07 2.07

2 64 8.64E−06 5.10E−06 3.64E−06 - - - 3
128 9.27E−07 5.74E−07 4.06E−07 3.22 3.15 3.17
256 1.13E−07 6.81E−08 4.81E−08 3.03 3.07 3.08
512 1.47E−08 8.20E−09 5.89E−09 2.95 3.05 3.03

3 64 4.35E−07 2.59E−07 1.79E−07 - - - 4
128 2.45E−08 1.79E−08 1.24E−08 4.15 3.86 3.86
256 1.43E−09 1.14E−09 7.89E−10 4.10 3.97 3.97
512 8.85E−11 7.08E−11 4.91E−11 4.01 4.01 4.01

-
4 32 2.82E−07 1.50E−07 1.08E−07 - - - 5

64 7.87E−09 4.18E−09 2.98E−09 5.16 5.17 5.18
128 2.64E−10 1.24E−10 8.86E−11 4.9 5.08 5.07
256 9.21E−12 3.79E−12 2.74E−12 4.84 5.03 5.02

-

where s is the complex Laplace frequency, and c̄in(s) is an inlet
function in the Laplace domain. Moreover, the functions λ1, λ2,
β1 and β2 are given by e.g. Leweke and von Lieres (2016).

The open source software package CADET-semi-analytic
(Leweke and von Lieres, 2016) is used to invert Eq. (73) numer-
ically. It supports arbitrary precision arithmetics to minimize
the impact of round-off errors and gives solutions that satisfy a
proven error bound at the axial column end position, z = L (see
Leweke and von Lieres (2016) for details). Note that CADET-
semi-analytic cannot be used to obtain accurate solutions at and
in the neighbourhood of the column inlet position z = 0 since
the solution has a pole here.

5. Numerical case studies

In this section, three cases are considered to validate and test
the performance of ChromaTech.

All computations are conducted on a MacBook Pro (Early
2015) equipped with a dual core 2.7 GHz Intel Core i5 proces-
sor, 8 GB 1867 MHz DDR3 RAM and a 64-bit OS X operating
system.

CADET 4.0.0 is used as a performance benchmark. It is build
for OS X using a GNU 9.1 compiler with dependencies: IDA
3.1.2, Intel(R)’s Math Kernel Library version 2019.1.3, and In-
tel(R)’s Threading Building Blocks 2019.0.
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Figure 4: Mobile phase concentrations shown over axial column positions at
the final simulation time t f = 250 min for the validation case (section 5.1). The
model parameters taken from Qamar et al. (2014) are given in Table 1.

5.1. Case 1: Validation of ChromaTech

The purpose of this case is to validate that ChromaTech’s
engine is correctly implemented. Here, a simple case is studied
where a one-component feed mixture is injected at the column
inlet under linear adsorption conditions.

The model problem is taken from Qamar et al. (2014) and
modified such that it is easier to demonstrate correct implemen-
tation of ChromaTech. The detailed simulation parameters are
given in Table 1. The column length has been modified from
1.7 cm to 10 cm while maintaining the same dispersion coeffi-
cient. For computational reasons, it is beneficial to use a long
column, since convergence rates are to be determined over the
spatial domain. To obtain a smooth solution profile, a slow in-
terstitial velocity of vint = 0.1 is specified. Due to smoothness
of the solution profile, convergence rates from numerical ex-
periments can be expected to be in agreement with theoretical
ones, providing a condition to verify that the code is working as
expected. The feed mixture is injected for 2 min into an empty
column, and the final simulation time is specified as t f = 250
min. The injection profile is assumed to be rectangular. A high-
precision simulation is shown in Fig. 4 obtained using Chro-
maTech (Nz

e = 20, Nz = 10, Nr = 15).
A reference solution uref is computed using CADET-semi-

analytic. To avoid round-off errors in the computations, 100
decimal digit precision is specified. Moreover, a proven error in
the sup-Norm of Edes = 1× 10−40 is specified. This error bound
is proven only at the column end position z = L. As previously
mentioned in section 4, CADET-semi-analytic is unable to pro-
duce an accurate solution at and in the neighbourhood of the
column inlet position z = 0. Thus, an accurate reference can be
obtained only in part of the domain Ωz = [0, 10], i.e. in [3, 10].
The validation case has been designed such that the concentra-

tion c1(z) is equal to zero in double precision for z ∈ [0, 3] at the
final simulation time t f = 250 min (see fully resolved simula-
tion in Fig. 4). Thus, the reference solution c1,ref(z) is set equal
to zero for z ∈ [0, 3].

In the following, simulated mobile phase concentrations are
compared with the reference over the spatial domain Ωz. Con-
vergence rates are computed numerically by comparing simu-
lations obtained using different grid resolutions with the refer-
ence.

The approximation errors due to the axial operators are in-
vestigated first. Polynomials of order Nr = 10 are used to dis-
cretize the radial operators on all axial grid nodes, such that ra-
dial approximation errors do not affect the accuracy of the sim-
ulations. Moreover, the relative and absolute tolerance of IDA
are chosen as 1 × 10−12 and 1 × 10−14, respectively, to ensure
negligible errors due to the time discretization. Then, the dis-
crepancies between the simulations and the reference solution
are expected to be caused by axial approximation errors only.
That is until other sources of errors start to influence the results,
e.g. round-off errors due to double precision arithmetics.

Fig. 5(a) shows comparisons of simulations with the ref-
erence measured in the continuous L1

Ωz
-norm for different ax-

ial grid resolutions. The axial grid resolution is increased by
the number of elements Nz

e for fixed polynomial orders Nz ∈
{1, . . . , 4}. The resulting L1

Ωz
-errors are displayed against the

grid resolution on a logarithmic plot. The slopes (convergence
orders) of each of the linear segments in Fig. 5(a) are listed
in Table 2. Additionally, it lists the continuous L2

Ωz
-, and L∞

Ωz
-

errors. In these numerical experiments, the L1
Ωz
− and L2

Ωz
-errors

are evaluated using the mass matrix Eq. (24a) based on a suf-
ficient number of Legendre-Gauss-Lobatto quadrature nodes to
ensure negligible integration errors. From Fig. 5(a) and Table
2, it is evident that the convergence rates are of order Nz + 1.
This is in agreement with theoretical expected ones, validating
that the procedure for spatial discretization in the axial direction
is correctly implemented. Moreover, it demonstrates, that IDA,
CADET-semi-analytic, and the radial discretization procedure
are working as expected.

The properties of the radial discretization procedure are in-
vestigated next. Here, 20 axial elements are used with 10th
order polynomials in each axial element (Nz

e = 20, Nz = 10),
to ensure that errors due to discretization of the axial operators
are negligible. Fig. 5(b) shows the L1

Ωz
-errors evaluated for

different radial grid resolutions in a semi-logarithmic plot. The
results demonstrate, that a rapid exponential convergence rate is
obtained as the polynomial order is increased, i.e. spectral con-
vergence is achieved in each radial single-element associated
with the axial grid nodes.

5.2. Case 2: Performance benchmark using low load volume

Having successfully tested that ChromaTech’s spectral en-
gine is correctly implemented, a less simple problem is con-
sidered. The purpose of this case is to test the performance of
ChromaTech by benchmarking against CADET.

The problem considered is taken from Püttmann et al. (2013).
The goal is to separate a three-component protein feed mixture

11

                  



102 10310−12

10−10

10−8

10−6

10−4

10−2

Axial degrees of freedom (Nz
pNe)

L1 Ω
z-e

rr
or

(g
l−

1 )

Nz = 1 O(∆z2) Nz = 2 O(∆z3)
Nz = 3 O(∆z4) Nz = 4 O(∆z5)

1 2 3 4 5 6
10−12

10−10

10−8

10−6

10−4

10−2

100

Radial polynomial order (Nr)

L1 Ω
z-e

rr
or

(g
l−

1 )

(a) Axial convergence (b) Radial convergence

1

Figure 5: L1
Ωz

-errors due to (a) axial and (b) radial approximation errors of the mobile phase concentration as a function of (a) axial degrees-of-freedom and (b)
radial polynomial order used within each radial single-element domain for the validation case (see Fig. 4). Results are shown in (a) logarithmic and (b) base-10
scale with data given in Table 2.
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Figure 6: Mobile phase concentrations at the column outlet of (a) proteins and (b) salt as a function of time (chromatograms) for the performance benchmark using
low load volume (section 5.2). The model parameters taken from Püttmann et al. (2013) are given in Table 3.
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Table 3: Simulation parameters taken from Püttmann et al. (2013) that are used in the performance benchmark with lysozyme, cytochrome c and ribonuclease A
(section 5.2).

Parameters Symbol Values Unit

Components Nc 4 -
Column length L 1.4 cm
Particle radius Rp 0.0045 cm
Column porosity εc 0.37 -
Particle porosity εp 0.75 -
Film diffusion coefficients kfilm [6.9, 6.9, 6.9, 6.9]ᵀ · 10−6 m s−1

Interstitial velocity vint 5.75 · 10−4 m s−1

Axial dispersion coefficients Dax 5.75 · 10−8 m2 s−1

Initial salt concentration c0,init 50 mol m−3

Injection concentration cf [−, 1, 1, 1]ᵀ mol m−3

Injection time tinj 10 s
Pore diffusion coefficients Dp [70, 6.07, 6.07, 6.07]ᵀ · 10−11 m2 s−1

Surface diffusion coefficients Ds [0, 0, 0, 0]ᵀ m2 s−1

Ionic capacity Λ 1200 mol m−3

Thermodynamic equilibrium constants Keq [−, 7.7, 35.5, 1.59]ᵀ · 10−3 -
Characteristic charges ν [−, 3.7, 4.7, 5.29]ᵀ -
Shielding factors σ [−, 10, 11.83, 10.6]ᵀ -
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Figure 7: The L1
Ωt

-error against computational work in (a) discrete problem size and (b) computational cost measured in wall clock time for the performance
benchmark using low load volume (section 5.2). The results are shown in logarithmic scale.

consisting of lysozyme, cytochrome c, and ribonuclease A. A
chromatography column packed with a sulphopropyl Sepharose
fast flow strong cation exchange resin is used for the separation.
The steric-mass-action isotherm is used to describe the non-
linear adsorption process. The detailed model parameters are
listed in Table 3. Here, it is assumed that surface diffusion is
negligible, i.e. Ds,i = 0, ∀i = 0, . . . ,Nc. Note that the injection
time tinj is only 10 s leading to linear adsorption dynamics.

The column is initially equilibrated with running salt buffer
with an initial salt concentration c0,init equal to 50 mol m−3. The
three proteins are loaded onto the column for 10 s, each with a
concentration of 1 mol m−3, at a constant salt concentration of
50 mol m−3. It is assumed that the injection profile is rectangu-
lar. The column is then washed for 80 s using the same inlet
buffer, but without proteins in the feed. Finally, the bound pro-
teins are eluted using a linear salt gradient from 90 s to 1500 s
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Table 4: Discrete problem size required to obtain low-, engineering- and
high-precision simulations with ChromaTech and CADET for the performance
benchmark using low load volume (section 5.2). The data is the length of the
state-vector u and is visualized in Fig. 7.

Precision ChromaTech CADET Reduction

Low 352 10560 ×30
Engineering 704 41600 ×59
High 1360 165120 ×121

Table 5: Computational cost required to obtain low-, engineering- and high-
precision simulations with ChromaTech and CADET for the performance
benchmark using low load volume (section 5.2) on a single CPU thread. The
data is wall clock times (s) and is visualized in Fig. 7.

Precision ChromaTech CADET speed-up

Low 0.36 7.76 ×21
Engineering 0.64 32.66 ×51
High 1.28 143.46 ×111

starting at 100 mol m−3 with a slope of 0.2 m3 mol−1.
Since no analytical solutions are available for non-linear

chromatography models, a high-precision reference solution
uref has to be relied on for comparisons. The reference solution
is computed using ChromaTech (Nz

e = 20, Nz = 10, Nr = 20).
Fig. 6(a) and (b) shows high-precision chromatograms for pro-
teins and salt, respectively.

In the following, mobile phase concentrations at the column
outlet are compared with the reference over the time domain
Ωt = [0, t f ]. The approximation errors are measured in the
continuous L1

Ωt
-norm and are computed using Simpson’s rule

with 1500 equidistant time points for each component to ensure
negligible integration errors. The relative and absolute time
integration tolerances are specified as 1 × 10−6 and 1 × 10−8,
respectively, for both ChromaTech and CADET. These toler-
ances are sufficient for engineering purposes. Then, the quality
of the simulations can be controlled by modifying the spatial
discretization parameters only.

The quality of the simulations are classified in three
categories: low-precision, engineering-precision, and high-
precision. Here, a simulation quality of low-precision and
engineering-precision indicates that the simulation is visually
distinguishable and indistinguishable from the reference solu-
tion, respectively. A high-precision simulation quality indicates
that the spatial approximation errors approaches a similar mag-
nitude as the temporal errors for the chosen relative and ab-
solute time integration tolerances, although the spatial approx-
imation errors are still larger at this quality level. It can be
beneficial to use low-precision simulations during initial studies
with the model to reduce labour-time by performing rapid sim-
ulations. However, if low-accuracy simulations are used e.g.
for model calibration, the model parameters cannot be trusted
since they will be lumped with numerical dispersion. Instead,
a simulation quality of at least engineering-precision should be
considered for such purposes.

Using ChromaTech, the quality of the simulation is improved

by increasing the number of elements Nz
e for fixed axial poly-

nomial orders Nz ∈ {3, 4}. The radial polynomial order Nr is
varied such that axial approximation errors are dominating over
the radial errors, i.e. radial polynomial orders Nr ∈ {6, . . . , 12}
are used depending on the accuracy of the axial discretiza-
tion. When using CADET, the spatial discretization parameters
available to control the quality of the simulation are the number
of finite volume elements in the mobile Nz

e and pore Nr
e phases.

A fixed ratio of Nz
e = 2k, Nr

e = 2k−1, k = 4, . . . , 9 is used in
the following since it gives the best performance on this case
(results are not shown).

Fig. 7(a) shows the comparisons of both codes in terms of
discrete problem size with the data summarized in Table. 4.
The comparisons shows, that ChromaTech is able to reduce the
discrete problem size compared to CADET by a factor of ×30,
×59, and ×121, when a simulation quality of low-, engineering-
and high-precision is required, respectively.

Although the convergence properties of the spectral engine
used within ChromaTech are impressive, it is often the com-
putational cost which is the decisive criterion for choosing be-
tween different simulation strategies. In Fig. 7(b), the results of
the comparisons between the two codes, in terms of the com-
putational cost measured in wall clock time, are shown. Here,
CADET has been used with multiple CPU threads, taking ad-
vantage of its parallel implementation, to reduce compute time.
ChromaTech has been implemented on a single CPU core, and
a full parallelization strategy is beyond the scope of this work.
The two codes are compared on a single CPU core to provide
the most fair basis for comparing the efficiency of the meth-
ods applied, instead of their implementation. The results of the
comparisons are summarized in Table 5. They demonstrate, that
ChromaTech can reduce the compute time by a factor of ×21,
×51 and ×111, to achieve simulations of low-, engineering- and
high-precision quality, respectively.

Comparing Tables 4 and 5 shows, that the compute times
scales linearly with the discrete problem size for CADET. This
indicates that the finite volume method implemented in CADET
is dedicated and highly efficient. That is a result of solving lin-
ear systems by a domain decomposition method as previously
discussed in section 3.7.

5.3. Case 3: Performance benchmark for high load volume
The last case considered is the hardest and most demanding

to solve due to the presence of very steep concentration fronts
resulting from non-linear adsorption dynamics. The purpose is
to demonstrate, that ChromaTech is stable and to measure its
performance by comparing against CADET.

The case is taken from von Lieres and Andersson (2010)
with detailed model parameters listed in Table 6. The goal is
to separate a two component feed mixture of native lysozyme
and Cy5-labeled lysozyme. Note that the feed concentration of
Cy5-labeled lysozyme is one hundred times lower than native
lysozyme. Moreover, the feed mixture is injected at the column
inlet for a long time of tinj = 5000 s giving rise to non-linear
adsorption dynamics. The feed mixture is loaded onto a col-
umn that has been pre-equilibrated with running salt buffer with
concentration c0,init = 94.2 mol m−3. This salt concentration is
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Table 6: Simulation parameters taken from von Lieres and Andersson (2010) that are used in the performance benchmark with native and Cy5-labeled lysozyme
(section 5.3).

Parameters Symbol Values Unit

Components Nc 3 -
Column length L 1.3 m
Particle radius Rp 4.5 · 10−5 m
Column porosity εc 0.70 -
Particle porosity εp 0.60 -
Film diffusion coefficients kfilm [10−5, 10−5, 10−5]ᵀ · 10−6 m s−1

Interstitial velocity vint 0.003 m s−1

Axial dispersion coefficients Dax 0.001 m2 s−1

Initial salt concentration c0,init 94.2 mol m−3

Injection concentration cf [−, 0.143, 0.00143]ᵀ mol m−3

Injection time tinj 5000 s
Pore diffusion coefficients Dp [70, 4.0, 4.0]ᵀ · 10−11 m2 s−1

Surface diffusion coefficients Ds [0, 0, 0, 0]ᵀ m2 s−1

Ionic capacity Λ 1200 mol m−3

Thermodynamic equilibrium constants Keq [−, 0.0355, 0.0611]ᵀ · 10−3 -
Characteristic charges ν [−, 4.7, 3.93]ᵀ -
Shielding factors σ [−, 11.83, 11.83]ᵀ -
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Figure 8: Mobile phase concentrations as a function of time and axial column position of (a) salt (b) native lysozyme and (c) Cy5-labeled lysozyme. The z-axis is
concentration (mol m−3), the x-axis is time (s) and the y-axis is axial column position (m). The model parameters taken from von Lieres and Andersson (2010) are
given in Table 3.

Table 7: Discrete problem size required to obtain low-, engineering- and
high-precision simulations with ChromaTech and CADET for the performance
benchmark using high load volume (section 5.3). The data is the length of the
state-vector u and is visualized in Fig. 10.

Precision ChromaTech CADET Reduction

Low 810 33024 ×41
Engineering 2064 131584 ×64
High 2580 525312 ×204

maintained during the entire numerical experiment. Moreover,
surface diffusion is assumed to be negligible, i.e. Ds,i = 0,
∀i = 0, . . . ,Nc.

Fig. 8 shows a simulation of the mobile phase concentra-

Table 8: Computational cost required to obtain low-, engineering- and high-
precision simulations with ChromaTech and CADET for the performance
benchmark using high load volume (section 5.3) on a single CPU thread. The
data is wall clock times (s) and is visualized in Fig. 10.

Precision ChromaTech CADET speed-up

Low 1.52 34.49 ×23
Engineering 4.52 158.10 ×35
High 6.40 710.68 ×111

tions over time for all axial column positions. Notice the sharp
concentration fronts in the salt profile in Fig. 8(a) and the con-
centration overshoots of Cy5-labeled lysozyme in (c).

A simulation of the pore phase and stationary phase concen-
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Figure 9: Pore phase (a)-(c) and stationary phase (d)-(f) concentrations of salt, native lysozyme and Cy5-labeled lysozyme as a function of time and radial column
position inside a bead at an axial column position of z = 0.58. The z-axis is concentration (mol m−3), the x-axis is time (s) and the y-axis is radial column position
(m). The model parameters taken from von Lieres and Andersson (2010) are given in Table 3.
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Figure 10: The L1
Ωt

-error against computational work in (a) discrete problem size and (b) computational cost measured in wall clock time for the performance
benchmark using high load volume (section 5.3). The results are shown in logarithmic scale.
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trations for a representative bead at an axial column position
of z = 0.58 cm is shown in Fig. 9. The concentrations are
shown over time for all radial column positions. As in the mo-
bile phase, the salt concentration profile is steep within the pore
phase. Moreover, concentration overshoots are observed inside
the pore and stationary phases for Cy5-labeled lysozyme.

The observed concentration overshoots are a consequence
of competitive binding between native and labeled lysozyme.
Such concentration overshoots inside chromatography beads
have also been experimentally observed (Teske et al., 2006).

The simulation results demonstrate, that ChromaTech can
simulate non-linear chromatographic processes with steep con-
centration fronts without compromising stability. That is be-
cause the discontinuous Galerkin method has strong build-in
stability properties (Hesthaven and Warburton, 2008).

The performance of ChromaTech is tested by benchmarking
against CADET. A high-precision reference solution uref is ob-
tained using ChromaTech (Nz

e = 10, Nz = 10, Nr = 35). Simu-
lations are obtained with ChromaTech using discretization pa-
rameters Nz ∈ {3, 4}, Nz

e ∈ {2, 4}, Nr ∈ {10, 20}. For CADET,
a ratio between finite volume elements in the mobile and pore
phases of Nz

e = 2k, Nr
e = 2k, k = 5, . . . , 9 is used since its

gives the best performance on this case (results are not shown).
Both ChromaTech and CADET are run with absolute and rela-
tive time integration tolerances of 10−6 and 10−8, respectively.

Fig. 10 and Tables 7 and 8 summarize the results of the com-
parisons. The results demonstrate, that ChromaTech can reduce
the discrete problem size by a factor of ×41, ×64, ×204 when
a simulation quality of low-, engineering- and high-precision
is required, respectively. Moreover, ChromaTech can com-
pute with a factor of ×23, ×35 and ×111 faster compared to
CADET on a single CPU thread when a simulation quality of
low-, engineering- and high-precision is required, respectively.

6. Conclusions

In this work, the ChromaTech framework has been presented
for simulation of liquid chromatography processes with mass
transport modelled by the pore and surface diffusion general
rate model. ChromaTech is based on a highly efficient spatial
discretization procedure that achieves exponential decay of ap-
proximation errors within axial and radial elements while main-
taining stability.

ChromaTech’s spectral engine has been validated on a sim-
ple problem involving a single-component feed mixture un-
der linear adsorption conditions. Here, simulations were com-
pared with a high-precision reference obtained using CADET-
semi-analytic, a code which is based on the numerical inverse
Laplace operator with a proven truncation error at the column
outlet.

The performance of ChromaTech was evaluated in multi-
component protein purification cases with both linear and non-
linear adsorption dynamics. Here, ChromaTech was compared
against CADET, a dedicated code based on a finite volume
method with second (low) order spatial accuracy. Since no
analytical solution is available for non-linear chromatography

models, a fully resolved reference solution was used for com-
parisons instead. It was demonstrated, that ChromaTech and
CADET gives similar chromatograms, providing evidence that
both codes are correctly implemented. However, ChromaTech
can significantly reduce computational efforts in terms of both
computational cost and discrete problem size without compro-
mising stability. Therefore, it is especially suitable as a building
block in more advanced model-based strategies including:

• Efficient monitoring of chromatography columns based on
non-linear state-estimation.

• Efficient process control using non-linear model predictive
control.

• Efficient downstream flow-sheet designs using rigorous
process synthesis tools.

• Rigorous uncertainty analysis using e.g. the Bayesian in-
ference framework.
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